
MATH 618 (SPRING 2024, PHILLIPS): SOLUTIONS TO

HOMEWORK 6

This assignment is due on Canvas on Wednesday 15 May 2024 at 9:00 pm.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.
Little proofreading has been done.
Some parts of problems have several different solutions.

Problem 1 (Problem 21 in Chapter 10 of Rudin’s book). Let Ω ⊂ C be an open
set which contains the closed unit disk. Let f be a holomorphic function on Ω such
that |f(z)| < 1 for all z ∈ C such that |z| = 1. Determine, with proof, the possible
numbers of fixed points of f (that is, solutions to the equation f(z) = z) in the
open unit disk.

Solution. For z ∈ Ω, define g(z) = f(z) − z and h(z) = z. We apply Rouché’s
Theorem (Theorem 10.43(b) of Rudin), with γ(t) = exp(it) for t ∈ [0, 2π]. Observe
that, for z ∈ Ran(γ), we have

|h(z)− g(z)| = | − f(z)| < 1 = |z| = |h(z)|.
Moreover, by Theorem 10.11 of Rudin, Indγ(z) is 0 or 1 for all z ∈ C \Ran(γ), and
is equal to 1 exactly on the open unit disk. Therefore Rouché’s Theorem implies
that g and h have the same number of zeros in the open unit disk. Since h has
exactly one zero in the open unit disk, so does g. This means that f has exactly
one fixed point in the open unit disk. �

Problem 2 (Problem 20 in Chapter 10 of Rudin’s book). Let Ω ⊂ C be a region,
let f : Ω → C, and let (fn)n∈Z>0

be a sequence of holomorphic functions on Ω.
Suppose that fn → f uniformly on compact sets in Ω.

(1) Suppose that, for all n ∈ Z>0, the function fn is never zero on Ω. Prove
that either f(z) = 0 for all z ∈ Ω or f(z) 6= 0 for all z ∈ Ω.

(2) If U ⊂ C is open and fn(Ω) ⊂ U for all n, prove that f is constant or
f(Ω) ⊂ U .

Solution to (1). Assume that there is z ∈ Ω such that f(z) 6= 0. Let z0 ∈ Ω; we
prove f(z0) 6= 0.

First, f is holomorphic by Theorem 10.28 of Rudin. Therefore {z ∈ Ω: f(z) = 0}
is countable, by Theorem 10.18 of Rudin. Since there are uncountably many r > 0
such that Br(z0) ⊂ Ω, there is r > 0 such that Br(z0) ⊂ Ω and such that f(z) 6= 0
for all z ∈ ∂Br(z0). Choose n ∈ Z>0 such that

sup
z∈∂Br(z0)

|fn(z)− f(z)| < inf
z∈∂Br(z0)

|f(z)|.

Since fn does not vanish on Br(z0), it follows from Theorem 10.43(b) of Rudin that
f also does not vanish on Br(z0). In particular, f(z0) 6= 0. �
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Alternate solution to (1). Assume that there is z0 ∈ Ω such that f(z0) = 0. We
prove that f(z) = 0 for all z ∈ Ω.

Choose r0 > 0 such that Br0(z0) ⊂ Ω. Let 0 < r < r0. For each n, apply the
Maximum Modulus Theorem to 1/fn (see the corollary to Theorem 10.24 of Rudin)
to find θn ∈ [0, 2π] such that |fn(z0 + reiθn)| ≤ |fn(z0)|. Passing to a subsequence
of (fn)n∈Z>0

, we may assume that θ = limn→∞ θn exists.
We claim that f(z0 + reiθ) = 0. Let ε > 0. Choose N so large that n ≥ N

implies |fn(z)−f(z)| < 1
3ε for all z ∈ Br(z0). Since f is continuous, we may choose

δ > 0 such that |z − (z0 + reiθ)| < δ implies |f(z) − f(z0 + reiθ)| < 1
3ε. Choose

n ≥ N such that |reiθn − reiθ| < δ. Then, using |(z0 + reiθ)− (z0 + reiθn)| < δ at
the first step, and |fn(z0)| = |fn(z0)− f(z0)| < 1

3ε at the second step,

|f(z0 + reiθ)| ≤ |f(z0 + reiθ)− f(z0 + reiθn)|

+ |f(z0 + reiθn)− fn(z0 + reiθn)|+ |fn(z0 + reiθn)|
< 1

3ε+ 1
3ε+ |fn(z0)| < ε.

