
MATH 618 (SPRING 2024, PHILLIPS): SOLUTIONS TO

HOMEWORK 7

This assignment is due on Canvas on Wednesday 22 May 2024 at 9:00 pm.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.
Little proofreading has been done.
Some parts of problems have several different solutions.
The next problem counts as 1.5 ordinary problems.

Problem 1. Let w1, w2, . . . ∈ C \ {0}.
(1) Prove that if

∏∞
n=1 wn converges to a nonzero value, then limn→∞ wn = 1.

Show that this can fail if
∏∞
n=1 wn converges to 0.

(2) Prove that
∏∞
n=1 wn converges to a nonzero value if and only if

∑∞
n=1 log(wn)

converges.

The second part counts for about twice as much as the first.
I am sure this can be found in some textbook, but please work out the details

yourself.
So as to ensure that

∑∞
n=1 log(wn) makes sense, take log to be defined on C\{0}

by log(reiθ) = log(r) + iθ when r > 0 and θ ∈ (−π, π], with log(r) using the usual
definition of the logarithm as a function (0,∞)→ R.

There are two annoyances to deal with. First, we haven’t formally proved that
the definition log(reiθ) = log(r) + iθ gives a continuous function on C \ (−∞, 0],
since we never proved that z 7→ arg(z) is continuous on any domain. (It is certainly
not continuous on the domain given above.) You can prove this directly, but there
are easier ways to proceed. You can use Problem 6 in Chapter 10 of Rudin’s book
(which was in a previous homework assignment), but this is overkill. Second, it is
not generally true that log(ab) = log(a) + log(b), with any continuous definition on
any nonempty neighborhood of 1 in C.

The first solution for (1) is the direct solution, in terms of ε and δ. But the
problem can be reduced to one about a ratio of sequences; see the alternate solution.

Solution for (1). Following the convention used in the lectures, set pn =
∏n
k=1 wk,

and set p = limn→∞ pn when this limit exists.
For the first sentence, let ε > 0. Since p 6= 0, the number

δ = min

(
|p|
2
,
ε|p|
4

)
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2 MATH 618 (SPRING 2024): SOLUTIONS 7

satisfies δ > 0. Choose N ∈ Z>0 such that whenever n ≥ N then |pn − p| < δ. For
n ≥ N + 1 we then have |pn| > 1

2 |p|. Therefore

|wn − 1| =
(

1

|pn|

)
|pn − pn−1| <

(
2

|p|

)
ε

≤
(

2

|p|

)(
|pn − p|+ |pn−1 − p|

)
<

(
2

|p|

)
· 2δ ≤ ε.

For the second sentence, take wn = 1
2 for all n ∈ Z>0. �

For the second sentence, taking wn = 0 for all n does not work, since the problem
statement says wn ∈ C \ {0}.

Alternate solution for (1). Following the convention used in the lectures, set pn =∏n
k=1 wk, and set p = limn→∞ pn when this limit exists.
For the first sentence, observe that

wn =
pn
pn−1

when n ≥ 2. Therefore

lim
n→∞

wn = lim
n→∞

pn
pn−1

=
limn→∞ pn

limn→∞ pn−1
=
p

p
= 1.

For the second sentence, take wn = 1
2 for all n ∈ Z>0. �

Solution for (2). We clearly have exp(log(z)) = z for all z ∈ C \ {0}.
First suppose

∑∞
n=1 log(wn) converges. For n ∈ Z>0, as in the solution to (1),

set pn =
∏n
k=1 wk. Also set sn =

∑n
k=1 log(wk) and s =

∑∞
n=1 log(wn). Then

exp(sn) = pn. By continuity of exp, we get

lim
n→∞

pn = exp
(

lim
n→∞

sn

)
= exp(s).

Therefore
∏∞
n=1 wn converges, and the product is nonzero since exp(s) 6= 0.

For the reverse implication, first use exp′(0) 6= 0 and the Inverse Function Theo-
rem to choose r > 0, an open set V ⊂ C with 1 ∈ V , and a bijection h : V → Br(0)
which is holomorphic and satisfies h(exp(z)) = z for all z ∈ Br(0) and exp(h(z)) = z
for all z ∈ V . We may clearly require r < π

2 and

(1) V ⊂
{
z ∈ C : Re(z) > 0

}
.