Since ε > 0 is arbitrary, this shows that f(z0 + reiθ) = 0.
We have shown that for every r ∈ (0, r0) there is z ∈ Ω with |z − z0| = r such

that f(z) = 0. Thus, z0 is a limit point of the set of zeros of f . So f(z) = 0 for all
z ∈ Ω. �

Solution to (2). Assume that there is z0 ∈ Ω such that f(z0) 6∈ U . Let gn =
fn − fn(z0) and let g = f − f(z0). Then gn → g uniformly on compact sets in Ω,
and each gn is never zero on Ω, but g(z0) = 0. The first statement of the problem
implies that g(z) = 0 for all z ∈ Ω. Therefore f is constant, with value f(z0). �

Remark 1. The Open Mapping Theorem does not help with the second statement.
All it gives is that if f is not constant, then f(Ω) ⊂ int(U). In general U is a proper
subset of int(U), even for connected open subsets of C. For example, if U = C\{0}
then int(U) = C. Even requiring U to be simply connected does not help: if
U = C \ [0,∞) then still int(U) = C.

Problem 3. Let (fn)n∈Z>0 be a sequence in C∞(S1), the set of C∞ functions from
the circle S1 to C. Suppose that for every m ∈ Z≥0, the quantity

sup
n∈Z>0

sup
t∈S1

|f (m)
n (t)|

is finite. Prove that there are f ∈ C∞(S1) and a subsequence (fk(n))n∈Z>0
of

(fn)n∈Z>0
such that f

(m)
k(n) → f (m) uniformly for every m ∈ Z≥0.

Derivatives of functions on S1 are to be computed by identifying functions on
S1 with 2π-periodic functions on R in the usual way.

We will need the following theorem from undergraduate analysis.

Theorem 2. Let a, b ∈ R satisfy sa < b. Let (fn)n∈Z>0
be a sequence of C1 func-

tions on [a, b]. Suppose that there are f, g ∈ C([a, b]) such that fn → f uniformly
and f ′n → g uniformly. Then f is C1, f ′ = g, and f ′n → f ′ uniformly.

The hypothesis on the convergence of (fn)n∈Z>0 is overkill. For example, it is
enough to require fn → f pointwise.
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The easiest proof is as follows. Set k(x) = f(a) +
∫ x
a
g(t) dt. Since f ′n → g

uniformly and fn(a) → f(a), it follows that the functions x 7→ fn(a) +
∫ x
a
f ′n(t) dt

converge uniformly to k. That is, fn → k uniformly. So, on the one hand, k = f ,
while, on the other hand, k′ = g by the Fundamental Theorem of Calculus.

Lemma 3. Let a, b ∈ R satisfy a < b. Let (fn)n∈Z>0 be a sequence of differentiable
functions on [a, b]. Suppose that

sup
n∈Z>0

sup
x∈[a,b]

|f ′n(x)| <∞.

Then (fn)n∈Z>0
is uniformly equicontinuous.

Proof. This is an immediate consequence of the Mean Value Theorem, in the form
|f(z)− f(y)| ≤ supx∈[y,z] |f ′(t)| whenever y < z. �

The form of the Mean Value Theorem used here is true with codomain C, but
one can get a worse estimate (still good enough for this purpose) by applying the
conventional version to the real and imaginary parts of f . The form here is also
valid for functions with values in a Banach space.

Solution. Let C ⊂ C([0, 2π + 1]) be

C =
{
f ∈ C([0, 2π + 1]) : f(x+ 2ı) = f(x) for all x ∈ [0, 1]

}
,

which is a closed subspace of C([0, 2π+ 1]) with the usual supremum norm ‖ · ‖∞.
Let V be the set of C∞ functions in C, a subspace (but not closed).

Define ϕ : C(S1)→ C by ϕ(f)(t) = f(eit) for t ∈ [0, 2π+ 1]. Then ϕ is bijective
and isometric. Moreover, by the definitions given in the problem statement, if
f ∈ C(S1) is in fact C1, then ϕ(f ′) = ϕ(f)′. Therefore it suffices to do the problem
entirely in terms of C and V .

Thus, let (fn)n∈Z>0
be a sequence in V , and suppose that for every m ∈ Z≥0,

the quantity
sup
n∈Z>0

sup
t∈[0, 2π+1]

|f (m)
n (t)|

is finite. We construct by induction on m ∈ Z≥0 functions gm ∈ C and strictly

increasing functions jm, km : Z≥0 → Z≥0 such that f
(m)
km(n) → gm uniformly as

n→∞ and km = km−1 ◦ jm, at m = 0 taking k−1(n) = n for all n ∈ Z>0.
For the base case, the sequence (fn)n∈Z>0 is uniformly equicontinuous by Lemma 3,

so the Arzela-Ascoli Theorem provides g0 ∈ C([0, 2π+ 1]) and a strictly increasing
function j0 : Z≥0 → Z≥0 such that Fj0(n) → g0 uniformly as n→∞.

Assume km has been constructed. The sequence
(
f
(m)
km(n)

)
n∈Z>0

is uniformly

equicontinuous by Lemma 3, so the Arzela-Ascoli Theorem provides gm+1 ∈ C([0, 2π+

1]) and a strictly increasing function jm+1 : Z≥0 → Z≥0 such that f
(m)
km(jm+1(n))

→
gm uniformly as n → ∞. We have gm ∈ C since C is closed. Set kn+1(n) =
km(jm+1(n)) for n ∈ Z>0. This completes the induction.

Define l : Z≥0 → Z≥0 by l(n) = kn(n) for n ∈ Z≥0.
We claim that l is strictly increasing. Let n ∈ Z>0. Since jn+1 : Z≥0 → Z≥0 is

strictly increasing, we have jn+1(n + 1) ≥ n + 1. Since kn is strictly increasing, it
follows that kn(jn+1(n+ 1)) ≥ kn(n+ 1) > kn(n). Thus

l(n+ 1) = kn+1(n+ 1) > kn(n) = l(n).

The claim is proved.
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We claim that for every m ∈ Z≥0, the sequence (l(n))n≥m is a subsequence of
(km(n))n≥m. To prove the claim, since l and km are strictly increasing, we need
only show that if n ≥ m then l(n) ∈

{
km(r) : r ≥ m

}
. This is true because

l(n) = kn(n) = kn−1(jn(n)) = kn−2(jn−1(jn(n)))

= · · · = (km ◦ jm+1 ◦ jm+2 ◦ · · · ◦ jn)(n)

and the functions js : Z≥0 → Z≥0 are strictly increasing. The claim is proved.
The previous claim implies that for every m ∈ Z≥0, the sequence (fl(n))n≥m is a

subsequence of (fkm(n))n≥m. Therefore f
(m)
l(n) → gm uniformly as n→∞. Applying

Theorem 2 repeatedly, we see that gm−1 is differentiable with g′m−1 = gm. Taking

f = g0, it follows that for every m ∈ Z≥0, the sequence (f
(m)
l(n)) converges uniformly

to f (m). �

Remark 4. Any interval of the form [0, 2π + ε], with ε > 0, can be used in place
of [0, 2π+ 1]. In fact, any interval of length greater than 2π can be used. However,
[0, 2π] does not work. For example, the function f(t) = t(2π − t) is C∞, is in the
image in C[0, 2π]) of C(S1), but is not in the image in C[0, 2π]) of even C1(S1).

One can circumvent this by considering only functions f such that f (m)(0) =
f (m)(2π) (using one sided derivatives), but the solution given is easier to write.

Remark 5. We use C([0, 2π + 1]) and the subspace C instead of Cb(R) and the
subspace of 2π-periodic functions because R is not compact, so that the Arzela-
Ascoli Theorem does not directly apply. One can circumvent this with additional
argument based on periodicity, but, again, the solution given is easier to write.