We claim that, using the definition of log in the problem, h(z) = log(z) for all
z ∈ V . To prove the claim, set S =

{
z ∈ C : − π

2 < Im(z) < π
2

}
. For z ∈ V we

have h(z) ∈ S because r < π
2 , and log(z) ∈ S by (1). The restriction exp |S is easily

seen to be injective, and exp(h(z)) = z = exp(log(z)). The claim follows.
Define W =

{
exp(z) : z ∈ Br/2(0)

}
. Then 1 ∈ W , and W is open by the Open

Mapping Theorem (or because exp: Br(0)→ V is a homeomorphism).
We claim that if a, b ∈ W then ab ∈ V and h(ab) = h(a) + h(b). We prove the

claim. By construction, h(a), h(b) ∈ Br/2(0). Therefore h(a) + h(b) ∈ Br(0). So
ab = exp(h(a)) exp(h(b)) = exp(h(a) + h(b)) ∈ V . This equation then implies that
h(ab) = h

(
exp(h(a) + h(b))

)
= h(a) + h(b). The claim is proved.

Now suppose
∏∞
n=1 wn converges to p 6= 0. Following the convention used in the

lectures, set pn =
∏n
k=1 wk, so that p = limn→∞ pn. It follows that limn→∞

p
pn

= 1.

Therefore, also since exp(Br/4(0)) is open, there is N ∈ Z>0 such that for all n ≥ N
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we have p
pn
∈ exp(Br/4(0)). By part (1), we can also require that N be so large

that whenever n ≥ N we have wn ∈W .
Since x, y ∈ Br/4(0) implies x−y ∈ Br/2(0), it follows that if a, b ∈ exp(Br/4(0))

then ab−1 ∈W . Therefore, for m,n ≥ N , we have pm
pn

=
(
p
pn

)(
p
pm

)−1
∈W .

We claim that for all n ≥ N we have h(pn/pN ) =
∑n
k=N+1 h(wk). The proof of

the claim is by induction. It is trivially true for n = N , because h(1) = 0. Suppose
it holds for n. Then

pn+1

pN
=

(
pn
pN

)
wn+1.

Both factors on the right are in W . Using this at the first step, and the induction
hypothesis at the second step, we get

h

(
pn+1

pN

)
= h

(
pn
pN

)
+ h(wn+1) =

n+1∑
k=N+1

h(wk),

completing the induction and the proof of the claim.
Since

∏∞
n=1 wn converges, limn→∞

pn
pN

exists. Call it λ. Then λ ∈ W ⊂ V . By

continuity of h, and since wk ∈W ⊂ V for k ≥ N , we have

∞∑
k=N+1

log(wk) =

∞∑
k=N+1

h(wk) = lim
n→∞

n∑
k=N+1

h(wk) = h(λ).

So
∑∞
k=N+1 log(wk) converges. Therefore

∑∞
k=1 log(wk) converges, as desired. �

Problem 2 (Problem 19 in Chapter 14 of Rudin’s book, plus an additional state-
ment). Let D = {z ∈ C : |z| < 1} be the open unit disk. If f : D → D is holo-
morphic and bijective, prove that f extends to a homeomorphism from D to D.
(This part is essentially immediate.) Then (this is the main part) exhibit, of course
with proof, a bijective homeomorphism f : D → D which does not extend to a
continuous function from D to D.

The first part is included mainly for context.

Solution. For the first statement, use Theorem 12.6 of Rudin (proved in class) to
find α ∈ D and λ ∈ C with |λ| = 1 such that for all z ∈ D, we have

f(z) = λ

(
z − α
1− αz

)
.

By Theorem 12.4 of Rudin (proved in class), this function extends to a bijective
holomorphic function ϕα : C \ {1/α} → C \ {−1/α} with ϕα(∂D) = ∂D, and in
particular to a homeomorphism D → D.

For the second part, define f : D → D by

f(z) = exp

(
i

1− |z|

)
z.

(In polar coordinates,

f(reiθ) = r exp

(
i

(
θ +

1

1− r

))
when r ∈ [0, 1) and θ ∈ R.)
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This function clearly has the continuous inverse

z 7→ exp

(
− i

1− |z|

)
z.

Therefore f is a homeomorphism.
To prove that f does not extend to a continuous function from D to D, it suffices

to find a sequence (zn)n∈Z>0
in D such that limn→∞ zn exists but limn→∞ f(zn)

does not exist. Take

zn = 1− 1

πn
.

Then zn ∈ D, limn→∞ zn = 1, but f(zn) = (−1)nzn, so (f(zn))n∈Z>0 has two
cluster points, namely 1 and −1. �

Problem 3 (Problem 22 in Chapter 14 of Rudin’s book). Let D = {z ∈ C : |z| < 1}
be the open unit disk. Let Ω be an open square with center at 0 (but with sides
not necessarily parallel to the coordinate axes), and let f : D → Ω is holomorphic,
bijective, and satisfy f(0) = 0. Prove that f(iz) = if(z) for all z ∈ D. If f(z) =∑∞
n=0 cnz

n, prove that cn = 0 unless n − 1 is a multiple of 4. Generalize by
replacing squares with general rotationally symmetric simply connected regions (of
course other than C).

We first state a lemma.

Lemma 1. Let Ω ⊂ C be a simply connected region with Ω 6= C, let w0 ∈ Ω, and
let f, g : D → Ω be holomorphic, bijective, and satisfy f(0) = g(0) = w0. Then
there is λ ∈ C with |λ| = 1 such that g(z) = f(λz) for all z ∈ D.

Proof. Set h = f−1 ◦ g. Then h : D → D is holomorphic, bijective, and satisfies
f(0) = 0. Theorem 12.6 of Rudin (proved in class) provides λ ∈ C with |λ| = 1
such that h(z) = λz for all z ∈ D. Apply f . �

Here is the general statement.

Theorem 2. Let Ω ⊂ C be a simply connected region such that 0 ∈ Ω. Let ω ∈ C
satisfy |ω| = 1 and ωΩ = Ω. Let f : D → Ω is holomorphic, bijective, and satisfy
f(0) = 0. Then:

(1) f(ωz) = ωf(z) for all z ∈ D.
(2) If we write f(z) =

∑∞
n=0 cnz

n, and m ∈ Z≥0 is a number such that cm 6= 0,
then ωm−1 = 1.

Proof. For the first part, observe that g(z) = ωf(z) is also a holomorphic bijection
from D t Ω. By Lemma 1, there is λ ∈ C with |λ| = 1 such that g(z) = f(λz) for
all z ∈ D. Moreover, using the Chain Rule for the second step, ωf ′(0) = g′(0) =
λf ′(0). We have f ′(0) 6= 0 because f is injective, so λ = ω.

For the second part, for z ∈ D we have

∞∑
n=0

cnz
n = f(z) = ω−1f(ωz) = ω−1

∞∑
n=0

cn(ωz)n =

∞∑
n=0

ωn−1cnz
n.

By uniqueness of power series, (ωn−1 − 1)cn = 0 for all n ∈ Z≥0. Part (2) follows.
�
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Solution to the original statement. If Ω is a square centered at 0, then iΩ = Ω.
Take ω = i in Theorem 2. Part (1) gives f(iz) = if(z) for all z ∈ D, and, since
im = 1 if and only if m is divisible by 4, part (2) gives cn = 0 unless n − 1 is a
multiple of 4. �

The next problem counts as 1.5 ordinary problems.

Problem 4 (Problem 29 in Chapter 14 of Rudin’s book). Let Ω ⊂ C be a bounded
region, fix a ∈ Ω, and let f : Ω→ Ω be a holomorphic function such that f(a) = a.

(1) Prove that |f ′(a)| ≤ 1. Hint: set f1 = f and inductively define fn+1 =
f ◦ fn. (These functions are normally called fn.) Compute f ′n(a).

(2) If f ′(a) = 1, prove that f(z) = z for all z ∈ Ω. Hint: if f(z) = z + cm(z −
a)m + cm+1(z − a)m+1 + · · · , compute the coefficient of (z − a)m in the
expansion of fn(z).

(3) If |f ′(a)| = 1, prove that f is bijective. Hint: set γ = f ′(a). Find positive
integers k(1) < k(2) < · · · such that limn→∞ γk(n) = 1 and the sequence
(fk(n))n∈Z>0

converges uniformly on compacts sets in Ω to some function g.
Prove that g′(a) = 1. Use Problem 20 in Chapter 10 of Rudin’s book (in
a previous homework assignment) to prove that g(Ω) ⊂ Ω. Use these facts
to deduce the desired conclusions for f .

Remark 3. The functions fn in the hint for part (1) should properly be called fn.
This is consistent with the notation f−1 for the inverse function. (So, if f : X → X
is invertible then f−2 makes sense.) It is standard in work on dynamical systems.
For this reason, notation like “sin2(x)” is bad.

One major exception (another example of there being not enough notation to go
around): if X is, say, a compact Hausdorff space, then the set C(X) of continuous
functions from X to C is an algebra, and in particular a ring. With respect to
the ring operations, the function x 7→ [f(x)]n must be called fn, and f−1 is the
function f−1(x) = 1/f(x).