Remark 6. The problem was stated in terms of S1 to avoid issues involving end-
points. However, those issues are really only completely avoided in an argument
using Cb(R) and the subspace of 2π-periodic functions.

Problem 4 (Problem 13 in Chapter 14 of Rudin’s book). Let Ω ⊂ C be a region,
let (fn)n∈Z>0

be a sequence of injective holomorphic functions on Ω, and suppose
that there is a function f : Ω→ C such that fn → f uniformly on compact subsets
of Ω. Prove that f is constant or injective. Show by example that both cases can
occur.

Solution. We prove the first statement. Assume that fn → f uniformly on compact
subsets of Ω, and that f is not constant. Then f is holomorphic by Theorem 10.28
of Rudin’s book. We need to prove that f is injective, which we do by contradiction.
So assume there are b ∈ C and distinct x, y ∈ Ω such that f(x) = f(y) = b.

Since f is not constant and Ω is connected, x and y are isolated zeros of the
function z 7→ f(z)− b. Therefore there are r, s > 0 such that

Br(x) ⊂ Ω, Bs(y) ⊂ Ω, Br(x) ∩Bs(y) = ∅.

and f(z)−b is never zero on the set K = ∂Br(x)∪∂Bs(y). Since K is compact, the
number ε = infz∈K |f(z)−b| satisfies ε > 0. Again by compactness, there is n ∈ Z>0

such that |fn(z)− f(z)| < ε
2 for all z ∈ K. Therefore

∣∣(fn(z)− b)− (f(z)− b)
∣∣ < ε

2

for all z ∈ K. Using Rouché’s Theorem on the closed curves γ(t) = reit + x and
σ(t) = seit + y, both for t ∈ [0, 2π], we deduce that the functions z 7→ f(z)− b and
z 7→ fn(z)− b have the same number of zeros in Br(x) and also the same number
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of zeros in Bs(y). Therefore z 7→ fn(z) − b has at least one zero in each of Br(x)
and Bs(y), contradicting injectivity of fn. The first statement is proved.

For the example with f constant, take Ω = {z ∈ C : |z| < 1}, and take fn(z) = 1
n

for n ∈ Z>0 and z ∈ Ω. Then (fn)n∈Z>0
converges uniformly on all of Ω to the

constant function f(z) = 0 for all z ∈ Ω.

For the example with f injective, take Ω = C, define g : Ω → C by g(z) = z for
all z ∈ C, and take (fn)n∈Z>0

to be the constant sequence fn = g for n ∈ Z>0.
Then (fn)n∈Z>0 converges uniformly to g and g is injective. �

Alternate solution (sketch). We describe a different arrangement of the proof of the
first statement.

Assume there are b ∈ C and distinct x, y ∈ Ω such that f(x) = f(y) = b.
Replacing f with z 7→ f(z)− b and fn with z 7→ fn(z)− fn(x), and using fn(x)→
f(x) = b, we may assume b = 0 and fn(x) = 0 for all n ∈ Z>0. Since f is not
constant and Ω is connected, y is an isolated zero of f . Choose s > 0 such that
Bs(y) ⊂ Ω\{x} and f does not vanish on Bs(y)SM{y}. Using uniform convergence
on ∂Bs(y) and Rouché’s Theorem, show that there is n such that fn has a zero in
Bs(y). Since fn(x) = 0 as well, this contradicts injectivity of fn. �

Problem 5 (Problem 15 in Chapter 14 of Rudin’s book). Let D = {z ∈ C : |z| < 1}
be the open unit disk. Let F be the set of holomorphic functions f : D → C such
that Re(f(z)) > 0 for all z ∈ D and f(0) = 1. Prove that F is a normal family.

Can the condition “f(0) = 1” be omitted?
Can the condition “f(0) = 1” be replaced with “|f(0)| ≤ 1”?

In Rudin’s book, the set D is called U .

Some of the solution has not yet been written.

For convenience, in this problem only, let P be the open right half plane, P =
{z ∈ C : Re(z) > 0}.

Lemma 7. Let X be a topological space, let Y and Z be metric spaces, let
(fn)n∈Z>0 be a sequence of continuous functions fn : X → Y , let f : X → Y be
continuous, and let g : Y → Z be continuous. Suppose that fn → f uniformly on
compact sets in X. Then g ◦ fn → g ◦ f uniformly on compact sets in X.

The assumption that f is continuous is not redundant: on topological spaces
which are not “compactly generated”, this assumption does not follow from the
other hypotheses. However, this assumption is probably not necessary.

Proof of Lemma 7. It is clearly enough to assume that X is compact and that
fn → f uniformly on all of X, and prove that g ◦ fn → g ◦ f uniformly on all of X.

Let ρY and ρZ be the metrics on Y and Z.
Set

T = Ran(f) ∪
∞⋃
n=1

Ran(fn) ⊂ Y.

We claim that T is compact. To prove this, let U be an open cover of T . Since
Ran(f) is compact, there are k ∈ Z>0 and U1, U2, . . . , Uk ∈ U such that the open

set W =
⋃k
j=1 Uj contains Ran(f). Set δ = dist(Ran(f), Y \W ). Then δ > 0.
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Choose n ∈ Z>0 such that for all n ≥ N and all x ∈ X, we have ρY (fn(x), f(x)) <

δ. Then Ran(fn) ⊂ W for all n ≥ N . The set T0 =
⋃N−1
n=1 Ran(fn) is com-

pact. so there are m ∈ Z>0 and V1, V2, . . . , Vm ∈ U which cover T0. Then
U1, U2, . . . , Uk, V1, V2, . . . , Vm cover T0. The claim is proved.

To prove the lemma, let ε > 0. Since T is compact, g is uniformly continuous
on T . Therefore there is δ > 0 such that whenever y1, y2 ∈ T satisfy ρY (y1, y2) < δ,
then ρZ(g(y1), g(y2)) < ε. Choose n ∈ Z>0 such that for all n ≥ N and all x ∈ X,
we have ρY (fn(x), f(x)) < δ. Then also ρZ

(
(g ◦ fn)(x), (g ◦ f)(x)

)
< ε. This

completes the proof. �

Lemma 8. Let G ⊂ H(D) be

G =
{
h ∈ H(D) : h(z) < 1 for all z ∈ D and h(0) = 0

}
Then G is a normal family. Moreover, if (fn)n∈Z>0

be a sequence in G, and fn → f
uniformly on compact sets in D, then f ∈ G.

Proof. It follows from Theorem 14.6 of Rudin that G is a normal family.
For the second part, f is holomorphic by Theorem 10.28 of Rudin, and clearly

|f(z)| ≤ 1 for all z ∈ D and f(0) = 0. The Schwarz Lemma (Theorem 12.2 of
Rudin) implies that |f(z)| < 1 for all z ∈ D. Therefore f ∈ G. �

The following lemma solves the original problem, and is useful for the last ques-
tion.

Lemma 9. Let a ∈ P . Then the set

Fa =
{
f ∈ H(D) : Re(f(z)) > 0 for all z ∈ D and f(0) = a

}
is a normal family.

Proof. By the Riemann Mapping Theorem (Theorem 14.8 and Remark 14.9 of
Rudin), there is a holomorphic function g : P → D which is bijective, has holomor-
phic inverse, and satisfies g(a) = 0.

Now let (fn)n∈Z>0
be a sequence in Fa. Then (g◦fn)n∈Z>0

is a sequence in G. By
Lemma 8, there exist a strictly increasing function k : Z>0 → Z>0 and a function
h ∈ H(D) such that g ◦ fk(n) → h uniformly on compact sets in D, and moreover

h ∈ G. Therefore g−1 ◦ h is defined and is in H(D). Lemma 7 implies that
fn = g−1 ◦ g ◦ fn → g−1 ◦ h uniformly on compact sets in D. This completes the
proof that Fa is a normal family. �

Example 10. The condition “f(0) = 1” can’t be omitted. Example: for n ∈ Z>0

define fn(z) = n for all z ∈ D. Then Re(fn(z)) > 0 for all z ∈ D and n ∈
Z>0. However, (fn)n∈Z>0

has no subsequence which converges even pointwise to a
function f : D → C.