If you are a C*-algebraist and work on crossed products by minimal homeomor-
phisms, then both meanings may occur in the same sentence.

We collect for reference some repeatedly used easy facts.

Notation 4. Throughout, Ω ⊂ C be a bounded region, a ∈ Ω, and f : Ω→ Ω is a
holomorphic function such that f(a) = a. Moreover, the functions fn : Ω → Ω are
defined inductively by f1 = f and fn+1 = f ◦ fn for n ∈ Z>0. The set F is defined
to be the set of all holomorphic functions from Ω to Ω.

Lemma 5. Adopt Notation 4. Then f ′n(a) = f ′(a)n for all n ∈ Z>0.

Proof. This is an immediate induction argument using the Chain Rule. �

Lemma 6. Adopt Notation 4. For every sequence (hn)n∈Z>0
in F , there are a

subsequence (hk(n))n∈Z>0
of (hn)n∈Z>0

and a function g : Ω→ C such that, for all

m ∈ Z≥0, h
(m)
k(n) → g(m) uniformly on compact subsets of Ω.

Proof. The set F is uniformly bounded because Ω is bounded. So F is a normal
family by Theorem 14.6 of Rudin. Thus, there are a subsequence (hk(n))n∈Z>0

of
(hn)n∈Z>0

and a function g : Ω → C such that hk(n) → g uniformly on compact
subsets of Ω. By applying Theorem 10.28 of Rudin m times, g is holomorphic and

f
(m)
k(n) → g(m) uniformly on compact subsets of Ω. �
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Lemma 7. Adopt Notation 4. There are positive integers k(1) < k(2) < · · · such
that limn→∞ f ′(a)k(n) exists.

Proof. Apply Lemma 6 to get a subsequence (fk(n))n∈Z>0
of (fn)n∈Z>0

and a func-
tion g : Ω → C such that f ′k(n) → g′ uniformly on compact subsets of Ω. Then

Lemma 5 says limn→∞ f ′(a)k(n) = g′(a). �

Solution to part (1). Adopt Notation 4. Lemma 7 gives integers k(n) → ∞ such
that limn→∞ f ′(a)k(n) exists. It is immediate that |f ′(a)| ≤ 1. �

The following solution doesn’t depend on normal families.

Alternate solution to part (1). Adopt Notation 4. Choose r > 0 such that Br(a) ⊂
Ω and R > 0 such that Ω ⊂ BR(a). For n ∈ Z>0, use fn(Ω) ⊂ Ω and Cauchy’s
Estimates (see Theorem 10.22 of Rudin’s book) to get

|f ′n(a)|2r2 ≤ 1

2π

∫ π

−π

∣∣f(a+ reiθ)
∣∣2 dθ ≤ R2.

Combining this with Lemma 5 gives

|f ′(a)|n = |f ′n(a)| ≤ R

r
.

Since the right hand side is independent of n, it follows that |f ′(a)| ≤ 1. �

For part (2), we use the hint in a slightly different form than was suggested. (If
one takes it literally, one needs to address convergence issues. This isn’t hard but
is annoying.) it is convenient to separate the following calculation.

Lemma 8. Let Ω ⊂ C be open, let h be a holomorphic function on Ω, let a ∈ Ω,
and let m ∈ Z>0 \ {1}. Define f(z) = z + (z − a)mh(z). Then f (m)(a) = m!h(a).

Proof. First, induction and the product rule show that if g and k are holomorphic
functions on Ω and n ∈ Z≥0, then

(g · k)(n) =

n∑
l=0

(
n

l

)
g(l) · k(n−l).

Applying this formula to f , since m ≥ 2 we get

f (m)(z) =

m∑
l=0

(
m

l

)
m(m− 1) · · · (m− l + 1)(z − a)m−l · h(m−l)(z).

If we put z = a, the only nonzero term is the one for l = m. �

Solution to part (2). Suppose the statement is false. Adopt Notation 4.
Let m be the least integer m ≥ 2 such that the coefficient cm in the power series

expansion f(z) =
∑∞
n=0 cm(z − a)n is nonzero. (That is, m− 2 is the order of the

zero of f ′′ at a; this order might be zero.) The hypotheses imply that c0 = a and
c1 = 1. So there is a holomorphic function g on Ω such that g(a) 6= 0 and for all
z ∈ Ω we have

(2) f(z) = z + (z − a)mg(z).

Inductively define holomorphic functions gn on Ω by g1 = g and

gn+1(z) = gn(z) + [1 + (z − a)m−1gn(z)]mg(fn(z))
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for n ∈ Z>0 and z ∈ Ω. We claim that for n ∈ Z>0 we have fn(z) = z + (z −
a)mgn(z). We prove the claim by induction. It is true for n = 1 by (2). Suppose it
holds for n. By (2) and the induction hypothesis, we have

fn+1(z) = f(fn(z)) = fn(z) + (fn(z)− a)mg(fn(z))

= z + (z − a)mgn(z) +
[
z + (z − a)mgn(z)− a

]m
g(fn(z))

= z + (z − a)m
[
gn(z) + [1 + (z − a)m−1gn(z)]mg(fn(z))

]
= z + (z − a)mgn+1(z),

as desired. The claim is proved.
Since fn(a) = a and m ≥ 2, an induction argument now shows that gn(a) =

ng(a) for all n ∈ Z>0. So Lemma 8 yields f
(m)
n (a) = nm!g(a) for all n ∈ Z>0.

By Lemma 6, there are a subsequence (fk(n))n∈Z>0
of (fn)n∈Z>0

and a holomor-

phic function g : Ω→ C such that limn→∞ f
(m)
k(n)(a) = g(m)(a). But, since g(a) 6= 0,

the previous paragraph shows that limn→∞ f
(m)
k(n)(a) =∞. This contradiction com-

pletes the solution. �

Alternate solution to part (2). Argue as in the first solution to part (2) through all
but the last paragraphs, to deduce that, if the conclusion is false, there are m ≥ 2
and b ∈ C \ {0} (equal to g′(a) there) such that

(3) f (m)
n (a) = nm!b

for all n ∈ Z>0. Choose r > 0 such that Br(a) ⊂ Ω and R > 0 such that Ω ⊂ BR(a).
For n ∈ Z>0, use fn(Ω) ⊂ Ω and Cauchy’s Estimates (see Theorem 10.22 of Rudin’s
book) to get ∣∣∣∣∣f (m)

n (a)

m!

∣∣∣∣∣
2

r2m ≤ 1

2π

∫ π

−π

∣∣f(a+ reiθ)
∣∣2 dθ ≤ R2.

Combining this with 3 gives

n|b|m =

∣∣∣∣∣f (m)
n (a)

m!

∣∣∣∣∣ ≤ R

rm
.

Since the right hand side is independent of n, this shows that |b|m = 0, a contra-
diction. �

Solution to part (3). Adopt Notation 4.
Set γ = f ′(a). Apply Lemma 7, getting positive integers l0(1) < l0(2) < · · · snd

λ ∈ C such that limn→∞ γl0(n) = λ. Passing to a subsequence, find positive integers
l(1) < l(2) < · · · such that l(n+ 1) > 2l(n) for all n ∈ Z>0 and limn→∞ γl(n) = λ.
For n ∈ Z>0, set k0(n) = l(n+ 1)− l(n). Then k0(1) < k0(2) < · · · and

lim
n→∞

γk0(n) = lim
n→∞

γl(n+1)
(
γl(n)

)−1
= 1.

By Lemma 6, there are a further subsequence (fk(n))n∈Z>0
of (fk0(n))n∈Z>0

and a
holomorphic function g : Ω→ C such that fk(n) → g uniformly on compact subsets

of Ω, and also limn→∞ f ′k(n)(a) = g′(a). Lemma 5 gives g′(a) = limn→∞ γk0(n) = 1.

So g is not constant. Problem 20 in Chapter 10 of Rudin’s book now implies that
g(Ω) ⊂ Ω. Part (2) implies that g(z) = z for all z ∈ Ω.
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We claim that f is injective. Suppose f(z1) = f(z2). Then fn(z1) = fn(z2) for
all n ∈ Z>0, so

z1 = g(z1) = lim
n→∞

fk(n)(z1) = lim
n→∞

fk(n)(z2) = g(z2) = z2.

The claim is proved.
It remains to prove that f is surjective. Let w ∈ Ω. Choose r > 0 such that

Br(w) ⊂ Ω. Choose n ∈ Z>0 with k(n) > 1 such that

sup
z∈Br(w)

|fk(n)(z)− g(z)| < r

2
.

Since |g(z)−w| = r for z ∈ ∂Br(w), Rouché’s Theorem says that g−w and fk(n)−w
have the same number of zeros in Br(w). Since g−w vanishes at w, it follows that
there is z ∈ Ω such that fk(n)(z) = w. That is, w = fk(n)(z) = f(fk(n)−1(z)) ∈
Ran(f). �


