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Abstract. We give a detailed introduction to the theory of Cuntz semigroups
for C∗-algebras. Beginning with the most basic definitions and technical lem-

mas, we present several results of historical importance, such as Cuntz’s the-

orem on the existence of quasitraces, Rørdam’s proof that Z-stability implies
strict comparison, and Toms’ example of a non Z-stable simple, nuclear C∗-
algebra. We also give the reader an extensive overview of the state of the

art and the modern approach to the theory, including the recent results for
C∗-algebras of stable rank one (for example, the Blackadar-Handelman conjec-

ture and the realization of ranks), as well as the abstract study of the Cuntz

category Cu.
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1. Introduction

The Cuntz semigroup is an invariant for C∗-algebras whose origin can be traced
back to the seminal work of Joachim Cuntz [38] on the existence of quasitraces
on simple, stably finite C∗-algebras. The Cuntz semigroup Cu(A) of a C∗-algebra
A resembles the Murray-von Neumann semigroup V(A), but is constructed using
positive elements instead of projections (and a suitable equivalence relation). The
comparison between the Cuntz semigroup and the K-groups (particularly K0) puts
in perspective the advantages and disadvantages of these invariants. Arguably one
of the biggest advantages of K-theory is its computability, as there are for instance
several 6-term exact sequences that are very useful in a number of situations. On
the other hand, many C∗-algebras do not contain any nontrivial projections, and
thus V(A) and K0(A) may in general contain very little information about A outside
the class of real rank zero C∗-algebras, which is a class where projections abound.
For example, the complex numbers C, continuous functions on the Hilbert cube
[0, 1]N, the Jiang-Su algebra Z, and the suspension of the Calkin algebra SQ all
have the same K-theory. Moreover, the K-groups of a C∗-algebra do not contain
any information about its ideal structure, which helps explain why virtually all clas-
sification results that only use the K-theory of the algebra must assume simplicity.
The Cuntz semigroup, on the other hand, always contains plenty of information
about the C∗-algebra, essentially because every C∗-algebra contains a great deal
of positive elements. (Exactly what kind of information about A is encoded in
Cu(A) is not completely clear, but we give many concrete instances in the theo-
rems below.) The Cuntz semigroup is unfortunately rather difficult to compute,
which makes its rich information sometimes difficult to access. This is perhaps not
entirely surprising, given how intrincate its structure is. Interestingly, in certain
instances enough information suffices to distinguish algebras without the need of a
full computation. For example, the Cuntz semigroup distinguishes the algebras C,
C([0, 1]N), Z and SQ mentioned above. (We do not have an explicit computation
of either Cu(C([0, 1]N)) or Cu(SQ), but enough about them is known to claim that
they are different.)

The Cuntz semigroup is intimately related with classification, particularly with
the classification program of simple, nuclear C∗-algebras initiated by George Elliott.
The original conjecture aimed at classifying all simple, separable, unital, nuclear
C∗-algebras using K-theoretical data, conveniently encoded in the Elliott invariant
Ell that, loosely speaking, consists of the K0-group, the topological K1-group, the
trace simplex, and the pairing between projections and traces. More precisely then,
it was asked whether an isomorphism of invariants Ell(A) ∼= Ell(B) could be lifted
to an isomorphism of the algebras A ∼= B. The relevance of the Cuntz semigroup
in the modern theory of C∗-algebras was made evident in the celebrated work of
Toms [91], where he constructed two simple, separable, nuclear, unital C∗-algebras
A and B which satisfy Ell(A) ∼= Ell(B) and A � B. These algebras constitute
a counterexample to Elliott’s conjecture, and were distinguished using the Cuntz
semigroup; see Section 9 for an exposition of Toms’ examples and more details of the
classification program.1 The work of Toms motivated the systematic study of the
Cuntz semigroup, which was initiated by Coward, Elliott and Ivanescu in [37]. Since

1Toms’ counterexample to the Elliott conjecture was not the first one. Indeed, Rørdam had
earlier constructed [80] a simple, nuclear C∗-algebraA containing a finite and an infinite projection.

It follows that A and A ⊗ Z have the same Elliott invariant, but are not isomorphic. Prior to
Rørdam’s construction, Villadsen [96] had constructed examples of simple, separable, nuclear C∗-
algebras which agreed on the Elliott invariant but were not isomorphic. The relevance of Toms’
example in the context of these notes stems from the fact that he used the Cuntz semigroup to
distinguish C∗-algebras with isomorphic Elliott invariants.
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then, numerous papers have been written about the Cuntz semigroup developing
a categorical framework for their study, thus unveiling fascinating features of this
invariant.

The Cuntz semigroup has been successfully used to classify certain classes of
C∗-algebras, as well as maps between them. Ciuperca and Elliott’s classification
[34] of AI-algebras was ultimately greatly generalized by Robert [73], who classified
certain direct limits of one-dimensional NCCW-complexes. These classification
results are obtained as consequences (via an intertwining argument) of general
theorems classifying homomorphisms from said algebras into arbitrary C∗-algebras
of stable rank one. A basic form of these classification results for maps is the
work [76] of Robert and Santiago, where they show that two homomorphisms from
C0((0, 1]) into a C∗-algebra of stable rank one are approximately unitarily equivalent
if and only if they are equal at the level of the Cuntz semigroup. It should be
noted that none of these results requires either the domain or codomain algebra
to be simple; this is perhaps not so surprising considering the fact that the Cuntz
semigroup encodes the ideal lattice of the algebra (see below) as well as other
structural aspects (see, for example, [66] and also [77]).

The goal of this survey is to introduce the reader to this rich theory, beginning
with a detailed exposition of the basics, and proving some of the most celebrated
results. We will also give an overview of the modern theory of Cuntz semigroups,
particularly the spectacular recent developments for C∗-algebras of stable rank one.

In the rest of this introduction, we give a summary of the main results discussed
in this work. As it turns out, the Cuntz semigroup of a C∗-algebra is quite a special
kind of ordered semigroup: for example, suprema of increasing sequences always
exist, and addition is compatible with suprema and with the so-called compact
containment relation�; see Section 4. Thus, the Cuntz semigroup Cu(A) naturally
belongs to a subcategory of positively ordered monoids:

Theorem A. (Coward-Elliott-Ivanescu [37]). There is a category Cu of positively
ordered monoids to which Cu(A) belongs for every C∗-algebra A. Moreover, the
Cuntz semigroup determines a functor Cu: C∗ → Cu which respects (countable)
direct limits.

In fact, considering the Cuntz semigroup as an ordered set, it becomes an ω-
domain, that is, a sequentially complete partially ordered set which is also ω-
continuous; see [60], and also [49, 84]. While the work [37] only considered countable
direct limits, it was later shown in [8] that this assumption is not necessary: Cu
posseses arbitrary direct limits, and Cu preserves them. More properties of the
category Cu and the functor Cu will be addressed in Theorem H.

The objects in the category Cu are partially ordered semigroups satisfying cer-
tain axioms (see Definition 4.5) which are enjoyed by Cu(A) for all C∗-algebras
A. The goal of describing precisely which partially ordered semigroups arise from
C∗-algebras has led to the discovery of five additional axioms, but even these do
not entirely describe the range of the invariant. Obtaining a complete exlicit de-
scription is an extremely complicated task, and we are very far from achieving it.
This should be compared to the situation with K-theory, where it is not so hard to
show that every pair of abelian groups arises as the K-groups of a C∗-algebra.

Theorem A is important since it grants us access to categorical methods in
the study of (abstract) Cuntz semigroups. This perspective has been extremely
fruitful, and some of the most recent applications are discussed in Section 10; see
also Theorem H below.

As mentioned before, the ideal structure of A can be read off of Cu(A). (In this
work, by an ideal in a C*-algebra we will always mean a closed, two-sided ideal.)
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Theorem B. (Ciuperca-Robert-Santiago [36]). The Cuntz semigroup of a C∗-
algebra encodes its ideal-lattice structure, as well as the Cuntz semigroups of every
ideal and every quotient. More explicitly, the assignment I 7→ Cu(I) defines a
lattice isomorphism between the ideals of A and the ideals of Cu(A), and there is
a canonical isomorphism Cu(A)/Cu(I) ∼= Cu(A/I).

The above theorem should also be compared to analogous statements in K-
theory: in general, the K-groups of A do not contain any information about the
ideal structure of A.

Another major part of the structure of a C∗-algebra which is encoded in its
Cuntz semigroup is its (quasi)tracial state space.

Theorem C. (Blackadar-Handelman [17]). Let A be a unital C∗-algebra. Then
there is a natural affine bijection between the set of all quasitracial states on A and
the set of all normalized functionals on Cu(A). Given a quasitrace τ ∈ QT(A), the
corresponding functional is

dτ ([a]) = lim
n→∞

τ
(
a

1
n

)
for all a ∈ A+ (and extended naturally to positive elements in A⊗K).

By the work of Elliott, Robert and Santiago, the natural bijection described in
the theorem above extends to a bijection between the set of all lower-semicontinuous
quasitraces on A and the set of all functionals on Cu(A); see [40].

Recall (see also Definition 2.9) that a unital C∗-algebra A is said to be stably
finite if for all n ∈ N and all s ∈ Mn(A) with s∗s = 1, we have ss∗ = 1. In other
words, all isometries in matrix algebras over A are automatically unitaries. Very
loosely speaking, one may think of stably finite, simple, unital C∗-algebras as the
C∗-analogues of the finite von Neumann factors.

The fact that a finite von Neumann factor admits a faithful trace is a funda-
mental result in their study. In the C∗-algebra setting, Cuntz used a precursor of
Theorem C to show the following version of that result:

Theorem D. (Cuntz [38]). Let A be a simple, unital C∗-algebra. Then A is stably
finite if and only if it admits a faithful quasitrace.

For the most part of the last two decades, classification has revolved around the
Jiang-Su algebra Z and C∗-algebras that absorb it tensorially; such algebras are
called Z-stable. The main reason for this is the fact (see Remark 9.2) that the
Elliott invariant cannot distinguish between A and A⊗Z. Thus, only Z-stable C∗-
algebras can be expected to be classified using Ell. The computation of the Cuntz
semigroup of Z was used by Rørdam to show that Cuntz semigroups of Z-stable
C∗-algebras are well-behaved:

Theorem E. (Rørdam [81]). Let A be a separable, unital Z-stable C∗-algebra.
Then Cu(A) is almost unperforated; equivalently, A has strict comparison.

Perhaps surprisingly, it is conjectured that the converse of Theorem E is true
in the simple, nuclear setting: this is the only implication that remains open in
the Toms-Winter conjecture. The conditions of Z-stability and strict comparison
should be regarded as C∗-algebraic counterparts of McDuffness and the fact that
in a II1-factor, the order on projections is determined by the unique trace. While
those conditions are always satisfied for hyperfinite factors, Z-stability and strict
comparison are not automatic for simple, nuclear C∗-algebras, as Toms showed:

Theorem F. (Toms [91]). There exists a simple, separable, nuclear, unital C∗-
algebra A which satisfies Ell(A) ∼= Ell(A ⊗ Z) and Cu(A) � Cu(A ⊗ Z), so in
particular A � A⊗Z.
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The way that Toms distinguished Cu(A) from Cu(A⊗Z) was using the property
of almost unperforation via Theorem E. The explicit computation of Cu(A), for the
C∗-algebra A constructed by Toms, is still unknown; see Problem 16.1. On the other
hand, the difficult task of computing Cuntz semigroups becomes much simpler for
Z-stable C∗-algebras:

Theorem G. (Brown-Toms [27], Brown-Perera-Toms [26]). Let A be a simple,
separable, unital, stably finite Z-stable C∗-algebra. Then

Cu(A) ∼= V(A) t LAff(QT(A))++.

In particular, the pair (Cu(A),K1(A)) is equivalent to Ell(A).

In the theorem above, LAff(QT(A))++ denotes the set of all lower semicontin-
uous affine functions QT(A) → (0,∞]. For the class of algebras in Theorem G,
the group K1(A) can also be recovered from Cuntz semigroup data, namely from
Cu(A⊗ C(T)); see Theorem 9.10.

A recurrent theme in these notes is the fact that C∗-algebras of stable rank one
have particularly well behaved Cuntz semigroups. This is made already apparent
in Subsection 2.2, where we show that Cuntz comparison in the stable rank one
case takes a form which is very close to Murray-von Neumann subequivalence for
projections; see Proposition 2.16. We also report on some of the most recent results
on Cuntz semigroups of C∗-algebras of stable rank one, including the following:

Theorem H. (Antoine-Perera-Robert-Thiel [5]). Let A be a separable, unital
C∗-algebra of stable rank one without finite-dimensional quotients. Then Cu(A)
has the Riesz interpolation property and it is an inf-semillatice ordered semigroup.
Moreover:

(i) (Realization of ranks). For every f ∈ LAff(QT(A))++, there exists a ∈ (A⊗
K)+ such that dτ ([a]) = f(τ) for all τ ∈ QT(A).

(ii) (Blackadar-Handelman conjecture). The space DF(A) of dimension functions
on A is a Choquet simplex.

The developments that led to Theorem H ran parallel to, and also benefited from,
the advances made in the systematic study of the category Cu. Indeed, Theorem A
opened the doors for an abstract study of the category Cu and of the functor Cu. In
this setting, it is particularly important to establish the existence of some standard
categorical constructions in Cu such as direct limits, tensor products or products.
This naturally leads one to consider two larger auxiliary categories W and Q, which
contain Cu as a full subcategory. These larger categories have the advantage that
the constructions that we are interested in exist in them (for example, it is not so
difficult to prove that W has arbitrary direct limits and tensor products). One can
show (see Theorem 12.9 and Theorem 14.5) that there exist functors γ : W→ Cu
and τ : Q→ Cu which are, respectively, a reflector and coreflector to the canonical
inclusions. Using these, it is possible to transfer constructions from W and Q back
to Cu. This is an essential ingredient in the following:

Theorem I. (Antoine-Perera-Thiel [8]). The category Cu is closed, symmetric,
monoidal, and bicomplete. The Cuntz semigroup functor preserves directed limits
and coproducts, and, suitably interpreted, also products and ultraproducts.

We almost exclusively work with the picture of the Cuntz semigroup of a C∗-
algebra A which uses positive elements in A ⊗ K. We should, however, point
out that there are at least two alternative presentations of Cu(A) which may be
more convenient in some contexts: the one using Hilbert modules, which was first
considered in [37] and is only very briefly presented here in the comments before
Proposition 11.12, and the one using open projections, which was given in [67],
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and is not covered here. We also mention that most of the results presented hold
both for separable and nonseparable C*-algebras, but some of them do require
separability, an assumption that will be made as needed.

We have made these notes as self-contained as possible, assuming only a very
elementary background in C∗-algebras and functional calculus. As such, we hope
that this survey will be useful to young mathematicians who wish to learn the theory
of Cuntz semigroups, as well as to those researchers who want to see a streamlined
presentation of the latest results in the structure theory of Cuntz semigroups. Even
though we made an effort to cover a large variety of topics on Cuntz semigroups,
space constraints and the magnitude of the existent literature make it impossible to
be exhaustive, and it was inevitable to make some omissions. Among others, we do
not go into details to describe the many statement in the literature which, despite
not referring to the Cuntz semigroup, depend on it for its proof. One example is
Theorem D, but there are many others including the proof in [33] that Z-stability
implies finiteness of the nuclear dimension. On the other hand, there are two other
introductions to the subject [12, 84], with somewhat different approaches. Indeed,
[12], which was written over a decade ago, focuses primarily on the classical (or
uncompleted) Cuntz semigroup W, and makes extensive use of the Hilbert module
picture. On the other hand, [84], which is more recent, regards Cu-semigroups
as domains with additional structure, and uses methods from lattice and category
theory. Both references are good complements to this survey.

This manuscript is an expanded version of the lectures notes which were prepared
as supporting material for the minicourse An introduction to the modern theory of
Cuntz semigroups, which took place at the University of Kiel in September 2022, as
part of the workshop Cuntz semigroups. The authors would like to thank Hannes
Thiel for the invitation to deliver this course, and to both Ramon Antoine and
Hannes Thiel for several discussions on these topics. Thanks are also extended
to Leonel Robert, Aaron Tikuisis and Andrew Toms for useful comments after a
first version was circulated, and to Georg Huppertz for his careful reading and for
providing a long list of typos and suggestions. We finally thank the anonymous
referee for their helpful comments which undoubtedly have improved the paper.

2. Comparison of positive elements

The following is the definition on which the theory of Cuntz semigroups is based.

Definition 2.1. Let A be a C∗-algebra and let a, b ∈ A+. We say that a is
Cuntz subequivalent to b (in A), denoted a - b (or a -A b if there is a need to
specify the ambient C∗-algebra), if there exists a sequence (rn)n∈N in A such that
lim
n→∞

‖rnbr∗n − a‖ = 0. Equivalently, for every ε > 0 there exists r ∈ A such that

‖rbr∗ − a‖ < ε.
We say that a and b are Cuntz equivalent, written a ∼ b, if a - b and b - a.

It is easy to see that if a - b and b - c, then a - c.
In order to give a feeling for the relation -, we first look at the case of commu-

tative C∗-algebras. For f ∈ C(X), we denote its open support by

suppo(f) = {x ∈ X : f(x) 6= 0}.

Proposition 2.2. Let X be a locally compact, Hausdorff space, and let f, g ∈
C0(X) be positive functions. Then f - g if and only if

suppo(f) ⊆ suppo(g).

Equivalently, g(x) = 0 implies f(x) = 0, for all x ∈ X.
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Proof. Assuming that f - g, choose a sequence (rn)n∈N in C0(X) such that
lim
n→∞

rngr
∗
n = f uniformly on X. For x ∈ X, it is then easy to see that g(x) = 0

implies f(x) = 0.
Conversely, suppose that suppo(f) ⊆ suppo(g) and let ε > 0. Set K = {x ∈

X : f(x) ≥ ε}, which is a compact set on which g is strictly positive. Find δ > 0
such that g(x) ≥ δ for all x ∈ K, and set

U =
{
x ∈ X : g(x) > δ

2

}
.

Then U is open in X and K ⊆ U . By Urysohn’s lemma, there is a positive function
h ∈ C0(X) which is identically equal to 1 on K and vanishes precisely outside of
U . Define s ∈ C0(X) by

s(x) =

{
f(x)
g(x)h(x), if x ∈ U ;

0, else.

Setting r = s
1
2 , we get r = r∗ and ‖f − rgr‖ < ε, as desired. �

For an element a in a C∗-algebra A, we denote by sp(a) its spectrum. We now
extract some very useful consequences of Proposition 2.2:

Corollary 2.3. Let A be a C∗-algebra, let a ∈ A+ and let f : [0,∞) → [0,∞) be
continuous and satisfy f(0) = 0. Then:

(i) We have f(a) - a.
(ii) If f(t) > 0 for t > 0, then f(a) ∼ a.
(iii) We have a ∼ aλ and a ∼ λa for λ ∈ (0,∞).
(iv) For x ∈ A, we have x∗x ∼ xx∗.

Proof. (i) Note that a and f(a) belong to C∗(a) ∼= C0(sp(a)), and under this
identification these elements correspond to idsp(a) and f |sp(a), respectively. The
conclusion then follows from Proposition 2.2 since x = 0 implies f(x) = 0.

(ii) Follows from (i) by taking f−1.
(iii) Follows from (ii) by taking either f(t) = tλ or f(t) = λt, respectively.
(iv) We have

xx∗
(iii)∼ (xx∗)2 = x(x∗x)x∗ - x∗x.

Analogously, we get x∗x - xx∗, as desired. �

Recall that a subalgebra B of a C∗-algebra A is said to be hereditary if whenever
b ∈ B+ and a ∈ A+ satisfy a ≤ b, then a ∈ B. Given b ∈ A+, the smallest
hereditary subalgebra of A containing b is Ab := bAb. We will use, without proof,
the fact that (b

1
n )n∈N is an approximate identity for Ab. For arbitrary elements a, b

in a C∗-algebra A, we shall as customary write a ≈ε b to mean that ‖a− b‖ < ε.

Proposition 2.4. Let A be a C∗-algebra and let a, b ∈ A+. If a ∈ Ab, then a - b.
In particular, if a ≤ b then a - b.

Proof. Suppose that a ∈ Ab, and let ε > 0. Choose n ∈ N such that a ≈ ε
2
b

1
n ab

1
n .

Using part (iv) of Corollary 2.3 at the second step, and part (iii) of at the fourth
step, we get

b
1
n ab

1
n = (b

1
n a

1
2 )(a

1
2 b

1
n ) ∼ a 1

2 b
2
n a

1
2 - b

2
n ∼ b.

Choose r ∈ A with rbr∗ ≈ ε
2
b

1
n ab

1
n . Then

a ≈ ε
2
b

1
n ab

1
n ≈ ε

2
rbr∗,

and hence a - b, as desired. �
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Given ε > 0, let fε : [0,∞) → [0,∞) be given by fε(t) = max{t − ε, 0}. Given
a ∈ A+, we write (a− ε)+ for fε(a). The element (a− ε)+ is usually referred to as
the ε cut-down of a. Since (a− ε)+ ≤ a for any ε > 0, we get from Proposition 2.4
that (a− ε)+ - a. The following lemma is a generalization of this fact.

Lemma 2.5. Let A be a C∗-algebra, let ε > 0, and let a, b ∈ A+ with ‖a − b‖ <
ε. Then there exists a contraction r ∈ A with rbr∗ = (a − ε)+. In particular,
(a− ε)+ - b.

Proof. We only prove the last assertion; the first one is rather involved, and a proof
can be found in [62, Lemma 2.2].

Note that ‖a − b‖ < ε implies that a − ε ≤ b. Multiplying on both sides by
(a− ε)+, we get

(a− ε)+(a− ε)(a− ε)+ ≤ (a− ε)+b(a− ε)+.(2.1)

Using part (iii) of Corollary 2.3 at the first step, we get

(a− ε)+ ∼ (a− ε)3
+ = (a− ε)+(a− ε)(a− ε)+

(2.1)

≤ (a− ε)+b(a− ε)+ - b,

as desired. �

The reader is encouraged to prove the first assertion in Lemma 2.5 in the case
where a and b commute.

We will sometimes need the following strengthening of part (iv) of Corollary 2.3.
We omit its proof, which can be found in [84, Corollary 2.53].

Lemma 2.6. Let A be a C∗-algebra, let x ∈ A and let ε > 0. Then we have

(x∗x− ε)+ ∼ (xx∗ − ε)+

inside of A⊗K.

The following is one of the most used technical results about Cuntz comparison;
see [79, Proposition 2.4].

Theorem 2.7. (Rørdam’s lemma.) Let A be a C∗-algebra and let a, b ∈ A+. Then
the following are equivalent:

(i) a - b;
(ii) For every ε > 0 we have (a− ε)+ - b;
(iii) For every ε > 0 there exists δ > 0 such that (a− ε)+ - (b− δ)+;
(iv) For every ε > 0 there exist δ > 0 and x ∈ A such that (a − ε)+ = x∗x and

xx∗ ∈ A(b−δ)+ ;
(v) For every ε > 0 there exist δ > 0 and r ∈ A such that (a− ε)+ = r(b− δ)+r

∗.

Proof. (i) implies (ii) since (a− ε)+ - a, as observed above. Conversely, let ε > 0.
Since (a− ε

2 )+ - b, there is r ∈ A with

rbr∗ ≈ ε
2

(
a− ε

2

)
+
≈ ε

2
a,

so (ii) implies (i). That (iii) implies (ii) follows from (b− δ)+ ≤ b.
We now show that (iv) implies (iii). Let ε > 0 and find δ > 0 and x ∈ A with

(a− ε)+ = x∗x and xx∗ ∈ A(b−δ)+ . Using part (iv) of Corollary 2.3 at the second
step and using Proposition 2.4 at the third step, we get

(a− ε)+ = x∗x ∼ xx∗ - (b− δ)+,

as desired. To show that (v) implies (iv), let ε > 0 and find δ > 0 and r ∈ A with

(a− ε)+ = r(b− δ)+r
∗. Set x = (b− δ)

1
2
+r
∗. Then

(a− ε)+ = x∗x and xx∗ = (b− δ) 1
2 r∗r(b− δ) 1

2 ∈ A(b−δ)+ ,
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as desired. Finally, we show that (i) implies (v). Let ε > 0 and choose c ∈ A with
cbc∗ ≈ ε

2
a. By continuity of functional calculus, there is δ > 0 such that cbc∗ ≈ ε

2

c(b − δ)+c
∗. By Lemma 2.5, there is d ∈ A such that (a − ε)+ = dc(b − δ)+c

∗d∗.
Then r = dc satisfies (a− ε)+ = r(b− δ)+r

∗. �

We will later want to compute the Cuntz semigroup of C, for which we will need
the following useful lemma. Recall that projections p, q in a C∗-algebra A are said
to be Murray-von Neumann equivalent, in symbols p ∼MvN q, provided there is a
partial isometry v ∈ A such that p = v∗v and q = vv∗. We also say that p is
Murray-von Neumann subequivalent to q, written p -MvN q, if there is a projection
p′ ≤ q such that p ∼MvN p′.

Lemma 2.8. Let A be a C∗-algebra and let p, q ∈ A be projections. Then p - q
if and only if p -MvN q.

Proof. It is clear that p -MvN q implies p - q. Conversely, assume that p - q.
For ε = 1

2 , use part (iv) of Rørdam’s lemma (Theorem 2.7) to find δ > 0 and

x ∈ A such that x∗x = (p− 1
2 )+ and xx∗ ∈ A(q−δ)+ . Since p and q are projections,

we have (p − 1
2 )+ = 1

2p and similarly (q − δ)+ = (1 − δ)q ∼ q. In particular,

A(q−δ)+ = Aq = qAq. It follows that v =
√

2x is a partial isometry satisfying
v∗v = p and vv∗ ∈ qAq, so vv∗ ≤ q as desired. �

Note, however, that the previous lemma does not imply that p ∼ q if and only
if p ∼MvN q, since in general p ∼MvN q is not equivalent to p -MvN q -MvN p.
This is the case if A is stably finite, as we explain in the following subsection; see
Proposition 2.10.

2.1. Stably finite C*-algebras. Stable finiteness is central to the study of the
Cuntz semigroup, and we therefore isolate it here together with some consequences
for Cuntz comparison.

For a C∗-algebra A, its minimal unitization Ã is defined to be A when A is

unital. For nonunital A, we have Ã = A⊕ C as a vector space, whilst the product
is given by (a, λ)(b, µ) = (ab+ µa+ λb, λµ), so that (0, 1) becomes the unit and A

sits inside Ã as a closed, two-sided ideal.

Definition 2.9. A unital C*-algebra A is said to be finite if for all s ∈ A with
s∗s = 1 we automatically have ss∗ = 1. In other words, every isometry in A is a
unitary. We say that A is stably finite if Mn(A) is finite for all n ∈ N.

A general (possibly nonunital) C*-algebra A is stably finite if Ã is stably finite;
see [13, V.2.2.1].

In the unital case, one can show that finiteness of a C*-algebra is equivalent to
the fact that no non-zero projection has a proper subprojection equivalent to it.

Whilst for a nonunital algebra A, this is still a consequence of Ã being finite, it is
no longer equivalent, as testified by taking A = C∗(S−I), where S is the unilateral
shift; see [13, V.2.2.14].

We warn the reader the stable finiteness for nonunital C∗-algebras is less well-
behaved than for unital ones, and that even for unital C∗-algebras, stable finiteness
is often too weak of a property outside of the simple case, since it does not imply
stable finiteness of all of its quotients. (For example, the unitization of the suspen-
sion of O2 is stably finite according to the definition above.) We have chosen to
avoid these complications in this survey, and will consider almost exclusively unital
C∗-algebras throughout, additionally assuming simplicity when necessary.

Examples of stably finite C∗-algebras are easy to come by. For example, all com-
mutative C∗-algebras are stably finite. Since direct limits of stably finite algebras
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are easily seen to be stably finite, and subalgebras of stably finite algebras are as
well stably finite, we deduce that all ASH-algebras are stably finite. On the other
hand, purely infinite C∗-algebras, for example the Cuntz algebra O2, are not finite,
so in particular not stably finite. There exist (simple, unital, nuclear) C∗-algebras
which are finite but not stably finite, as was shown by Rørdam in [80].

Stable fininiteness is the key assumption in Cuntz’s celebrated theorem on the
existence of (quasi)traces (see Theorem 6.11), whose proof used a precursor of the
Cuntz semigroup. There are other reasons why stable finiteness is fundamental
in the study of the Cuntz semigroup, and one piece of evidence is given by the
following result, which should be compared to Lemma 2.8.

Proposition 2.10. Let A be a unital, finite C∗-algebra. For projections p, q ∈ A,
we have p ∼ q if and only if p ∼MvN q.

Proof. Since the “if” implication is true in full generality, we only prove the “only
if” direction. Assume that p ∼ q, that is, p - q - p. By Lemma 2.8, we have
p -MvN q -MvN p. Choose partial isometries v, w ∈ A with

v∗v = p, vv∗ ≤ q, and w∗w = q, ww∗ ≤ p.
Then it follows that w∗v∗vw = p and vww∗v∗ ≤ p. Note that the corner pAp
is finite as well, and that vw is an isometry in pAp. By finiteness we must have
vww∗v∗ = p, which implies that vv∗ = q and ww∗ = q, so p ∼MvN q. �

Recall that the Murray-von Neumann semigroup V(A) of a unital C∗-algebra
A is defined as the set of Murray-von Neumann equivalence classes of projections
in
⋃∞
n=1Mn(A). (The Grothendieck enveloping group of V(A), for unital A, is

K0(A).) The following remark will be needed later.

Remark 2.11. Murray-von Neumann subequivalence does not in general induce
an order on the semigroup V(A), since p -MvN q -MvN p does not imply p -MvN q.
On the other hand, the proof of Proposition 2.10 shows that this is indeed the case
if A is stably finite. In other words, V(A) is an ordered semigroup whenever A is
unital and stably finite.

We close this section by showing that Proposition 2.10 fails in general for C∗-
algebras which are not finite.

Example 2.12. For example, consider the Cuntz algebra On, for n > 2, with
canonical generating isometries s1, . . . , sn. It is known that V(On) ∼= Zn−1 with
the unit representing the canonical generator 1 ∈ Zn−1. Set p = s1s

∗
1 + s2s

∗
2, which

is a projection in On. Since sjs
∗
j is clearly Murray-von Neumann equivalent to

1 for all j = 1, . . . , n, it follows that p represents 2 ∈ Zn−1, and is therefore not
Murray-von Neumann equivalent to 1 (since n > 2): p �MvN 1.

On the other hand, since On is purely infinite and simple and p 6= 0, there exists
x ∈ On such that xpx∗ = 1. This implies that 1 - p. Since p - 1 is immediate, we
conclude that p ∼ 1.

2.2. Cuntz comparison and stable rank one. C∗-algebras of stable rank one
play an important role in these notes, since their Cuntz semigroups are particularly
well-behaved. In this subsection, we show that Cuntz comparison in C∗-algebras
of stable rank one takes a form which is very similar to Murray-von Neumann
subequivalence for projections; see Proposition 2.16.

We begin with a general discussion for the reader to develop some intuition
around the notion of stable rank one.

Definition 2.13. A unital C∗-algebra A is said to have stable rank one if the set
GL(A) of invertible elements in A is dense in A. Moreover, a nonunital C∗-algebra
is said to have stable rank one if its minimal unitization does.
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The class of C∗-algebras with stable rank one is pleasantly large. It was shown
by Rørdam in [81] that a unital, simple, stably finite and Z-stable C∗-algebra has
stable rank one, hence this applies to all classifiable stably finite C∗-algebras. Stable
rank one also holds outside of the classifiable class, for example for crossed products
of the form C(X) o Zn for a free, minimal action of Zn on a compact Hausdorff
space X, regardless of whether C(X) o Zn is Z-stable or not; see [54]. (See also
Section 7 below for more information on the C∗-algebra Z.)

As the name indicates, the stable rank is an integer valued number that is associ-
ated to any C∗-algebra and can be with advantage thought of as a noncommutative

dimension theory. In fact, one has that sr(C(X)) =
[dim(X)

2

]
+ 1; see [72]. The

notion of stable rank in [72] agrees with that of Bass, as shown in [56].
We record here, without proof, some general facts about C∗-algebras of stable

rank one that will be needed throughout.

Proposition 2.14. Let A be a C∗-algebra of stable rank one.

(i) A is automatically stably finite.
(ii) If B ⊆ A is a hereditary subalgebra, then B has stable rank one.
(iii) A⊗K has stable rank one.

(iv) If p, q ∈ A satisfy p ∼MvN q, then there is a unitary u ∈ Ã satisfying
p = uqu∗.

We need a technical lemma; see [35, Lemma 2.4] for the proof.

Lemma 2.15. Let A be a C∗-algebra and let B ⊆ A be a hereditary subalgebra
of stable rank one. Let δ > 0 and let x, y ∈ A satisfy

xx∗, yy∗ ∈ B, x∗x ∈ Ay∗y and ‖x∗x− y∗y‖ < δ.

Then there is a unitary u ∈ B̃ such that ‖x− uy‖ <
√
δ.

The following is one of the basic technical results that makes the study of Cuntz
comparison in C∗-algebras of stable rank one particularly accessible. (Another one
will be given in Theorem 3.7.)

Proposition 2.16. ([35, Proposition 2.5]). Let A be a C∗-algebra of stable rank
one, and let a, b ∈ A+. Then a - b if and only if there exists x ∈ A satisfying
x∗x = a and xx∗ ∈ Ab.

Proof. If there exists x ∈ A as in the statement, then part (iv) of Corollary 2.3
gives

a = x∗x ∼ xx∗ ∈ Ab,

and thus a - b by Proposition 2.4.
Conversely, assume that a - b. By Rørdam’s lemma (Theorem 2.7), for every

n ∈ N there exists yn ∈ A such that(
a− 1

22n

)
+

= y∗nyn and yny
∗
n ∈ Ab.

Given n ∈ N, apply Lemma 2.15 to yn and yn+1 to obtain a unitary un ∈ Ã
satisfying ‖yn − unyn+1‖ < 1

2n . Set xn = u1 · · ·un−1yn ∈ A. Then ‖xn − xn+1‖ <
1

2n , and thus the sequence (xn)n∈N has a limit x ∈ A. Moreover,

x∗x = lim
n→∞

x∗nxn = lim
n→∞

(
a− 1

22n

)
+

= a,

and similarly xx∗ = lim
n→∞

xnx
∗
n ∈ Ab, as desired. �



12 EUSEBIO GARDELLA AND FRANCESC PERERA

3. The Cuntz semigroup

The following is the object we will study in these notes.

Definition 3.1. Let A be a C∗-algebra. The Cuntz semigroup of A is defined as

Cu(A) = (A⊗K)+/∼,
where ∼ stands for the Cuntz equivalence relation. For a positive element a ∈
(A ⊗ K)+, we denote by [a] its Cuntz equivalence class, hence Cu(A) =

{
[a] : a ∈

(A ⊗ K)+

}
. There is a natural partial order defined on Cu(A), namely [a] ≤ [b]

if a - b. (The element 0 := [0] is the minimal element in Cu(A).) We define an
addition on Cu(A) by setting2

[a] + [b] =
[
( a 0

0 b )
]
.

We also denote ( a 0
0 b ) by a⊕ b.

Lemma 3.2. Let A be a C∗-algebra, and let a, b ∈ A+. Then a + b - a ⊕ b. If
ab = 0, then a+ b ∼ a⊕ b.

Proof. Note that (
(aa∗)

1
n (bb∗)

1
n

0 0

)(
a 0
0 b

)(
(a∗a)

1
n 0

(b∗b)
1
n 0

)
→
(
a+b 0

0 0

)
,

hence a + b ∼
(
a+b 0

0 0

)
- a ⊕ b. On the other hand, if ab = 0 and we let x =

( a1/2 b1/2 ), then xx∗ = a+ b and x∗x = ( a 0
0 b ). �

It is not difficult to check that [a] + [b] = [b] + [a] and that [a] + 0 = [a] in Cu(A)
for all [a], [b] ∈ Cu(A). More interestingly, addition and order are compatible in
Cu(A), in the sense that [a1] ≤ [b1] and [a2] ≤ [b2] imply [a1] + [a2] ≤ [b1] + [b2].
This gives Cu(A) the structure of a positively ordered monoid3.

We turn to the first computation of a Cuntz semigroup.

Example 3.3. Let us compute Cu(C) ∼= Cu(Mn) ∼= Cu(K). We will show that the
rank map rk: K+ → {0, 1, . . . ,∞} =: N induces an ordered semigroup isomorphism

rk: Cu(K)→ N.
To show this, given a, b ∈ K+ we will prove that rk(a) ≤ rk(b) if and only if a - b.

Let a ∈ K+. By the Spectral Theorem, there are scalars λn ≥ 0 and finite rank
projections pn ∈ K for n ∈ N, such that

a =

∞∑
n=0

λnpn.

Moreover, rk(a) < ∞ if and only if there is m such that λn = 0 for all n ≥ m. In
this case, part (iii) of Corollary 2.3 implies that a ∼

∑m
n=1 pn =: pa. Note that

rk(pa) = rk(a), and recall that Murray-von Neumann subequivalence for projections
in K is determined by the rank. Using Lemma 2.8 at the second step, for finite
rank elements a, b ∈ K+ we have

a - b ⇔ pa - pb ⇔ pa -MvN pb ⇔ rk(pa) - rk(pb) ⇔ rk(a) - rk(b),

as desired. Now, if rk(b) =∞ and a ∈ K+ is arbitrary, we will show that a - b. By
part (ii) of Rørdam’s lemma (Theorem 2.7), it suffices to show that (a−ε)+ - b for

2Here, just like it is done in K-theory, we are implicitly fixing an isomorphism M2 ⊗ K ∼= K
and using it to identify Cu(A) with Cu(M2(A)); one can check that this identification does not
depend on the isomorphism we fixed.

3A monoid is a semigroup with a neutral element, and it is said to be positively ordered if

every element dominates the neutral element. The reasons for having termed Cu(A) a semigroup
are only historical.
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all ε > 0. Note that (a − ε)+ has finite rank and is therefore Cuntz equivalent to
a finite-rank projection p ∈ K, by the previous part. Since Kb contains projections
of arbitrary large rank, there is q ∈ Kb with p ∼MvN q. Then

(a− ε)+ ∼ p -MvN q - b,

which implies the result by Lemma 2.8.

We isolate the following convenient corollary. Recall that an order-embedding4

φ : S → T between ordered sets is a map satisfying φ(s) ≤ φ(s′) if and only if s ≤ s′.
Corollary 3.4. Let A be a unital C∗-algebra. Then there is a natural semigroup
map ι : V(A)→ Cu(A). If A is stably finite, then ι is an order embedding.

Proof. The fact that a semigroup map ι : V(A) → Cu(A) exists is obvious since
every projection is a positive element. Moreover, if A is stably finite, then V(A) is
an ordered semigroup by Remark 2.11, and the last claim follows immediately from
Lemma 2.8 and Proposition 2.10. �

It is also possible to describe which positive elements are Cuntz-equivalent to
projections in a stably finite, unital C∗-algebra:

Remark 3.5. If A is unital and stably finite, then the image of ι in Cu(A) is
precisely the set of the so-called compact elements of Cu(A); see Definition 4.1 and
Remark 4.13.

Notation 3.6. Given a, b ∈ A+, we introduce the following notation:

• a ∼u b if there is a unitary u ∈ Ã with uau∗ = b;
• a ⊆ b if a ∈ Ab;
• a ⊆u b if there is a unitary u ∈ Ã such that uau∗ ∈ Ab.

The following theorem shows that Cuntz comparison in stable C∗-algebras is
unitarily implemented. The result holds more generally for C∗-algebras of weak
stable rank one: by definition, a C∗-algebra A has weak stable rank one if A ⊆
GL(Ã). By [18, Lemma 4.3.2] every stable C∗-algebra has weak stable rank one.

Theorem 3.7. Let A be a C∗-algebra with weak stable rank one and let a, b ∈ A+.
Then a - b if and only if for every ε > 0 we have (a− ε)+ ⊆u b.
Proof. Note that the “only if” implication is true in full generality: indeed, given

ε > 0, find u ∈ U(Ã) as in the statement. With x = u(a−ε)
1
2
+ ∈ A, we use part (iv)

of Corollary 2.3 at the second step, and Proposition 2.4 at the last one to get

(a− ε)+ = x∗x ∼ xx∗ = u(a− ε)+u
∗ - b.

Then a - b by Rørdam’s lemma (Theorem 2.7).
We only sketch the proof of the converse, so assume that A has weak stable

rank one. For c, d ∈ A+, we write c ∼u d if there is a unitary u ∈ U(Ã) such that
c = udu∗. From this, one shows that for every x ∈ A and every ε > 0 we have

(x∗x− ε)+ ∼u (xx∗ − ε)+.(2.2)

(Note that this is a strengthening of Lemma 2.6.) Assume now that a - b and let
ε > 0. By Rørdam’s lemma (Theorem 2.7), there exists x ∈ A such that

(a− ε
2 )+ = x∗x and xx∗ ∈ Ab.

Then

(a− ε)+ = (x∗x− ε
2 )+

(2.2)∼u (xx∗ − ε
2 )+ ∈ Ab.

Therefore there is u ∈ U(Ã) with u(a− ε)+u
∗ ∈ Ab, as desired. �

4This is stronger than being order-preserving and injective.
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The following theorem, originally obtained by Coward, Elliott and Ivanescu in
[37] using Hilbert C∗-modules, was the first result about the internal structure of
Cuntz semigroups, and shows that they are rather special ordered semigroups.

Theorem 3.8. Let A be a C∗-algebra. Then every increasing sequence in Cu(A)
has a supremum.

Proof. Let (an)n∈N be a sequence in (A⊗K)+ satisfying an - an+1 for all n ∈ N.
Case 1: (an)n∈N is increasing in A ⊗ K and has a limit a = lim

n→∞
an. Then

[a] is the supremum of ([an])n∈N. In this case [a] ∈ Cu(A) is an upper bound for
([an])n∈N. Let [b] ∈ Cu(A) is another upper bound; we want to show that [a] ≤ [b].
By Rørdam’s lemma, it suffices to show that for every ε > 0 we have (a− ε)+ - b.
For the ε > 0 given, find n ∈ N such that ‖a−an‖ < ε, so that we have (a−ε)+ - an
by Lemma 2.5. Then (a− ε)+ - an - b, as desired.

Case 2: for every n ∈ N we have an ⊆ an+1 (which means an ∈ Aan+1
). In this

case, for n ∈ N we set

bn =

n∑
k=1

ak
‖ak‖2k

and b =

∞∑
k=1

ak
‖ak‖2k

.

It is clear that bn ≤ bn+1 and that b = lim
n→∞

bn. Note that

an ∼
an

‖an‖2n
≤ bn,

and hence an - bn by Proposition 2.4. On the other hand, since a1, . . . , an belong
to the hereditary subalgebra generated by an, the same is true for bn. Thus bn - an
by Proposition 2.4 and therefore an ∼ bn. It follows from Case 1 that [b] is the
supremum of ([an])n∈N.

Case 3: for every n ∈ N we have an ⊆u an+1. This case is easy to reduce to the

previous one. For each n ∈ N, choose un ∈ U(Ã⊗K) such that unanu
∗
n ∈ Aan+1

.
Set b1 = a1 and

bn = u∗1u
∗
2 · · ·u∗n−1anun−1 · · ·u2u1.

Then bn ∼u an, so [bn] = [an]. One readily checks that bn ∈ Abn+1
, and hence

Case 2 implies the result in this case.
Case 4: the sequence (an)n∈N is arbitrary. Using Rørdam’s lemma repeatedly

together with Theorem 3.7, for every n ∈ N we can find a sequence (ε
(n)
k )k∈N which

decreases to zero and such that

(an − ε(n)
k )+ ⊆u (an+1 − ε(n+1)

k )+
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for all k, n ∈ N. We represent this graphically as follows:

a1 - a2 - a3 - · · ·

...
≤

...

≤

...

≤

· · ·

(a1 − ε(1)
3 )+

≤

⊆u (a2 − ε(2)
3 )+

≤

⊆u (a3 − ε(3)
3 )+

≤

⊆u · · ·

(a1 − ε(1)
2 )+

≤

⊆u (a2 − ε(2)
2 )+

≤
⊆u (a3 − ε(3)

2 )+

≤

⊆u · · ·

(a1 − ε(1)
1 )+

≤

⊆u (a2 − ε(2)
1 )+

≤

⊆u (a3 − ε(3)
1 )+

≤

⊆u · · ·

Set bn = (an − ε
(n)
n )+. Then bn ⊆u bn+1 for all n ∈ N, and by Case 3 the

supremum of ([bn])n∈N exists in Cu(A), say [b]. Then [an] ≤ [b], since

[an]
Case 1

= sup
k∈N

[(an − ε(n)
k )+] ≤ sup

k∈N
[(ak − ε(k)

k )+] = [b].

(To justify the second step: one can without loss of generality assume that k > n.

Then (an − ε(n)
k )+ - (ak − ε(n)

k )+ since an - ak, and (ak − ε(n)
k )+ - (ak − ε(k)

k )+

because ε
(n)
k ≥ ε

(k)
k .) Thus [b] is an upper bound of the sequence. To see that it is

the smallest, let [c] be another upper bound. Then

(an − ε)+ - an - c

for any ε > 0, and thus b - c. We conclude that [b] is the supremum of ([bn])n∈N. �

Remark 3.9. It follows from Case 1 above that for all a ∈ (A⊗K)+ we have

[a] = sup
ε>0

[(a− ε)+].

Remark 3.10. The proof of Theorem 3.8 shows that if (an)n∈N is any sequence
in (A⊗K)+ which is increasing in Cu(A), then there exists an increasing sequence
(bn)n∈N in (A⊗K)+ which converges to an element representing sup

n∈N
[an], and satis-

fies bn - an for all n ∈ N. (However, one cannot in general arrange that an ∼ bn.)

Proposition 3.11. Let A be a C∗-algebra, let (an)n∈N be an increasing sequence
in (A⊗K)+, let a ∈ (A⊗K)+ and let ε > 0. If

[a] ≤ sup
n∈N

[an],

then there exists n ∈ N with [(a− ε)+] ≤ [an].

Proof. Use Remark 3.10 to find an increasing sequence (bn)n∈N in (A ⊗ K)+ with
limit b satisfying [b] = sup

n∈N
[an] and bn - an for all n ∈ N. Since a - b, by Rørdam’s

lemma (Theorem 2.7) there exists δ > 0 such that (a− ε)+ - (b− δ)+. Find n ∈ N
such that ‖b− bn‖ < δ, so that (b− δ)+ - bn by Lemma 2.5. Then

(a− ε)+ - (b− δ)+ - bn - an,

as desired. �
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The cut-down is necessary in Proposition 3.11: for example, let an ∈ C([0, 1])
be a positive function supported on

[
1
n , 1 −

1
n

]
, such that (an)n∈N converges to a

function a vanishing only on 0 and 1. Then [a] = sup
n∈N

[an], but there is no n such

that [a] ≤ [an] by Proposition 2.2.

4. Compact containment and the category Cu

In this section, we will explore the order-theoretic aspects of Cu(A) in more
detail. For this, some abstraction will be necessary, and we will often work with
(partially) ordered semigroups (S,≤), or even just ordered sets; the example we
will always have in mind is (Cu(A),≤). A more general version of the following
definition appears in [49, Definition I-1.1].

Definition 4.1. Let (S,≤) be an ordered set. We define an additional relation �
on S, called (sequential) compact containment, as follows: for s, t ∈ S, we set s� t
if whenever (xn)n∈N is an increasing sequence in S with supremum x satisfying
t ≤ x, then there exists n ∈ N such that s ≤ xn.

We say that s ∈ S is compact if s� s.

Remark 4.2. Proposition 3.11 shows precisely that [(a − ε)+] � [a] for all ε > 0
and all a ∈ (A⊗K)+.

It is easy to see that s � t implies s ≤ t, but the converse is not true, even in
Cuntz semigroups of (commutative) C∗-algebras; see Proposition 4.4. In fact, the
relation� is an example of what is called an auxiliary relation; see Definition 12.6.
We now show that compact containment in C∗-algebras can be characterized using
cut-downs:

Proposition 4.3. Let A be a C∗-algebra and let a, b ∈ (A⊗K)+. Then [a]� [b] if
and only if there exists ε > 0 such that [a] ≤ [(b−ε)+]. In particular, [a] is compact
if and only if there exists ε > 0 with a ∼ (a− ε)+.

Proof. Suppose that [a]� [b]. Since sup
n∈N

[(b− 1
n )+] = [b] by Remark 3.9, it follows

that there exists n ∈ N with [a] ≤ [(b− 1
n )+]. The converse follows from Remark 4.2.

�

Using the above proposition together with Proposition 2.2, compact containment
in commutative C∗-algebras can be easily characterized in terms of open supports.
We leave the proof as an exercise:

Proposition 4.4. Let X be a compact Hausdorff space and let a, b ∈ C(X)+.
Then [a]� [b] if and only if

suppo(a) ⊆ suppo(b).

In particular, for a as above, [a] is compact if and only if suppo(a) is compact in
the lattice of open sets of X.

Definition 4.5. Let (S,≤) be a positively ordered monoid. We say that S is
an (abstract) Cuntz semigroup, or just a Cu-semigroup, if it satisfies the following
so-called axioms:

(O1) Every increasing sequence has a supremum.
(O2) For every s ∈ S, there is a sequence (sn)n∈N in S with sn � sn+1 and

s = sup
n∈N

sn.

(O3) If s� t and s′ � t′, then s+ s′ � t+ t′.
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(O4) If (sn)n∈N and (tn)n∈N are increasing sequences, then

sup
n∈N

(sn + tn) = sup
n∈N

sn + sup
n∈N

tn.

Given Cu-semigroups S and T , a Cu-morphism between them is a map f : S → T
preserving addition, neutral element, order ≤, suprema of increasing sequences, and
also the compact containment relation �. Maps that preserve all the structure
except possibly for� are called generalized Cu-morphisms. They are also relevant,
as we will see in Section 14.

We denote by Cu the category whose objects are Cu-semigroups and whose
morphisms are Cu-morphisms. The set of Cu-morphisms between two semigroups
S and T will be denoted by Cu(S, T ), and the set of generalized Cu-morphisms
will be denoted by Cu[S, T ].

The following result, due to Coward, Elliott and Ivanescu [37], was arguably the
beginning of the systematic study of Cuntz semigroups.

Theorem 4.6. Let A be a C∗-algebra. Then Cu(A) is a Cu-semigroup. Moreover,
if ϕ : A→ B is a ∗-homomorphism between C∗-algebras, then ϕ naturally induces
a Cu-morphism Cu(ϕ) : Cu(A)→ Cu(B). In other words, Cu is a functor from the
category C∗ of C∗-algebras to Cu.

Proof. Most of the work has already been done. (O1) is Theorem 3.8, while (O2)
follows from Remark 3.9 and Remark 4.2. To verify (O3), let a, a′, b, b′ ∈ (A⊗K)+

satisfy [a] � [b] and [a′] � [b′]. Upon identifying [a] with the class of ( a 0
0 0 ) ∈

A ⊗ K ⊗ M2
∼= A ⊗ K, and similarly for a′, b, b′, we may assume that a ⊥ a′

and b ⊥ b′. Use Proposition 4.3 to find ε > 0 such that [a] ≤ [(b − ε)+] and
[a′] ≤ [(b′ − ε)+]. Using that b ⊥ b′ at the second step, we get

a+ a′ - (b− ε)+ + (b′ − ε)+ = (b+ b′ − ε)+.

Note that [(b+b′−ε)+]� [b+b′] by Proposition 3.11. Using this at the second step,
that a ⊥ a′ at the first step, and that b ⊥ b′ at the last step (both in combination
with Lemma 3.2, we get

[a] + [a′] = [a+ a′]� [b+ b′] = [b] + [b′],

as desired.
Finally, to verify (O4), let (sn)n∈N and (tn)n∈N be increasing sequences in Cu(A).

Since sn + tn ≤ sup
n∈N

sn + sup
n∈N

tn, we get

sup
n∈N

(sn + tn) ≤ sup
n∈N

sn + sup
n∈N

tn.

To show the converse inequality, use Remark 3.10 to find increasing, norm-conver-
gent sequences (an)n∈N and (bn)n∈N in (A ⊗ K)+, with limits a and b, satisfying
[an] ≤ sn and [bn] ≤ tn for all n ∈ N, and such that [a] = sup

n∈N
sn and [b] = sup

n∈N
tn.

Then

sup
n∈N

sn + sup
n∈N

tn = [a⊕ b] = sup
n∈N

[an ⊕ bn] = sup
n∈N

(
[an] + [bn]

)
≤ sup
n∈N

(
sn + tn

)
,

as desired. This finishes the proof. �

Remark 4.7. One can define a natural order-topology on Cu-semigroups, called
the Scott topology. A base for this topology is given by those upward-hereditary
sets U (that is, s ∈ U and s ≤ t imply t ∈ U) such that for every s ∈ U there
exists s′ ∈ U with s′ � s. With respect to this topology, an increasing sequence in
Cu(A) actually converges to its supremum. Regarding increasing sequences as the
order-theoretic analogues of Cauchy sequences, (O1) states that Cu-semigroups are
complete. We will not need or use this topology in this work.
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Definition 4.8 ([102, Definition 1.3]). We say that a linear map ϕ : A→ B between
C∗-algebras A and B is a completely positive contractive map of order-zero, in short
a cpc⊥ map, in case the natural extensions of ϕ to matrices are all positive and
contractive, and ϕ preserves orthogonality, in the sense that ϕ(a)ϕ(b) = 0 whenever
a, b ∈ A+ satisfy ab = 0.

Just as homomorphisms are the natural models for Cu-morphisms, cpc⊥ maps
are natural models for generalized Cu-morphisms, as the result below shows (we
omit its proof):

Proposition 4.9 (see [102, Corollary 3.5] and [8, Proposition 2.2.7]). Let ϕ : A→
B be a cpc⊥ map. Then ϕ induces a generalized Cu-morphism Cu(ϕ) : Cu(A) →
Cu(B), given by Cu(ϕ)([a]) = [ϕ(a)] for all a ∈ (A⊗K)+.

Perhaps a natural question at this point is whether every Cu-semigroup is the
Cuntz semigroup of a C∗-algebra. The answer is unfortunately negative. The
following, due to Bosa and Petzka, is the smallest example:

Example 4.10. ([24, Example 5.3]). Set S = {0, 1,∞} with the usual order and
addition (1+1 =∞). Then there is no C∗-algebra A with Cu(A) = {0, 1,∞}. This
is however surprisingly difficult to prove.

In fact there are more axioms that Cu(A) always satisfies, and some of these
will be discussed in Section 10. Describing precisely which Cu-semigroups arise
as Cu(A) is extremely difficult and currently considered to be out of reach, al-
though this is possible (and usually tedious) for some specific classes of C∗-algebras
such as AF-algebras [8], AI-algebras [95], certain commutative C∗-algebras with
2-dimensional spectrum [75], and simple Z-stable C∗-algebras (see Theorem 9.7).

The functor Cu: C∗ → Cu has many nice properties and preserves a number
of constructions, including direct limits, short exact sequences, direct sums, direct
products, and ultraproducts. These claims have to be suitably interpreted: there
are categorical versions of the above notions, which can be shown to always exist in
Cu (their existence in C∗ is known), and the functor Cu preserves these. The study
of the category Cu in itself (or some subcategory of it) is crucial in this setting,
and allows one to better understand the functor Cu; this is explored in detail in
Section 14. Thus, and even if one is only interested in Cu(A), studying abstract
Cu-semigroups is often necessary.

Knowing that the functor Cu preserves a number of constructions is unfortu-
nately not very useful without understanding how to actually construct these ob-
jects in Cu. We will only focus on direct limits in this section:

Theorem 4.11. The category Cu has direct limits, and the functor Cu satisfies

Cu(lim−→An) ∼= lim−→Cu(An).

Proof. We only briefly describe how to show that Cu has direct limits; a more
conceptual approach is given in Theorem 12.9 and the comments after it. Let

(φn : Sn → Sn+1)n∈N

be an inductive sequence in Cu. Denote by W the direct limit of this sequence in
the category of positively ordered monoids. (For example, take the direct limit as
semigroups, and define an order by declaring that two sequences compare if they
eventually compare.) This will in general not be a Cu-semigroup, since increasing
sequences may not necessarily have suprema. The correct object to consider is a
certain “completion” of W ; see Remark 4.7 for a more formal interpretation of what
completion means, and also Theorem 12.9 and the comments after it. Intuitively
speaking, we want to add the suprema of all increasing sequences, similarly to
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how one adds the limits of all Cauchy sequences when completing a metric space.
Since we also want (O2) to be satisfied, we will take sequences in W which are
�-increasing.

We define an order on the space of �-increasing sequences in W by setting
(xn)n∈N - (yn)n∈N if for every n ∈ N there is m ∈ N with xn ≤ ym. Write ∼ for the
symmetrization of this order: (xn)n∈N ∼ (yn)n∈N if (xn)n∈N - (yn)n∈N - (xn)n∈N.
The space S of equivalence classes of increasing sequences in W is a Cu-semigroup,
and one can show that S = lim−→(Sn, φn). �

In retrospect, the construction of direct limits in Cu is very similar to the con-
struction of direct limits in C∗. Indeed, one first considers the algebraic direct limit,
and then suitably completes the resulting direct limit to get the desired object. The
completion procedure described in the proof of Theorem 4.11 is actually a functor
from a suitable category W to Cu, and this will be explored in detail in Section 12;
see Theorem 12.8 and Theorem 12.9.

We will use the above to compute the Cuntz semigroup of the CAR-algebra:

Example 4.12. We denote by M2∞ the UHF-algebra of type 2∞, which is the
direct limit of M2n with connecting maps of the form a 7→ ( a 0

0 a ). By Example 3.3,

we have Cu(M2n) ∼= N, and via the isomorphism given in that example (the rank),
the connecting maps are easily seen to be multiplication by 2. The algebraic direct
limit is S = N

[
1
2

]
∪ {∞}, with the order inherited from [0,∞]. Note that w � w

for every w ∈ S \ {∞}. It is easy to see that S is not a Cu-semigroup, since not
every increasing sequence has a supremum.5 (Note, however, that the supremum
exists in [0,∞].)

Let (an)n∈N be an �-increasing sequence in S. Regarding it as an increasing
sequence in [0,∞], it has a limit x ∈ [0, 1]. We claim that the ∼-class of (xn)n∈N
only depends on x ∈ [0,∞] and whether (xn)n∈N is constant or strictly increasing
(both interpreted as eventual behaviors). It is not difficult to see that any two
strictly increasing sequences in S whose limits in [0,∞] agree are automatically
equivalent, and similarly for constant sequences. Finally, one also checks that a
constant sequence cannot be equivalent to a strictly increasing sequence. Since
equivalent sequences must have the same limit in [0,∞], the claim follows.

Given a �-increasing sequence (an)n∈N with limit x ∈ [0,∞], we abbreviate its
∼-equivalence class as

[(an)n∈N] =

{
cx, if (an)n∈N is constant (in which case x ∈ S \ {∞}),
sx, if (an)n∈N is strictly increasing (in which case x ∈ (0,∞]).

It follows that

Cu(M2∞) = {cx : x ∈W \ {∞}} t {sx : x ∈ (0,∞]} ∼= N
[

1
2

]
t (0,∞].

Addition and order work as one would expect on each component. For mixed terms,
we have:

• sx ≤ cy if and only if x ≤ y;
• cx ≤ sy if and only if x < y;
• cx + sy = sx+y.

In particular, cx ≤ sx but sx � cx (otherwise they would be equal).

Remark 4.13. The example above shows some phenomena that can be seen in
the Cuntz semigroups of more general C∗-algebras:

5Take, for example, any increasing sequence of dyadic numbers converging to a non-dyadic
number.
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(i) The compact elements of Cu(M2∞) are N
[

1
2

] ∼= V(M2∞); see Corollary 3.4
and the comments after it, and see also Proposition 4.14 below. The fact that
V(A) can be identified with the compact elements in Cu(A) is a general fact
about stably finite C∗-algebras, due to Brown-Ciuperca; see [25].

(ii) The component (0,∞] of Cu(M2∞) corresponds to the values of positive ele-
ments, not equivalent to projections, on the unique trace.

More generally, the Cuntz semigroup of a simple, unital, stably finite, Z-stable
C∗-algebra A can be computed in terms of V(A) and T(A) (or rather, QT(A)) in
a similar fashion; see Theorem 9.7.

The first part of Remark 4.13 admits a somewhat more direct proof for C∗-
algebras of stable rank one, which is the case that we will need in these notes.
Recall from [19] that an element z in a C∗-algebra A is called a scaling element
provided zz∗ 6= z∗z and (z∗z)(zz∗) = zz∗. It was shown in [19, Theorem 4.1]
and the arguments after it that if a C∗-algebra A contains a scaling element, then
Mn(A) contains an infinite projection for some n ≥ 1.

Proposition 4.14. Let A be a C∗-algebra of stable rank one, and let x ∈ Cu(A)
be a compact element. Then there exists a projection p ∈ A⊗K such that [p] = x.

In particular, the subsemigroup of Cu(A) consisting of compact elements is order-
isomorphic to V(A).

Proof. By part (iii) of Proposition 2.14, we may assume that A is stable. Write
x = [a] for some a ∈ A+. For each ε > 0, define

gε(t) =


0, if t ≤ ε

2

linear, if t ∈ [ ε2 , ε]

1, if t ≥ ε.

Note that g ε
2
gε = gε and that gε(a) ∼ (a − ε

2 )+ ≤ a by Proposition 2.2. Since
x = sup

ε>0
[gε(a)] and x is compact, there is ε > 0 such that

a ∼ gε(a) ∼ gε′(a)

for all ε′ < ε. Since A has stable rank one, we can use Proposition 2.16 to find
z ∈ A such that g ε

2
(a) = z∗z and zz∗ ∈ Agε(a). Thus (z∗z)(zz∗) = g ε

2
(a)zz∗ = zz∗.

Assume that zz∗ = z∗z. Then g ε
2
(a) ∈ Agε(a). Let δ > 0 be such that ε

4 (1+δ) <
ε
2 . Then there is w ∈ A such that ‖g ε

2
(a) − gε(a)wgε(a)‖ < δ

4 . It follows that

‖g ε
2
(a)2 − g ε

2
(a)‖ < δ

2 . A standard application of functional calculus allows us to
find a projection p ∈ Agε(a) with ‖p − g ε

2
(a)‖ < δ; see, for example [99, Lemma

5.1.6].
By Lemma 2.5, we have (g ε

2
(a)−δ)+ - p. By our choice of δ, and since (g ε

2
(a)−

δ)+ ∼ g ε
2(1+δ)

(a), we obtain that

g ε
2(1+δ)

(a) - p - gε(a) - g ε
2(1+δ)

(a),

and thus a ∼ p.
Assume now that zz∗ 6= z∗z, so that z is a scaling element. As mentioned

before this proposition, this implies that Mn(A) contains an infinite projection, in
contradiction with the fact that A has stable rank one.

The last statement follows from Lemma 2.8. �

5. Ideals and quotients

The goal of this and the following sections is to show how some very important
information about A is completely encoded in Cu(A). In this section, we will show
how to recover the ideal lattice of A from its Cuntz semigroup; as a byproduct, we
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will see that the Cuntz semigroup of every ideal and every quotient of A can be
read off of Cu(A). The upcoming section deals with (quasi)traces on A.

Definition 5.1. Let S be a Cu-semigroup. An ideal in S is a submonoid I ⊆ S
which is closed under suprema of increasing sequences and is hereditary, in the
sense that a ≤ b and b ∈ I imply a ∈ I. We denote by Lat(S) the lattice of ideals
of S, which is ordered by inclusion. We say that S is simple if Lat(S) consists only
of {0} and S.

Next, we will show that ideals in A naturally induce ideals in Cu(A). For Cu-
morphisms which are order-embeddings, the ordered structure of the domain and
the induced structure in the codomain agree.

Lemma 5.2. Let A be a C∗-algebra and let J be an ideal in A. Denote by ι : J → A
the canonical inclusion. Then

Cu(ι) : Cu(J)→ Cu(A)

is an order-embedding, and its image {[x] ∈ Cu(A) : x ∈ (J ⊗ K)+} is an ideal in
Cu(A).

Proof. Without loss of generality, assume that A and J are stable. Let x, y ∈ J
satisfy x - y in A. Given ε > 0 choose r ∈ A such that ryr∗ ≈ ε

2
x. Find e ∈ J+

such that eye ≈ ε
2‖r‖2

y. Then re ∈ J and

(re)y(re)∗ ≈ ε
2
ryr∗ ≈ ε

2
x,

showing that x - y in J . It remains to show that the image of Cu(ι) is an ideal,
for which it suffices to show that it is hereditary. Let a ∈ A+ and b ∈ J+ satisfy
a - b in A, and choose a sequence (rn)n∈N in A satisfying a = lim

n→∞
rnbr

∗
n. Since J

is an ideal, it follows that rnbr
∗
n ∈ J and thus a ∈ J . �

In view of the lemma above, whenever J is an ideal in A, we will identify Cu(J)
with an ideal in Cu(A). We isolate the following observations for future use:

Remark 5.3. LetA be a C∗-algebra and let x, y ∈ A. Using that (x−y)∗(x−y) ≥ 0,
one gets

(x+ y)∗(x+ y) ≤ 2x∗x+ 2y∗y.

Thus x∗y + y∗x ≤ x∗x+ y∗y and also [(x+ y)∗(x+ y)] ≤ [x∗x] + [y∗y] in Cu(A).

Remark 5.4. Let A be a C∗-algebra and let J be an ideal in A. For a ∈ A, one
can use the polar decomposition to show that a ∈ J if and only if a∗a ∈ J .

The following is the main result of this section; see [36].

Theorem 5.5. Let A be a C∗-algebra. Let Φ: Lat(A)→ Lat(Cu(A)) be given by
Φ(J) = Cu(J). Then Φ is an order-isomorphism. Its inverse Ψ: Lat(Cu(A)) →
Lat(A) is given by

Ψ(I) = {x ∈ A : [x∗x] ∈ I}.

Proof. We begin by showing that Ψ is well-defined, namely that Ψ(I) is an ideal in
A. Given x, y ∈ Ψ(I), by Remark 5.3 we have

[(x+ y)∗(x+ y)] ≤ [x∗x] + [y∗y] ∈ I.

Since I is hereditary, it follows that [(x + y)∗(x + y)] ∈ I and thus x + y ∈ Ψ(I).
That Ψ(I) is closed under scalar multiplication is clear. To show that it is a left
and right ideal, let x ∈ Ψ(I) and let a ∈ A. Since

(ax)∗(ax) = x∗a∗ax ≤ ‖a‖2x∗x,
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it follows from Proposition 2.4 that (ax)∗(ax) - x∗x. Also, (xa)∗(xa) = a∗x∗xa -
x∗x. Since I is hereditary, it follows as before that ax, xa ∈ Ψ(I).

It remains to show that Ψ(I) is closed. Let (xn)n∈N be a sequence in Ψ(I)
converging to a ∈ A. Then (x∗nxn)n∈N converges to a∗a. Given ε > 0, find n ∈ N
such that ‖x∗nxn−a∗a‖ < ε. By Proposition 3.11, we have [(a∗a−ε)+] ≤ [x∗nxn] ∈ I.
Since I is hereditary, we deduce that [(a∗a−ε)+] ∈ I. Since [a∗a] = sup

m>0
[(a∗a− 1

m )+]

and I is closed under suprema, we conclude that [a∗a] ∈ I and hence a ∈ Ψ(I).
It is also clear that both Φ and Ψ are order-preserving. To show that they are

mutual inverses, let I ∈ Lat(Cu(A)). Given x ∈ A+, we have [x] ∈ Φ(Ψ(I)) if
and only if x ∈ Ψ(I), if and only if [x∗x] = [x] ∈ I. Thus I = Φ(Ψ(I)). For the
converse, given J ∈ Lat(A) we want to show that J = Ψ(Φ(J)). For a ∈ A, we have
a ∈ Ψ(Φ(J)) if and only if [a∗a] ∈ Φ(J), if and only if [a∗a] ∈ Cu(J). Using the
definition of Cuntz equivalence, it is clear that the above is equivalent to a∗a ∈ J ,
which is equivalent to a ∈ J by Remark 5.4. Thus J = Ψ(Φ(J)) and the proof is
complete. �

Notation 5.6. Let S be a Cu-semigroup. Given a ∈ S, write∞a for the supremum
of (na)n∈N.

It is easy to see that the ideal generated by a is precisely {x ∈ S : x ≤ ∞a}.

Corollary 5.7. Let S be a Cu-semigroup. Then S is simple if and only if∞a =∞b

for all a, b ∈ S \ {0}. Equivalently, for all nonzero a, b ∈ S, we have a ≤ ∞b.

In view of the above corollary, there is a unique infinity in every simple Cu-
semigroup, which we will denote simply by ∞.

In the remainder of this section, we explain how to detect the Cuntz semigroups
of all quotients of a given C∗-algebra in its own Cuntz semigroup.

Definition 5.8. Let S be a Cu-semigroup and let I be an ideal. Given a, b ∈ S,
we set a ≤I b if there exists c ∈ I such that a ≤ b+ c. We set a ∼I b if a ≤I b and
also b ≤I a.

It is easy to see that ∼I is an equivalence relation; we write S/I for the associated
quotient. For a ∈ S, we write aI for its equivalence class. We define an addition on
S/I by setting aI + bI = (a + b)I , and an order by declaring aI ≤ bI if a ≤I b. It
can be shown that this gives S/I the structure of a Cu-semigroup. The following
is proved in [36].

Theorem 5.9. Let A be a C∗-algebra, let J be an ideal, and let π : A → A/J
denote the quotient map. Given a, b ∈ Cu(A), we have

Cu(π)(a) ≤ Cu(π)(b) in Cu(A/J) if and only if a ≤Cu(J) b in Cu(A).

In particular, Cu(π) : Cu(A)→ Cu(A/J) induces an order-isomorphism

Cu(A)/Cu(J) ∼= Cu(A/J).

Proof. Let a, b ∈ Cu(A) satisfy a ≤Cu(J) b, and choose c ∈ Cu(J) with a ≤ b + c.
Since Cu(π)(c) = 0, we get

Cu(π)(a) ≤ Cu(π)(b+ c) = Cu(π)(b),

as desired. The converse is somewhat more involved, and we omit it. �

The results of this section should be compared to similar statements in K-theory:
while Cu(A) encodes the lattice of ideals of A, as well as the Cuntz semigroups of
all ideals, in general K-theory does not contain any of this information. (There is
one notable exception: the ordered K0-group of an AF-algebra encodes the ideal
structure and the K0-groups of all ideals and quotients. This helps explain why
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the classification of AF-algebras works also in the non-simple case, without a larger
invariant.)

6. Functionals, quasitraces, and Cuntz’s theorem

In this section, we will show that there is a natural bijective correspondence
between (quasi)traces on A and functionals on Cu(A); see Theorem 6.9. We will
then present Cuntz’s theorem, stating that a simple, unital, stably finite C∗-algebra
always admits a quasitrace; see Theorem 6.11.

The motivating observation for this section comes from the Riesz theorem:

Theorem 6.1. (Riesz). Let X be a compact Hausdorff space. Then there is a
natural bijection between the set of all Radon Borel probability measures on X
and all tracial states on C(X). Given a Radon probability measure µ on X, the
corresponding tracial state τµ : C(X)→ C is given by

τµ(f) =

∫
X

f(x) dµ(x) =

∫ ∞
0

µ({x ∈ X : f(x) > t}) dt

for all non-negative functions f ∈ C(X)+, and extended linearly.

We want to express the trace τµ in a different manner. Note that

{x ∈ X : f(x) > t} = suppo((f − t)+),

which only depends on the Cuntz class of (f − t)+. By writing τµ as

τµ(f) =

∫ ∞
0

µ
(
suppo((f − t)+)

)
dt,

we have expressed τµ(f) entirely in terms of Cuntz classes in Cu(C(X)).
Hence, if we are given a “nice” map λ : Cu(A) → [0,∞], we may attempt to

define a trace on A via

τλ(a) =

∫ ∞
0

λ
(
suppo((a− t)+)

)
dt

for all a ∈ A. This is the essential idea behind the correspondence between traces
on A and functionals on Cu(A). There is, however, one problem: even for nice
maps λ, it is not at all clear whether the map τλ defined above is additive. We
are therefore led to consider non-linear maps, which brings us to the definition of
a quasitrace.

Definition 6.2. Let A be a unital C∗-algebra. A 1-quasitracial state (or just
1-quasitrace) is a function τ : A→ C such that

(i) τ(a+ ib) = τ(a) + iτ(b) for all a, b ∈ Asa;
(ii) τ is linear on commutative subalgebras of A;
(iii) τ(a∗a) = τ(aa∗) ≥ 0 for all A;
(iv) τ(1) = 1.

We say that τ is a quasitracial state (or just a quasitrace) if it extends to a 1-
quasitrace on Mn(A) for all n ∈ N.6 We denote by QT(A) the space of all qua-
sitraces on A.

There exist 1-quasitraces that are not quasitraces; such examples were first con-
structed by Kirchberg.

Remark 6.3. Note that a quasitrace is a trace if and only if it is additive on all
positive elements of A, not just on commuting ones.

6It was shown by Blackadar and Handelman that, in order for a 1-quasitrace to be a quasitrace,
it is enough for it to extend to M2(A); see [17, Proposition II.4.1].
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It is a major open problem in C∗-algebra theory whether every quasitrace is
automatically a trace. By a very deep result of Haagerup [55], this is the case
whenever the C∗-algebra in question is exact. In particular, this is always the case
for nuclear C∗-algebras.

We now define the dimension function (or functional) associated to a quasitrace.

Definition 6.4. Let A be a unital C∗-algebra. Given τ ∈ QT(A), we define its
associated dimension function dτ : Cu(A)→ [0,∞] by

dτ ([a]) = lim
n→∞

τ(a
1
n )

for all a ∈M∞(A)+, and extended to (A⊗K)+ by taking suprema.7

Remark 6.5. Given a positive element a ∈ A, the sequence (a
1
n )n∈N converges in

A∗∗ in the weak-∗ topology to the support projection pa of a; this is the smallest
projection which acts as a unit on a. Since quasitraces are weak-∗ continuous on
A∗∗, we have

dτ (a) = lim
n→∞

τ(a
1
n ) = τ(pa).

Implicit in Definition 6.4 is the fact that dτ ([a]) only depends on [a]. This is
indeed the case. In fact, more is true:

Proposition 6.6. Let A be a unital C∗-algebra. Given τ ∈ QT(A), the map dτ is
well-defined on Cu(A). Moreover, we have:

(i) dτ (0) = 0;
(ii) dτ ([1]) = 1;
(iii) dτ (s+ t) = dτ (s) + dτ (t) for all s, t ∈ Cu(A);
(iv) dτ (s) ≤ dτ (t) whenever s ≤ t in Cu(A);
(v) dτ preserves suprema of increasing sequences.

The above proposition is not hard to prove (maybe with the exception of (iv)
and (v)), and we will omit the argument. Instead, we will show a particular case,
which connects back to the motivation we gave after Theorem 6.1.

Proposition 6.7. Let X be a compact Hausdorff space, let µ be a Radon Borel
probability measure, and let τµ : C(X) → C be the trace it induces. Given a ∈
C(X)+, we have

dτµ([a]) = µ(suppo(a)).

Proof. Without loss of generality, we may assume that ‖a‖ ≤ 1. Note that (a
1
n )n∈N

is an increasing sequence which converges pointwise to the indicator function of
suppo(a). Applying the dominated convergence theorem at the third step, we get

dτ ([a])= lim
n→∞

τ(a
1
n ) = lim

n→∞

∫
X

a
1
n (x) dµ(x)=

∫
X

lim
n→∞

a
1
n (x) dµ(x)=µ(suppo(a)),

as desired. �

Proposition 6.6 shows that the map dτ is a normalized functional on Cu(A) in
the sense of the following definition.

Definition 6.8. Let S be a Cu-semigroup. A functional on S is a map f : S →
[0,∞] which preserves the zero element, addition, order, and suprema of increasing
sequences. We denote by F (S) the set of all functionals on S.

If e ∈ S is a distinguished compact element in S, a functional λ ∈ F (S) is said
to be normalized (at e) if λ(e) = 1. We write Fe(S) for the set of all normalized
functionals on S.

7Explicitly, for a general element a ∈ (A ⊗ K)+, one defines dτ ([a]) to be the supremum in
[0,∞] over ε > 0 of dτ ([(a− ε)+]), which is well defined since (a− ε)+ belongs to M∞(A)+.
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In this section, we will mostly focus on normalized functionals, but we will come
back to non-normalized ones in Section 13.

We write d : QT(A) → F[1](Cu(A)) for the map given by d(τ) = dτ for τ ∈
QT(A); see Proposition 6.6. Both QT(A) and F[1](Cu(A)) are convex sets, and it

is easy to see that d is an affine map.8

Theorem 6.9. Let A be a unital C∗-algebra. Then d : QT(A) → F[1](Cu(A)) is
an affine bijection.

Proof. Given λ ∈ F[1](Cu(A)), define τλ ∈ QT(A) by

τλ(a) =

∫ ∞
0

λ
(
[(a− t)+]

)
dt

for all a ∈ A+, and extended T-linearly to A using real and imaginary parts, and
positive and negative parts. We claim that τλ is a quasitracial state on A. Condition
(i) in Definition 6.2 is satisfied by construction, while (iv) is clear. For (ii), let B be
a commutative unital C∗-subalgebra, and let X denote the maximal ideal space of
B. Note that the restriction of τλ to B induces an assignment µ0 : O(X) → [0, 1],
defined on the open subsets O(X) of X, which is σ-additive on disjoint sets.9 By
Caratheodory’s Theorem, µ0 extends to a Radon Borel probability measure µ on
X. It follows that (τλ)|B = τµ, and thus τλ is additive on B.

For (iii), let a ∈ A. Using Lemma 2.6 at the second step, we have

τλ(a∗a) =

∫ ∞
0

λ([a∗a− t]+)dt =

∫ ∞
0

λ([aa∗ − t]+)dt = τλ(aa∗) ≥ 0,

as desired.
Finally, in order to show that the two assignments τ 7→ dτ and λ 7→ τλ are

mutual inverses, it suffices to check this on commutative subalgebras, which follows
from Proposition 6.7. �

Remark 6.10. Note that the fact that τλ is additive on commutative subalgebras
is ultimately a consequence of Caratheodory’s Theorem. Thus, the question of
whether all quasitraces are traces can be reinterpreted as asking whether there is a
noncommutative version of Caratheodory’s Theorem for C∗-algebras.

We have stated and proved Theorem 6.9 only for quasitracial states on A and
normalized functionals on Cu(A), but the bijective correspondence also extends
to lower-semicontinuous [0,∞]-valued quasitraces on A and functionals on Cu(A),
with the same formulas; see [40, Theorem 4.4].

Having established the correspondence between quasitraces on A and functionals
on Cu(A), we are ready to prove Cuntz’s theorem [38]: a simple, unital, stably
finite C∗-algebra always admits a quasitrace. This was historically the first use
of the Cuntz semigroup, and the reason why it receives its name. (It should be
mentioned that Cuntz used a slightly different semigroup, which is discussed at
length in Section 12, using positive elements taken from M∞(A) instead of A⊗K,
and considering its Grothendieck enveloping group.)

We will use, without proof, that if τ ∈ QT(A), then

ker(τ) := {x ∈ A : τ(x∗x) = 0}

8The sets QT(A) and F[1](Cu(A)) also admit natural topologies with respect to which they

are compact and Hausdorff: for QT(A) the topology is induced by pointwise convergence, while

the topology on F[1](Cu(A)) is described at the beginning of Section 13. One can check that d is
continuous with respect to these topologies, and hence a homeomorphism. This is worked out in
detail in [40].

9In order to define µ0, given an open set U find a continuous function f ∈ C(X) whose open
support is exactly U . Then set µ0(U) = λ([f ]).
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is an ideal in A. In particular, if A is simple and a ∈ A+ satisfies τ(a) = 0, then
a = 0. This follows, for example, from part (3) of Lemma 3.5 in [55].

Theorem 6.11. (Cuntz). Let A be a simple, unital C∗-algebra. Then A is stably
finite if and only if it admits a quasitracial state.

Proof. Suppose that A admits a quasitracial state τ . Without loss of generality, it
suffices to show that A is finite (otherwise consider the quasitracial state τ ⊗ trn on
Mn(A) instead of τ). Let v ∈ A be an isometry. Then τ(vv∗) = τ(v∗v) = τ(1A) =
1A, and hence τ(1A − vv∗) = 0. Thus 1A − vv∗ is a projection in the kernel of τ ,
which is an ideal in A. By simplicity, we must have vv∗ = 1A, so that v is a unitary.

We turn to the converse, so assume that A is stably finite.

Claim: for n,m ∈ N, if n[1A] ≤ m[1A] then n ≤ m. Suppose that n[1A] = m[1A]
for some n < m ∈ N. Then 1Mm(A) - 1Mn(A). By Lemma 2.8, we deduce that

1Mm(A) -MvN 1Mn(A),

so there is an isometry v ∈ Mm(A) such that vv∗ =
(

1Mn(A) 0
0 0m−n

)
. This contra-

dicts stable finiteness of A and proves the claim.

Set S0 = {n[1A] : n ∈ N} ⊆ Cu(A). Define an additive map λ0 : S0 → [0,∞] by
λ0(n[1A]) = n for all n ∈ N. Note that λ0 is order-preserving by the previous claim.
Since [0,∞] is an injective object in the category of positively ordered monoids, we

can extend it to a map λ̃ : Cu(A) → [0,∞] which preserves the zero, addition and
order, but not necessarily suprema of increasing sequences. We fix this by taking
its “regularization” λ : Cu(A)→ [0,∞] given by

λ(a) = sup{λ̃(a′) : a′ � a}
for all a ∈ Cu(A). One can check that λ preserves suprema of increasing sequences,

so it is a functional. Since [1A] � [1A], we have λ([1A]) = λ̃([1A]) = 1, so λ is
normalized. By Theorem 6.9, λ induces a quasitracial state on A, as desired. �

7. A construction of the Jiang-Su algebra Z using the Cuntz
semigroup

In this section, we use the Cuntz semigroup to define the Jiang-Su algebra Z via
generalized dimension drop algebras, and we compute its Cuntz semigroup.

Recall that a function f : X → S from a topological space X into an Cu-
semigroup S is said to be lower semicontinuous if for every s ∈ S, the set

f−1({t ∈ S : s� t})
is open in X. We write Lsc(X,S) for the set of all lower-semicontinuous functions
X → S. In some relevant cases, Lsc(X,S) is a Cu-semigroup; see [7].

Definition 7.1. We define the generalized dimension drop algebra (of type 2,3) by

Z2∞,3∞ =

{
a ∈ C

(
[0, 1],M2∞ ⊗M3∞

)
:
a(0) ∈M2∞ ⊗ 1M3∞ ,

a(1) ∈ 1M2∞ ⊗M3∞

}
The Cuntz semigroup of Z2∞,3∞ can be computed using [7, Corollary 3.5]:

Cu(Z2∞,3∞) ∼=

{
f ∈ Lsc

(
[0, 1],N[ 1

6 ] ∪ (0,∞]
)

:
f(0) ∈ N[ 1

2 ] ∪ (0,∞]

f(1) ∈ N[ 1
3 ] ∪ (0,∞]

}
,

with pointwise order and addition (see, essentially, [7, Example 4.3]). Using these
identifications, we define a Cu-morphism

φ : Cu(Z2∞,3∞)→ Cu(Z2∞,3∞),
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by setting

φ(f) =

∫
[0,1]

f(t) dt

for f ∈ Cu(Z2∞,3∞). This integral has to be interpreted appropriately: if f is
compact, then φ(f) is the constant function with the corresponding compact ele-
ment as its value, and otherwise it is the constant function with the corresponding
non-compact element with that value. The main feature of this map is that it
is trace-collapsing : this means that if λ, λ′ : Cu(Z2∞,3∞) → [0,∞] are normalized
functionals, then λ ◦ φ = λ′ ◦ φ.

By a deep result of Robert [73, Theorem 1.0.1], there exists a unital homomor-
phism

Φ: Z2∞,3∞ → Z2∞,3∞ with Cu(Φ) = φ.

Definition 7.2. The Jiang-Su algebra Z is defined to be the stationary direct limit

Z = lim−→(Z2∞,3∞ ,Φ).

This definition of Z is not the original one by Jiang and Su [59], and this pre-
sentation of Z was essentially obtained by Rørdam and Winter [82].

The type of the generalized dimension drop algebra is actually irrelevant, and the
only crucial ingredient is that 2 and 3 are coprime. Indeed, coprimeness implies that
N[ 1

2 ]∩N[ 1
3 ] = N and guarantees that the direct limit does not have any projections;

see the proof of Theorem 7.3.
The tools developed in the previous sections allow us to compute the Cuntz

semigroup of Z. The computation of this semigroup was first carried out in [69,
Theorem 3.1].

Theorem 7.3. The Cuntz semigroup of Z can be described as follows. As sets,
we have

Cu(Z) = N t (0,∞].

Addition and order are the expected ones on each component. For n ∈ N, let
cn ∈ N be the corresponding compact element, and for x ∈ (0,∞] let sx be the
corresponding non-compact element in (0,∞]. For n ∈ N and x ∈ (0,∞], we have:

• sx ≤ cn if and only if x ≤ n;
• cn ≤ sx if and only if n < x;
• cn + sx = sn+x.

Proof. This is similar to Example 4.12. We first want to understand the algebraic
direct limit of the Cuntz semigroups. One can check that the compact elements in
Cu(Z2∞,3∞) are the constant functions

c : [0, 1]→ N[ 1
6 ] ∪ (0,∞]

whose constant value is compact (and thus in N[ 1
6 ]). The endpoint conditions on c

give c(0) ∈ N[ 1
2 ] and c(1) ∈ N[ 1

3 ]. Since c(0) = c(1) and N[ 1
2 ]∩N[ 1

3 ] = N, we deduce
that the function c must have constant value in N.

It follows that the direct limit of (Cu(Z2∞,3∞), φ) in the category of partially
ordered monoids is N t (0,∞], with order and addition matching the ones in the
statement. In principle one would need to complete, as was done in Example 4.12,
but one can check that this is already a Cu-semigroup. �

Remark 7.4. From the description above, it follows that for every n ∈ N there
exists z ∈ (Z ⊗K)+ with

n[z] ≤ [1Z ] ≤ (n+ 1)[z].

One can take z to be, for example, any representative of s 1
n

.
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Corollary 7.5. The Jiang-Su algebra Z is simple, nuclear, has a unique trace, and
has no projections other than 0 and 1.

Proof. It is easy to see that Cu(Z) is a simple Cu-semigroup (for example, since
∞s = ∞t for all nonzero s, t ∈ Cu(Z)). Hence Z is simple by Corollary 5.7.
Moreover, it has a unique normalized functional (given by λ(cn) = n for n ∈ N
and λ(sx) = x for all x ∈ (0,∞]). Thus Z has a unique quasitracial state by
Theorem 6.9, and since Z is exact (being nuclear), it follows that QT(Z) = T(Z),
as desired. Finally, a projection in Z other than 0 and 1 would yield a compact
element in Cu(Z) strictly between 0 and 1, which does not exist. �

It was an old question of Kaplansky whether all simple C∗-algebras must contain
nontrivial projections. After Blackadar constructed the first examples of projection-
less simple C*-algebras [14, 15], the question then became whether nuclear, simple
C∗-algebras must contain nontrivial projections, and Blackadar showed that the an-
swer to this question is also negative. The algebra Z constructed by Jiang and Su
in [59] is a further example of a simple, nuclear C∗-algebra without projections, and
it attracted a great deal of attention due to its prominent role in the classification
programme. For example, since (the current version of) the Elliott invariant cannot
distinguish between A and A ⊗ Z (see Remark 9.2, and note that this is only the
case because we are not including the order on K0 as part of the Elliott invariant),
only Z-stable C∗-algebras can be expected to be classified using exclusively the
invariant Ell.

8. Z-stability and strict comparison; the Toms-Winter conjecture

The goal of this section is to prove a theorem of Rørdam [81], relating two notions
that do not in principle seem to be related: Z-stability on the one hand, and almost
unperforation of the Cuntz semigroup on the other hand. We will also show that
almost unperforation in the Cuntz semigroup is equivalent to strict comparison,
and make connections to the Toms-Winter conjecture.

Definition 8.1. Let A be a C∗-algebra. We say that A is Z-stable if A⊗Z ∼= A.

For most practical purposes, just knowing that an isomorphism exists will not
be of much help. As it turns out, Z has some remarkable properties that allow one
to show that, whenever an isomorphism A⊗Z ∼= A exists, then a nice isomorphism
exists, in the sense of the following result.

Theorem 8.2. (Jiang-Su [59]). Let A be a separable C∗-algebra. If A ⊗ Z ∼= A,
then there exists an isomorphism ϕ : A→ A⊗ Z which is approximately unitarily
equivalent to the map a 7→ a ⊗ 1Z . In particular, ϕ satisfies [ϕ(a)] = [a ⊗ 1Z ] for
all a ∈ (A⊗K)+.

We will begin by relating Z-stability to the following notion:

Definition 8.3. Let S be a Cu-semigroup. We say that S is almost unperforated
if whenever s, t ∈ S and n ∈ N satisfy (n+ 1)s ≤ nt, then s ≤ t.

The following is the main result of this section. For a ∈ A+ and n ∈ N, recall
that n[a] = [a⊗ 1n] in Cu(A). The following is

Theorem 8.4. (Rørdam [81]). Let A be a simple, separable, Z-stable unital C∗-
algebra. Then Cu(A) is almost unperforated.

Proof. Let n ∈ N and a, b ∈ (A⊗K)+ satisfy

(7.1) (n+ 1)[a] ≤ n[b] in Cu(A).
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Use Remark 7.4 to find z ∈ (Z ⊗K)+ such that

(7.2) n[z] ≤ [1Z ] ≤ (n+ 1)[z] in Cu(Z)

Working in (the stabilization of) A⊗Z, we get

a⊗ 1Z
(7.2)

- a⊗ (z ⊗ 1n+1) ∼ (a⊗ 1n+1)⊗ z
(7.1)

- (b⊗ 1n)⊗ z
(7.2)

- b⊗ 1Z .

Use Theorem 8.2 to choose an isomorphism ϕ : A → A ⊗ Z satisfying [ϕ(a)] =
[a⊗ 1Z ] for all a ∈ (A⊗K)+. Applying ϕ to the subequivalence above, we deduce
that [ϕ(a)] ≤ [ϕ(b)]. Since ϕ is an isomorphism, this finishes the proof. �

We put Theorem 8.4 into context, by relating it to the notion of strict comparison.

Definition 8.5. Let A be a simple unital C∗-algebra. We say that A has strict
comparison (of positive elements by quasitraces) if whenever a, b ∈ (A ⊗ K)+ are
nonzero and satisfy dτ (a) < dτ (b) for all τ ∈ QT(A), then a - b.

Strict comparison is essentially a property of Cu(A). Using Theorem 6.9, one
can show that A has strict comparison if and only if whenever s, t ∈ Cu(A) are
nonzero and satisfy λ(s) < λ(t) for all λ ∈ F[1](Cu(A)), then s ≤ t. Less obvious
is the fact that strict comparison is equivalent to almost unperforation; see [81,
Proposition 3.2]. (One direction is easy, namely almost unperforation implies strict
comparison, while the converse requires an order-semigroup theoretic version of the
Hahn-Banach theorem, similar to what was used in the proof of Theorem 6.11.)

In particular, Theorem 8.4 asserts that Z-stable C∗-algebras have strict compar-
ison. Perhaps surprisingly, it is conjectured that the converse is true in the simple,
nuclear setting:

Conjecture 8.6. (Toms-Winter regularity conjecture, see [94], and also [101, Con-
jecture 5.2]). LetA be a simple, separable, unital, nuclear C∗-algebra. The following
are equivalent:

(i) dimnuc(A) <∞;
(ii) A is Z-stable;

(iii) A has strict comparison.

Nuclear dimension for C∗-algebras is a noncommutative version of the covering
dimension for topological spaces which was introduced by Winter and Zacharias
[103], and we will not define this notion here.

We state the conjecture in this form for historical reasons, but the fact that
(i) and (ii) are equivalent is by now a theorem: that (i) implies (ii) is an im-
pressive result of Winter [100], while the implication from (ii) to (i) has recently
been obtained in an equally outstanding work by Castillejos, Evington, Tikuisis,
White and Winter [33]. The fact that (ii) implies (iii) is precisely Theorem 8.4.
The converse implication remains open, although it is known in some cases, such
as whenever ∂eT (A) is compact and finite-dimensional thanks to the independent
works of Kirchberg-Rørdam [63], Toms-White-Winter [92], and Sato [83]; or when-
ever A has stable rank one and locally finite nuclear dimension thanks to the work
of Thiel [85]; or whenever A has uniform property Γ, by the work of Castillejos,
Evington, Tikuisis and White [32].

9. Toms’ example and the relation with the Elliott invariant

In this section, we present an example, due to Andrew Toms [91], of two C∗-
algebras that agree on the Elliott invariant (and more), yet they are distinguished by
their Cuntz semigroup. This example shows the importance of the Cuntz semigroup
outside the class of Z-stable C∗-algebras, as a key ingredient for classification. We
also relate the Cuntz semigroup with the Elliott invariant.
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Definition 9.1. Let A be a unital C∗-algebra. The Elliott invariant of A, denoted
by Ell(A), consists of the 4-tuple

Ell(A) =
(
(K0(A), [1A]),K1(A),T(A), rA

)
,

where rA : K0(A)× T(A)→ R is the pairing between K-theory and traces, defined
as rA([p], τ) = τ(p) for all projections [p] ∈ K0(A) and all τ ∈ T(A).

It should be pointed out that Elliott’s original formulation also included the
positive cone K0(A)+ of K0(A) as part of the invariant. The modification we make
here is inspired by the most recent approach to classification [31], and has the
following convenient consequence:

Remark 9.2. Let A be a unital C∗-algebra. Then Ell(A) ∼= Ell(A⊗Z).

For Z-stable C∗-algebras, K0(A)+ can be recovered from the remaining parts of
Ell(A) as follows:

K0(A)+ = {x ∈ K0(A) : rA(x, τ) > 0 for all τ ∈ T(A)} ∪ {0}.
Thus, for Z-stable C∗-algebras, there is no loss of information when dropping

K0(A)+ from the invariant. For the sake of this discussion, denote by Ẽll(A) the
invariant obtained from Ell(A) by adding the positive cone K0(A)+ of K0(A) as
part of the invariant. While Ell(A) ∼= Ell(A⊗Z) for every unital C∗-algebra A, this

is no longer true if one considers Ẽll instead, as Z-stable C∗-algebras have weakly
unperforated K0-groups; see [50].

The Elliott conjecture originally predicted that Ẽll would be a complete invariant
for the class of simple, separable, unital, nuclear C∗-algebras. The counterexamples
to this conjecture were obtained by Rørdam first, and later by Toms, which is the
one we present below. These examples showed that Z-stability is not automatic
for simple, separable, nuclear C∗-algebras, and this strongly suggested the need to
add this condition as an assumption in the conjecture. After many years of work
by many researchers, which culminated in [61, 70, 51, 52, 41, 90], the following im-
pressive classification theorem was obtained; see also [101, Theorem D]. Note that,

since Z-stability is assumed, Ẽll can be replaced by Ell in the following statement:

Theorem 9.3. Let A and B be simple, separable, unital, nuclear, Z-stable C∗-
algebras satisfying the UCT. Then A ∼= B if and only if Ell(A) ∼= Ell(B).

Here, the UCT stands for the so-called Universal Coefficient Theorem and, in
the theorem above, its assumption is potentially vacuous. This is one of the most
important open problems in the area.

Let us turn the attention now to the construction offered by Toms. This was
in turn based on previous work of Villadsen; see [97, 98]. Let (ki)i∈N and (ni)i∈N
be sequences of natural numbers, to be specified later. For each i ∈ N, set Ni =∏
j≤i nj and

Ai = Mki ⊗ C
(
[0, 1]6Ni

)
.

Identify [0, 1]6Ni with
(
[0, 1]6Ni−1

)ni
and for each i and l such that 1 ≤ l ≤ ni, let

π
(i)
l : [0, 1]6Ni+1 → [0, 1]6Ni

be the coordinate projection, given by π
(i)
l (x1, . . . , xni) = xl for all (x1, . . . , xni) ∈

[0, 1]6Ni . For ease of notation, write Xi = [0, 1]6Ni . For each i ∈ N, choose a dense

sequence (z
(i)
l ) in Xi, and choose points x

(i)
1 , . . . , x

(i)
i ∈ Xi by setting x

(i)
i = z

(i)
i

and, if 1 ≤ j ≤ i− 1, choose x
(i)
j such that π

(j)
1 π

(j+1)
1 . . . πi−2

1 πi−1
1 (x

(i)
j ) = z

(i)
i+1−j .

Let us define φi−1 : Ai−1 → Ai as follows. Given f ∈ Ai−1 and x ∈ [0, 1]6Ni , set

φi−1(f)(x) = diag
(
f
(
π

(i)
1 (x)

)
, . . . , f

(
π(i)
ni (x)

)
, f
(
x

(i−1)
1

)
, . . . , f

(
x

(i−1)
i−1

))
.
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We now choose ni in such a way that ni is much larger than i as i → ∞ and
such that for each r ∈ N, there is i0 with r|(ni0 + i0). Set n1 = 1, k1 = 4 and
ki+1 = ki(i+ 6Ni), and let A = lim−→(Ai, φi).

Proposition 9.4. The C∗-algebra A just constructed is simple, separable, unital,
nuclear, satisfies the UCT, has real rank one and stable rank one, and A ⊗ Z is
isomorphic to an AI algebra.

Proof. The choice of the points x
(i)
j , for 1 ≤ j ≤ i and for each i, ensure that A

is simple, as the arguments in [97] show. That A is separable, unital, nuclear, and
that it satisfies the UCT, are clear by construction.

Since Xi is contractible for all i ∈ N, we have

(K0(Ai), [1Ai ],K1(Ai)) ∼= (Z, ki, {0}).
This, coupled with the fact that K-theory is continuous and the choice of (ni)i∈N,
ensures that (K0(A), [1A],K1(A)) ∼= (Q, 1, {0}). It follows that there is a simple
AI-algebra B whose Elliott invariant is that of A. Moreover, both A ⊗ Z and B
satisfy the assumptions of Theorem 9.3, so they are isomorphic.

By the results in [97], the real rank and the stable rank of A are both equal to
one, and thus the same is true for B. �

Proposition 9.5. The Cuntz semigroup of the C∗-algebra A in Proposition 9.4 is
not almost unperforated.

Proof. It is enough to find positive elements x, y ∈ A1 such that for all i ∈ N and
some δ > 0, we have 11[φ1,i(x)] ≤ 10[φ1,i(y)] in Cu(Ai), but ‖rφ1,i(y)r∗−φ1,i(x)‖ >
δ for all r ∈ Ai.

To give the idea, we do this for i = 1, that is, we show that Cu(A1) is not almost
unperforated, and partly reproduce the argument in [91, Proof of Theorem 1.1].
Notice that A1 = C([0, 1]3 × [0, 1]3,M4). Set

S =
{
x ∈ [0, 1]3 : 1

8 < dist
(
x,
(

1
2 ,

1
2 ,

1
2

))
< 3

8

}
,

so that M4(C0(S × S)) is a hereditary subalgebra of A1.
Let ξ be a line bundle over S2 with nonzero Euler class, and use θ1 to denote

the trivial line bundle. Since ξ × ξ does not have zero Euler class, θ1 is not a
sub-bundle of ξ × ξ over S2 × S2 (see [97, Lemma 1]). Considering ξ × ξ and
θ1 as projections in M4(C0(S2 × S2)), we have ‖x(ξ × ξ)x∗ − θ1‖ ≥ 1

2 for all

x ∈ M4(C0(S2 × S2)). Stability properties of vector bundles yield, on the other
hand, that 11[θ1] ≤ 10[ξ × ξ]. Set

S′ =
{
x ∈ S : dist

(
x,
(

1
2 ,

1
2 ,

1
2

))
< 1

4

}
⊆ S

and let f ∈ A1 be a positive scalar function supported on S × S which equals one
on S′ × S′. Let ρ denote the projection of S onto S′. One has, by restricting from
S × S to S′ × S′, that

‖xf(ρ∗(ξ)× ρ∗(ξ))x∗ − fθ1‖ ≥ 1
2 ,

for any x ∈ A1, where ρ∗ is the pullback of ξ via ρ, and also

11[fθ1] ≤ 10[f(ρ∗(ξ)× ρ∗(ξ))]
in Cu(A1). This shows that Cu(A1) is not almost unperforated. �

Theorem 9.6. The C∗-algebras A and B = A ⊗ Z from Proposition 9.4 are not
isomorphic, yet they have the same stable and real rank, and satisfy Ell(A) ∼=
Ell(B).10

10In fact, they even satisfy Ẽll(A) ∼= Ẽll(B), which is a stronger statement since A is not
Z-stable.
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Proof. We know from Proposition 9.5 that Cu(A) is not almost unperforated. On
the other hand, Cu(B) is almost unperforated as B is Z-stable, by Theorem 8.4.
Hence, A and B cannot be isomorphic.

The argument in Proposition 9.4 shows that A and B have stable rank and real
rank one, and they have the same Elliott invariant by Remark 9.2. �

We now proceed to discuss the connection of the Cuntz semigroup with the
Elliott invariant for classifiable C∗-algebras. The first connection is given by the
following computation of the Cuntz semigroup of a Z-stable C∗-algebra, obtained
in [26, 27]. For each element x = [p] ∈ V(A), we denote by x̂ : QT(A) → R++

the continuous function defined by x̂(τ) = τ(p) for τ ∈ QT(A). We also denote by
LAff(QT(A))++ the semigroup of lower semicontinuous, affine functions defined on
QT(A) with values on (0,∞].

Theorem 9.7. Let A be a simple, separable, unital, stably finite Z-stable C∗-
algebra. Then

Cu(A) ∼= V(A)︸ ︷︷ ︸
compacts

t LAff(QT(A))++,

with addition and order defined as follows:

(i) The addition in V(A) is the usual addition and in LAff(QT(A))++ is given by
pointwise addition of functions. If x ∈ V(A) and f ∈ LAff(QT(A))++, then
x+ f = x̂+ f .

For x ∈ V(A) and f ∈ LAff(QT(A))++, we have

(ii) x ≤ f if x̂(τ) < f(τ) for every τ ∈ QT(A).
(iii) f ≤ x if f(τ) ≤ x̂(τ) for every τ ∈ QT(A).

Remark 9.8. For stably finite, nuclear Z-stable C∗-algebras, the above allows one
to recover K0(A) as the Grothendieck group of V(A) = Cu(A)c, as well as QT(A) =
F (Cu(A)). The pairing rA can be recovered then by evaluation of a functional on
a compact element. In particular, the pair (Cu(A),K1(A)) is equivalent to Ell(A).

In contrast to Theorem 9.7, the Cuntz semigroup records essentially no infor-
mation in the purely infinite case. Indeed, if A is simple and purely inifnite, then
Cu(A) ∼= {0,∞} regardless of the K0-group of A. This is easy to see: given a, b ∈ A+

nonzero, find r ∈ A such that rbr∗ = a, which implies a - b. It follows that all
nonzero positive elements in (matrices over) A are Cuntz-equivalent.

As we see from Theorem 9.7, the Cuntz semigroup of A does not in general
contain any information about its K1-group. We remark that, in the non-unital
case, it is not even obvious that K0 is encoded. One may have, for example, a
simple stably projectionless C*-algebra A, hence V(A) = 0, yet K0(A) 6= 0. In this

case we would consider Cu(Ã) and recover K0(A) from V(Ã).
We may also recover K1(A), but using the Cuntz semigroup of a different algebra,

namely A⊗ C(T).11 We will need the following construction.
Let S be a Cu-semigroup. Assume that the subset Snc of non-compact elements

is an absorbing subsemigroup, in the sense that Snc + S ⊆ Snc. (This is always
the case if S = Cu(A) for a simple, separable, unital, stably finite Z-stable C∗-
algebra by Theorem 9.7.) Denote by Sc the subsemigroup of compact elements and
S∗c = Sc \ {0}. Let G be an abelian group and consider the semigroup

SG = ({0} t (G× S∗c )) t Snc ,

with natural operations in both components, and (g, x)+y = x+y whenever x ∈ S∗c ,
y ∈ Snc, and g ∈ G. This semigroup can be ordered as follows:

11Thinking of the Cuntz semigroup as a refined version of K0, the idea behind this is that
K0(A⊗ C(T)) ∼= K0(A)⊕K1(A).
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(i) For x, y ∈ S∗c , and g, h ∈ G, we have (g, x) ≤ (h, y) if and only if x = y and
g = h, or else x < y.

(ii) For x ∈ S∗c , y ∈ Snc, g ∈ G, (g, x) is comparable with y if x is comparable
with y.

The proof of the following is left as an exercise.

Lemma 9.9. Let S be an object of Cu such that Snc is an absorbing subsemigroup.
If G is an abelian group, then SG is also an object of Cu.

For a C∗-algebra A, let us denote CuT(A) = Cu(A⊗ C(T)).

Theorem 9.10. ([3, Theorem 3.8]). Let A be a separable, unital, stably finite,
Z-stable C∗-algebra. Then, there is an order-isomorphism

CuT(A) ∼= ({0} t (K1(A))×V(A)∗) t Lscnc(T,Cu(A)) ,

where V(A)∗ = V(A) \ {0}, and where the right hand side is ordered as above.

Let us interpret this in terms of the theory of classification. To this end, let us
write Ell to denote the category whose objects are 4-tuples of the form

((G0, u), G1, X, r) ,

where G0 is a (countable) abelian group with distinguished element u, G1 is a
(countable) abelian group, X is a (metrizable) Choquet simplex, r : X → St(G0, u)
is an affine map, where St(G0, u) denotes the state space of (G0, u), such that, if
we set

G+
0 = {g ∈ G0 : r(x)(g) > 0 for all x ∈ X} ∪ {0},

then (G0, G
+
0 , u) is a simple, partially ordered group with order unit u.

The morphisms in Ell between ((G0, u), G1, X, r) and ((H0, v), H1, Y, s) are given
by triples (θ0, θ1, γ), where θ0 : G0 → H0 is a morphism of groups with θ0(u) = v,
the map θ1 : G1 → H1 is a morphism of groups, and γ : Y → X is an affine and
continuous map such that r ◦ γ = θ∗0 ◦ s, where θ∗0 : St(H0, v) → St(G0, u) is the
naturally induced map at the level of states.

Let C∗Z denote the class of simple, separable, unital, nuclear, finite Z-stable
C∗-algebras. The Elliott invariant then naturally defines a functor

Ell : C∗Z → Ell.

We now define
F: Ell→ Cu

as follows. If E = ((G0, u), G1, X, r) is an object of Ell and G+
0 is defined as above,

then notice first that G+
0 t LAff(X)++ is an object of Cu (see, for example, [1,

Lemma 6.3]). Set G++
0 = G+

0 \ {0} and

F(E) = ({0} t (G1 ×G++
0 )) t Lscnc(T, G+

0 t LAff(X)++) ,

with addition given by (g+ f)(x) = r(x)(g) + f(x), for all g ∈ G, f ∈ LAff(X) and
x ∈ X. It follows from Lemma 9.9 that F(E) is also an object of Cu.

Lemma 9.11. F is a functor, and its corestriction F: Ell→ F(Ell) is full, faithful
and dense.

Proof. We only check that, if

(θ0, θ1, γ) : ((G0, u), G1, X, r)→ ((H0, v), H1, Y, s)

is a morphism in Ell and f : T→ G+
0 tLAff(X)++ is non-compact, then (θ0tγ∗)◦

f : T→ H+
0 t LAff(Y )++ is also non-compact. Here

θ0 t γ∗ : G+
0 t LAff(X)++ → H+

0 t LAff(Y )++

is defined as θ0 on G+
0 and γ∗ on LAff(X)++.
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By way of contradiction, if (θ0tγ∗)◦f is compact, then there is h ∈ H+
0 such that

θ0(f(T)) = {h} and f(T) ⊆ G+
0 . As f is non-compact and lower semicontinuous,

there are s, t ∈ T with f(t) < f(s), whence f(s) − f(t) ∈ G++
0 is an order-unit.

Thus, there exists n ∈ N with f(s) ≤ n(f(s)− f(t)). After applying θ0, we obtain
that h ≤ 0, hence h = 0. But this is not possible since, as f is not constant, it takes
some non-zero value a, which will be an order-unit with θ0(a) = 0, contradicting
that θ0(u) = v. �

Remarks 9.12. In Lemma 9.11, we have considered F(Ell). We note that the im-
age of a functor G is a category when G is faithful, in the sense that G(f) = G(g) im-
plies f = g. The reason for this is that if G(f) : G(X)→ G(Y ) and G(g) : G(Z)→
G(V ), with G(Y ) = G(Z), then one has to verify that G(g)G(f) : G(X) → G(V )
has the form G(h) for some h. Assuming G faithful, from G(Y ) = G(Z) one has
G(idY ) = idG(Y ) = idG(Z) = G(idZ), and thus idY = idZ . Therefore Y = Z, and
in this way we may choose h = gf .

That F in Lemma 9.11 is faithful was established in [3].

As a consequence, we get the following.

Theorem 9.13 ([89]). Upon restriction to the class of unital, simple, separable
and stably finite Z-stable algebras, Ell is a classifying functor if, and only if, so is
CuT.

Proof. Since F: Ell → F(Ell) is a full, faithful and dense functor by Lemma 9.11,
it is a general fact in category theory that it yields an equivalence of categories, so
that there exists another functor G: F(Ell) → Ell such that F ◦ G and G ◦ F are
naturally equivalent to the respective identities. This, together with Theorem 9.10
and [26, Corollary 5.7] implies that there are natural equivalences of functors

F ◦ Ell ' CuT and Ell ' G ◦ CuT,

which implies the result. �

We have chosen the algebra C(T) to be tensored with our target algebra A
above since the compact part of A⊗C(T) contains, for the class under scrutiny, the
relevant information on K0 and K1. It would also be interesting to explore what
would happen under tensoring instead with the unique classifiable simple unital C*-
algebra B with a unique trace and K0(B) ∼= K1(B) ∼= Z with [1B ] corresponding
to 1. An advantage of this approach is that one would stay within the classifiable
class for an already classifiable algebra A.

10. Additional axioms and properties

In this section, we introduce two important new axioms and a property for Cu-
semigroups. As it turns out, the axioms are satisfied by the Cuntz semigroup of
any C∗-algebra, whereas the property, that measures cancellation in the Cuntz
semigroup, holds for C∗-algebras of stable rank one.

Definition 10.1. Let S be a Cu-semigroup. We say that S has weak cancellation
provided x+ z � y + z in S implies x� y, for all x, y, z ∈ S.

Not every Cuntz semigroup is weakly cancellative. If, for example, A is a purely
infinite simple C∗-algebra, then Cu(A) = {0,∞}, where necessarily ∞ is compact.
Hence ∞ + ∞ � 0 + ∞, but it is not true that ∞ � 0. It is easy to show
that weak cancellation passes to quotients, hence another example where weak
cancellation fails in the non purely infinite setting may be obtained by taking a
stably finite C∗-algebra A with a purely infinite simple quotient, for example the
cone over O2. An example with finite stable rank is the Toeplitz algebra T , since
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it contains a non-unitary isometry s, so that p := ss∗ is a projection satisfying
p⊕ (1− p) = p+ (1− p) = 1 ∼ p with p 6= 1.

We record below an equivalent formulation for weak cancellation that is repeat-
edly used in the literature. The proof is left as an exercise; see [5, Lemma 2.5] for
the argument.

Lemma 10.2. Let S be a Cu-semigroup. The following conditions are equivalent:

(i) S has weak cancellation.
(ii) If x, y, z ∈ S safisfy x+ z � y + z, then x ≤ y.
(iii) If x, y, z, z′ ∈ S satisfy x+ z ≤ y + z′ and z′ � z, then x ≤ y.

The following theorem is due to Rørdam and Winter [82].

Theorem 10.3. Let A be a C∗-algebra of stable rank one. Then Cu(A) has weak
cancellation.

Proof. By part (iii) of Proposition 2.14, we may assume that A is stable. Let x, y,
z in Cu(A) satisfy x + z � y + z. Assume first that z is compact, that is, z � z.
Choose elements a, b ∈ A+ with x = [a], y = [b], and use Proposition 4.14 to choose
a projection p ∈ A with z = [p]. We may assume that a, b are both orthogonal
to p. Let ε > 0. Using Theorem 3.7, choose a unitary u (in the unitization of A)
such that u((a − ε)+ + p)u∗ ∈ Ab+p. Then p and upu∗ are projections in Ab+p
whose Cuntz classes in A agree. Using that Ab+p is a hereditary subalgebra of
A, one readily checks that their Cuntz classes in Ab+p also agree (this is almost
identical to the proof of Lemma 5.2). Note that Ab+p has stable rank by part (ii)
of Proposition 2.14, and hence is stably finite by part (i) of the same lemma. By
Lemma 2.8 and the comments after it, we deduce that p ∼MvN q in Ab+p. Using
again that Ab+p has stable rank one, part (iv) of Proposition 2.14 gives us a unitary
v in the unitization of Ab+p such that vpv∗ = upu∗.

Observe now that v∗u(a− ε)+u
∗v belongs to Ab+p and is orthogonal to p. Thus

v∗u(a− ε)+u
∗v ∈ (1− p)Ap+b(1− p) = Ab.

This shows that (a− ε)+ - b and since ε is arbitrary, we conclude that a - b, that
is, x ≤ y.

For the general case, choose z′ � z such that x + z ≤ y + z′. Choose represen-
tatives as before x = [a], y = [b], z = [c]. We may assume that z′ = [(c − ε)+] for
some ε > 0, and so

(10.1) a⊕ c - b⊕ (c− ε)+

Upon rescaling c, which does not change Cuntz classes by Corollary 2.3, we may
assume that ‖c‖ = 1. Define

hε(t) =


1, if t = 0

linear, if t ∈ [0, ε]

0, if t ≥ ε.

Then ε ≤ c + hε(c) ≤ 1. Using part (ii) of Corollary 2.3 at the second step and
using Lemma 3.2 at the third, we get

(10.2) (c− ε)+ + hε(c) ≤ c+ hε(c) ∼ 1 - c⊕ hε(c).

On the other hand, (c− ε)+ ⊥ hε(c) and thus Lemma 3.2 implies that

(10.3) (c− ε)+ ⊕ hε(c) ∼ (c− ε)+ + hε(c)
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Combining these things, we get

a⊕ 1
(10.2)

- a⊕ c⊕ hε(c)
(10.1)

- b⊕ (c− ε)+ ⊕ hε(c)
(10.3)

- b⊕ (c− ε)+ + hε(c)

(10.2)

- b⊕ 1,

and therefore a - b by the first part of the proof. �

Remark 10.4. Notice that if S is a Cu-semigroup with weak cancellation, then S
has cancellation of compact elements. In particular, if A is a C∗-algebra of stable
rank one, then its Cuntz semigroup Cu(A) has cancellation of compact elements
(in fact, a close inspection of the proof of Theorem 10.3 reveals one proves this first
before concluding weak cancellation).

An abelian monoid S is said to be algebraically ordered provided x ≤ y in S
exactly when there is z ∈ S with x + z = y. The order in a Cu-semigroup is
in general not algebraic (consider, for example, the Cuntz semigroup of Z; see
Theorem 7.3), and the axiom below measures how far this is from being the case.

Definition 10.5. Let S be a Cu-semigroup. We say that S satisfies (O5) (or has
almost algebraic order) if, whenever x+ z ≤ y and x′ � x, z′ � z, there is w ∈ S
such that

x′ + w ≤ y ≤ x+ w and z′ ≤ w.

The formulation above is taken from [8], and has the advantage that it behaves
well with respect to inductive limits of Cu-semigroups; see [8, Theorem 4.5].

This axiom appears in a different form in other papers, namely by taking z = 0.
In fact, this was the original formulation in [82], which therefore reads: whenever
x ≤ y and x′ � x, there is w ∈ S such that x′+w ≤ y ≤ x+w. Let us temporarily

refer to this version as axiom (̃O5).

Lemma 10.6. Let S be a Cu-semigroup. Then (O5) implies (̃O5) and, in the
presence of weak cancellation, the converse holds.

Proof. The first part of the statement is trivial. Assume, for the converse, that S

is a Cu-semigroup that has weak cancellation and satisfies (̃O5). We are to show
that S satisfies (O5). To this end, let x′, x, z′, z, y ∈ S satisfy x+z ≤ y and x′ � x,
z′ � z. First choose x′ � x′′ � x, z′ � z′′ � z, and y′ � y such that x′′+z′′ � y′.

Since x′ � x′′ ≤ y, by (̃O5) there is w ∈ S such that x′ + w ≤ y ≤ x′′ + w. Using
weak cancellation on the inequality

x′′ + z′′ � y′ � y ≤ x′′ + w,

we obtain z′′ � w. Thus z′ ≤ w. On the other hand x′+w ≤ y ≤ x′′+w ≤ x+w,
as desired. �

Remark 10.7. Suppose that S satisfies (O5), and let x ∈ Sc and y ∈ S satisfy
x ≤ y. Applying (O5) to x � x ≤ y, we find w ∈ S with x + w = y. This shows
that compact elements can always be complemented and thus the subsemigroup Sc
of compact elements is algebraically ordered. The same is true if one assumes the

weaker (̃O5).

The reason why (O5) is significant is recorded below:
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Proposition 10.8. Let A be a C∗-algebra. Then Cu(A) satisfies (O5).

Proof. We prove the simpler version (̃O5), mostly following the original proof in [82].
(For the general argument, see [8, Proposition 4.6].) Thus assume that x′ � x ≤ y
in Cu(A), and set x = [a], y = [b]. For simplicity we assume that x′ = [(a− 2ε)+]
for some ε > 0.

By Theorem 2.7, there is v ∈ A such that (a − ε)+ = v∗v and vv∗ ∈ Ab. Let
hε be defined as in the proof of Theorem 10.3, so that hε(vv

∗) ⊥ (vv∗ − ε)+ and

ε ≤ vv∗+hε(vv
∗). The latter inequality implies that εb ≤ b 1

2 (vv∗+hε(vv
∗))b

1
2 and

thus

(10.4) b - b
1
2 (vv∗ + hε(vv

∗))b
1
2 .

Let c = hε(vv
∗)bhε(vv

∗) and set w = [c] ∈ Cu(A). Note that

(10.5) c ∼ b 1
2hε(vv

∗)2b
1
2

by part (iv) of Corollary 2.3. Since both (vv∗ − ε)+ and c belong to Ab, we have

(10.6) (vv∗ − ε)+ + c - b

by Proposition 2.4. Using Lemma 2.6 at the second step, and using Lemma 3.2 at
the third step, we get

(a− 2ε)+ ⊕ c = (v∗v − ε)+ ⊕ c ∼ (vv∗ − ε)+ ⊕ c ∼ (vv∗ − ε)+ + c
(10.6)

- b,

so that x′ + w ≤ y.
It remains to show that b - a⊕ c, which gives y ≤ x+ w. Using Lemma 3.2 at

the fourth step, and using v∗v = (a− ε)+ and part (iv) of Corollary 2.3 at the fifth
step, we get

b
(10.4)

- b
1
2 (vv∗ + hε(vv

∗)2)b
1
2

= b
1
2 vv∗b

1
2 + b

1
2hε(vv

∗)2b
1
2

(10.5)

- vv∗ + c - vv∗ ⊕ c
∼ (a− ε)+ ⊕ c - a⊕ c. �

An abelian monoid S is said to have Riesz decomposition if whenever x ≤ y+z in
S, there are elements x1, x2 ∈ S with x = x1 + x2 and x1 ≤ y, x2 ≤ z. Again, Cu-
semigroups do not in general have Riesz decomposition (and Cu(Z) is an example).
The following axiom measures a certain degree of Riesz decomposition in a Cu-
semigroup.

Definition 10.9. Let S be a Cu-semigroup. We say that S satisfies (O6), or that
it has almost Riesz decomposition, if whenever x′, x, y, z ∈ S satisfy x′ � x ≤ y+z,
then there are s, t ∈ S with

x′ ≤ s+ t, s ≤ x, y, and t ≤ x, z.

Again, (O6) is satisfied by the Cuntz semigroup of every C∗-algebra; see [74,
Proposition 5.1.1].

Proposition 10.10. Let A be a C∗-algebra. Then Cu(A) satisfies (O6).

Proof. We may assume that A is stable. Suppose that x ≤ y + z in Cu(A), and
x′ � x. Choose representatives a, b, c ∈ A such that x = [a], y = [b], and z = [c].
We may assume that b ⊥ c and for simplicity we also assume that x′ = [(a − ε)+]
for some ε > 0.
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By Theorem 2.7, there are v ∈ A and δ > 0 such that (a − ε)+ = v∗v and
vv∗ ∈ A(b+c−δ)+ . Define a continuous function by

gδ(t) =


0, if t = 0

linear, if t ∈ [0, δ]

1, if t > δ.

Then gδ(b + c)vv∗ = vv∗. Using at the first step that gδ(b + c) = gδ(b) + gδ(c),
which holds because b ⊥ c, and using Remark 5.3 at the second step, we have

gδ(b+ c)vv∗gδ(b+ c)

= gδ(b)vv
∗gδ(b) + gδ(b)vv

∗gδ(c) + gδ(c)vv
∗gδ(b) + gδ(c)vv

∗gδ(c)

≤ 2(gδ(b)vv
∗gδ(b) + gδ(c)vv

∗gδ(c)).

Using this at the third step and that b ⊥ c again at the fourth step, we obtain

[(a− ε)+] = [vv∗] =[gδ(b+ c)vv∗gδ(b+ c)]

≤[gδ(b)vv
∗gδ(b) + gδ(c)vv

∗gδ(c)]

=[gδ(b)vv
∗gδ(b)] + [gδ(c)vv

∗gδ(c)].

The proof is finished by setting s := [gδ(b)vv
∗gδ(b)] = [v∗gδ(b)

2v] ≤ [(a − ε)+], [b]
and t := [gδ(c)vv

∗gδ(c)] ≤ [(a− ε)+], [c]. �

11. C∗-algebras with stable rank one

In this section we explore some properties satisfied by the Cuntz semigroups of
C∗-algebras with stable rank one. One obtains in particular solutions to three open
problems on the Cuntz semigroup that, at the same time, reflect on the structure of
such algebras. In these notes, we will discuss two of the three problems mentioned
(see Sections 12 and 13). Large portions of this section are taken from [5].

We will need the following variation of the axiom (O6), introduced by Thiel in
[85]:

Definition 11.1. Let S be a Cu-semigroup. We say that S satisfies (O6+) if
whenever x, y, z ∈ S satisfy x ≤ y+z and u′, u, v′, v ∈ S are such that u′ � u ≤ x, y,
and v′ � v ≤ x, z, then there are elements s, t ∈ S such that

x ≤ s+ t, u′ � s ≤ x, y, and v′ � t ≤ x, z.

It was shown in the proof of [85, Lemma 6.3] that (O6+) has a simpler equivalent
formulation. We reproduce the argument below for convenience, since we shall use
this later.

Lemma 11.2. Let S be a Cu-semigroup. Then S satisfies (O6+) if and only if the
following (one-sided) property holds: whenever x, y, z ∈ S satisfy x ≤ y + z and
u′, u ∈ S are such that u′ � u ≤ x, y, then there is s ∈ S such that x ≤ s+ z and
u′ � s ≤ x, y.

Proof. It is clear that (O6+) implies the property in the statement. Conversely,
assume the above property and let x, y, z, u′, u, v′, v ∈ S satisfy x ≤ y + z, u′ �
u ≤ x, and v′ � v ≤ x, z. Applying the property in the statement to x ≤ y+ z and
u′ � u ≤ x, y, we obtain s ∈ S such that x ≤ s + z and u′ � s ≤ x, y. A second
application of said property to x ≤ s+ z and v′ � v ≤ x, z yields an element t ∈ S
with x ≤ s+ t and v′ � t ≤ x, z, as desired. �

The proof of the following is rather involved, hence we omit the details.

Theorem 11.3 ([85, Theorem 6.4]). Let A be a C∗-algebra of stable rank one.
Then Cu(A) satisfies (O6+).
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Next, we observe that the assumption of stable rank one is necessary in Theo-
rem 11.3. The following is [85, Example 6.7]

Example 11.4. The Cuntz semigroup of the C∗-algebra C(S2) does not satisfy
(O6+), and it is well-known that sr(C(S2)) = 2.

Proof. Denote by Lsc(S2,N) the monoid of lower semicontinuous functions from S2

with values in N, equipped with pointwise order and addition. For any open subset
U ⊆ S2, we use 1U to denote the characteristic function of U , which is an element
of Lsc(S2,N). Note that the non-compact elements of Lsc(S2,N) are given by

Lsc(S2,N)nc = Lsc(S2,N) \ {n1S2 : n ≥ 1}.

Using [74, Theorem 1.2] it is possible to show that

Cu(C(S2)) ∼= (N>0 × Z) t Lsc(S2,N)nc.

Addition and order may be described as follows. Elements in each one of the
components of the disjoint union are added as usual and ordered also as usual. If
(n,m) ∈ N>0 × Z and f ∈ Lsc(S2,N)nc, then (n,m) + f = n1S2 + f .

Next, (n,m) ≤ f if and only if n1S2 ≤ f , and f ≤ (n,m) if and only if f ≤ n1S2 .
Choose open subsets of U, V ⊆ S2 with U ⊆ V . Then 1U � 1V , and they are

non-constant functions. We have

(1, 0) ≤ (1, 1) + n1U and 1U � 1V ≤ (1, 0), (1, 1).

To reach a contradiction, assume that Cu(C(S2)) satisfies (O6+). Then there is
s ∈ Cu(C(S2)) such that (1, 0) ≤ s+ 1U and 1U ≤ s ≤ (1, 0), (1, 1).

Since s ≤ (1, 0), (1, 1) we see that s ∈ Lsc(S2,N)nc and thus there is x ∈ S2

such that s(x) = 0. But since 1U ≤ s, we see that x /∈ U , which implies that
(s+1U )(x) = 0. Therefore (1, 0) is not dominated by s+1U , which is impossible. �

Remark 11.5. It is natural to ask whether (O6+) follows from (O6) and weak
cancellation (the latter, as we have shown in Theorem 10.3, holds for C∗-algebras
of stable rank one). That is however not the case. Again, C(S2) is a counterexam-
ple, since by the computation above one can show its Cuntz semigroup is weakly
cancellative.

Our next goal is to show that Cuntz semigroups of C∗-algebras of stable rank
one admit infima which are compatible with addition, in the sense of the definition
below. This will have important consequences later on.

Definition 11.6. A partially ordered set S is an inf-semilattice provided the order-
theoretic infimum x ∧ y exists for any elements x, y ∈ S. We say that an ordered
semigroup is inf-semilattice ordered if it is an inf-semilattice and, for any x, y, z ∈ S,
we have

(x+ z) ∧ (y + z) = (x ∧ y) + z.

Lemma 11.7. Let S be a Cu semigroup which is an inf-semilattice and satisfies
(O6+). If x, y, z ∈ Cu(A) satisfy x ≤ y + z, then x ≤ (x ∧ y) + (x ∧ z).

Proof. Applying axiom (O6+) to x ≤ y + z with u = u′ = v = v′ = 0, we obtain
x ≤ s + t for some s ≤ x, y and t ≤ x, z. The existence of infima proves the
lemma. �

The lemma below shows that axiom (O6+) is automatic for inf-semilattice or-
dered semigroups.

Lemma 11.8. An inf-semilattice ordered Cu-semigroup S satisfies (O6+).
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Proof. Assume that x, y, z ∈ S satisfy x ≤ y + z and u′, u, v′, v ∈ S are such that
u′ � u ≤ x, y, and v′ � v ≤ x, z. Let s = x ∧ y and t = x ∧ z. Then clearly
u′ � u ≤ s and v′ � v ≤ t. Using the inf-semillatice condition repeatedly, we get

(x+ x) ∧ (x+ z) ∧ (x+ y) ∧ (y + z) = (x+ x ∧ y) ∧ (z + x ∧ y) = (x ∧ y) + (x ∧ z).

Using this at the second step, we conclude that

x ≤ (2x) ∧ (x+ z) ∧ (x+ y) ∧ (y + z) = (x ∧ y) + (x ∧ z) = s+ t. �

As we outline in Theorem 11.17, the Cuntz semigroup of any C∗-algebra of
stable rank one is inf-semilattice ordered. Given the argument above, one would
get a different proof that (O6+) is verified for the Cuntz semigorup of C∗-algebras
of stable rank one. However, (O6+) is used to show the inf-semilattice ordered
property, so that raises the question of whether one can show that C∗-algebras
of stable rank one have inf-semilattice ordered Cuntz semigroups without using
(O6+).

In preparation for Proposition 11.12 below, we need to briefly discuss a different
picture of the Cuntz semigroup, as developed in [37].

Definition 11.9. A (right) Hilbert module over a C∗-algebra A is a (right) A-
module X together with a map 〈·, ·〉 : X ×X → A which is C-linear on the second
entry and satisfies

(i) 〈x, ya〉 = 〈x, y〉a
(ii) 〈x, y〉 = 〈y, x〉∗
(iii) 〈x, x〉 ≥ 0 and equals zero precisely when x = 0,

for all x, y ∈ X, a ∈ A, and such that X is complete with respect to the norm
‖x‖ = 〈x, x〉 12 .

The standard example of an A-Hilbert module is the C∗-algebra A itself, with
structure given by 〈x, y〉 = x∗y. More generally, if a ∈ A+, then aA is naturally
a Hilbert A-module. We denote by `2(A) the so-called standard Hilbert A-module,
which is given as

`2(A) =
{

(xn)n∈N ∈
∏
n∈N

A :
∑
n∈N

x∗nxn converges in the norm of A
}
,

with inner product defined as 〈x, y〉 =
∑
n∈N x

∗
nyn for x, y ∈

⊕
n∈NA.

Definition 11.10. A Hilbert A-module X is said to be countably generated if there

is a countable set {xn : n ∈ N} ⊆ X such that X =
∑∞
n=1 xnA.

A fundamental result in the theory of Hilbert modules is Kasparov’s absorption
theorem; see [65, Theorem 1.4.2].

Theorem 11.11 (Kasparov’s theorem). Let X be a countably generated Hilbert
A-module. Then X ⊕ `2(A) ∼= `2(A).

In [37], a notion of subequivalence between countably generated Hilbert A-
modules, weaker than isomorphism, was introduced. By antisymmetrizing this
subequivalence, a partially ordered semigroup was built, and it was shown that this
semigroup is isomorphic to Cu(A). Under this isomorphism, a positive element

a ∈ (A⊗K)+ corresponds to a(A⊗K).
Further, in the stable rank one case, it was proved that equivalence of A-modules

is the same as isomorphism, and a Hilbert A-module X is subequivalent to a Hilbert
A-module Y precisely when X ∼= X ′ ⊆ Y ; see also [12, Section 4] for further details.

One of the key results in this and coming sections is the following result, proved
in [5, Proposition 2.8]:
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Proposition 11.12. Let A be a stable C∗-algebra of stable rank one, and let
a ∈ A+. Then there are a C∗-algebra B, also of stable rank one, that contains A as
closed, two-sided ideal, and a projection pa ∈ B such that the following property
holds:

For x ∈ Cu(A), we have x ≤ [a] in Cu(A) if and only if x ≤ [pa] in Cu(B).

Proof. We sketch the construction. Consider the Hilbert module H = aA, which by
Kasparov’s theorem is isomorphic to a direct summand of `2(A), that is, H ⊕H ′ ∼=
`2(A) for some Hilbert module H ′. Also, since A is stable, we have `2(A) ∼= A as
Hilbert modules.

Let M(A) be the multiplier algebra of A, identified with the algebra of ad-
jointable operators on A, and let pa ∈ M(A) be the projection that corresponds,
under the previous identification, to the projection onto aA, so that aA ∼= paA. Set
B = C∗(pa, A) ⊆ M(A). By construction then, A is a closed, two-sided ideal of B
and, since B/A ∼= C, we see that B also has stable rank one.

To prove the stated property, let b ∈ A+ and set x = [b] ∈ Cu(A). If b - pa
in B and ε > 0 is given, then by Lemma 2.5 there is an element d ∈ B such that
(b− ε)+ = d∗pad. Setting v = pad ∈ paB, we have (b− ε)+ = v∗v.

Observe also that v∗v ∈ A, hence v ∈ A by Remark 5.4, since A is an ideal of
B. Thus v ∈ paB ∩A = paA ∼= aA. Altogether, we have that

(b− ε)+A = v∗vA ∼= vv∗A ⊆ paA ∼= aA

as Hilbert A-modules. This implies, by using the Hilbert module picture of Cu(A),
that (b− ε)+ - a and, since ε > 0 is arbitrary, we obtain b - a.

For the converse, it suffices to show that [a] ≤ [pa] in Cu(B). This follows from
aB = aA ∼= paA ⊆ paB, as Hilbert B-modules. �

Definition 11.13. We say that an ordered semigroup S satisfies the Riesz inter-
polation property if given x, y, z, t ∈ S with x, y ≤ z, t, there exists w ∈ S such that
x, y ≤ w ≤ z, t.

A partially ordered group is called an interpolation group if it satisfies the Riesz
interpolation property.

If S is algebraically ordered and cancellative, it is well known that the Riesz
interpolation property is equivalent to the Riesz decomposition property, and also to
the Riesz refinement property. This is due to the Grothendieck group construction;
see [53, Proposition 2.1].

It was shown in [68] that, for C∗-algebras of real rank zero and stable rank one,
Cu(A) enjoys the three Riesz properties. This is largely due to the fact that the
Murray-von Neumann semigroup is cancellative and has Riesz decomposition; see
[17] and [104]. However, this is no longer true if one drops the real rank zero
assumption, even if one assumes stable rank one. An example of this is given by
the Jiang-Su algebra Z, as was observed in [85, Remark 6.9]. Indeed, we have seen
in Theorem 7.3 that

Cu(Z) ∼= {cn : n ∈ N}︸ ︷︷ ︸
compacts

t{st : t ∈ (0,∞]} = N t (0,∞].

Let x = c1 ∈ N, and let y = z = s 2
3
∈ (0,∞]. We clearly have that x = c1 ≤ s 4

3
=

y+z. Since c1 is compact and there are no other compact elements below c1 except
c0 and c1, we see that if x = u + v, we must have u = c0 and v = c1, or reversed.
Clearly u, v 6≤ s 2

3
.

However, as we shall prove below, Riesz interpolation persists if one drops the
assumption of real rank zero and keeps the stable rank one condition.
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In the lemma below, we use axiom (̃O5), since the Cu-semigroup is assumed to
be weakly cancellative; see Definition 10.5. We also use the one-sided version of
(O6+); see Definition 11.1.

Lemma 11.14. Let S be a weakly cancellative Cu-semigroup satisfying (O5) and
(O6+), and let e, x ∈ S. If e is compact, the set{

z ∈ S : z ≤ e, x
}

is upward directed.

Proof. We first notice that the set {z ∈ S : z ≤ e, x} is order-hereditary and closed
under suprema of increasing sequences. To prove the lemma, it suffices to show
that the set {

z′ ∈ S : there is z ∈ S such that z′ � z ≤ e, x
}

is upward directed. (We leave the proof of this claim as an exercise.) Take elements
z1, z2, z

′
1, z
′
2 ∈ S that satisfy

z′1 � z1 ≤ e, x, and z′2 � z2 ≤ e, x.

Apply (O5) to z′1 � z1 ≤ e to find w ∈ S such that z′1 + w ≤ e ≤ z1 + w. Since
z1 ≤ x, we obtain e ≤ x + w. We now apply (O6+) to this inequality together
with z′2 � z2 ≤ e, x. Thus, we find y ∈ S such that e ≤ y + w and z′2 � y ≤ e, x.
Putting together the left hand side of the inequality coming from (O5), the one
coming from (O6+), and using that e is compact, we get

z′1 + w ≤ e� e ≤ y + w.

Weak cancellation in S implies z′1 � y. Hence, z′1, z
′
2 � y ≤ e, x. Now choose

y′ ∈ S with z′1, z
′
2 � y′ � y, and check that y′ has the desired properties. �

Theorem 11.15. Let A be a C∗-algebra of stable rank one. Then Cu(A) has the
Riesz interpolation property.

Proof. Let x, y ∈ Cu(A). We must show that the set {z ∈ Cu(A) : z ≤ x, y} is
upward directed. If x is compact, this follows from Lemma 11.14. We now use
Proposition 11.12 to reduce the general case to this case.

By part (iii) of Proposition 2.14, we may assume that A is stable. Choose a ∈ A+

such that x = [a]. Applying Proposition 11.12 to A and a, we obtain a C∗-algebra B
with stable rank one that contains A as a closed, two-sided ideal, and a projection
pa ∈ B such that z ∈ Cu(A) satisfies z ≤ x if and only if z ≤ [pa]. Since [pa] is
compact in Cu(B), and since B has stable rank one, it follows from Lemma 11.14
that the set {z ∈ Cu(B) : z ≤ [pa], y} is upward directed. The inclusion A ⊆ B
identifies Cu(A) with an ideal in Cu(B) by Lemma 5.2. The result follows once we
show that {

z ∈ Cu(A) : z ≤ x, y
}

=
{
z ∈ Cu(B) : z ≤ [pa], y

}
.

One inclusion follows using that x ≤ [pa]. For the converse inclusion, take
z ∈ Cu(B) such that z ≤ [pa], y. Since Cu(A) is an ideal of Cu(B) and y ∈ Cu(A),
we have z ∈ Cu(A). Since also z ≤ [pa], Proposition 11.12 implies that z ≤ x. �

We close this section showing that Theorem 11.15 can be used to prove that the
Cuntz semigroup of a separable C∗-algebra with stable rank one is inf-semilattice
ordered. The existence of infima follows easily from the Riesz interpolation prop-
erty.

Definition 11.16. A Cu-semigroup S is said to be countably based provided there
is a countable set B ⊆ S such that for all s, t ∈ S satisfying s � t, there is u ∈ B
such that s� u� t.
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It is known that the Cuntz semigroup Cu(A) of a separable C∗-algebra A is
always countably based. For example, one can take a countable dense subset F of
A and then consider the set B =

{
[(a− 1

n )+] : a ∈ F, n ∈ N
}

.

Theorem 11.17. Let A be a separable C∗-algebra of stable rank one. Then Cu(A)
is an inf-semilattice ordered semigroup.

Proof. (Outline) Without loss of generality, we may assume that A is stable.
Since A is separable, as observed above Cu(A) is countably based. It follows

from this that every upward directed set has a supremum. Given x, y ∈ Cu(A),
this applies in particular to the set {z ∈ Cu(A) : z ≤ x, y}, which is upward directed
since Cu(A) has the Riesz interpolation property by Theorem 11.15. Notice that
the supremum of the set {z ∈ Cu(A) : z ≤ x, y} is precisely x ∧ y. Thus, Cu(A) is
an inf-semilattice.

In order to prove the distributivity of ∧ over addition, note that we always have
x ∧ y + z ≤ x+ z, y + z. Thus we need to show that

(x+ z) ∧ (y + z) ≤ (x ∧ y) + z,

for all x, y, z ∈ Cu(A). To indicate the flavour of the argument, we give a proof
in the case that both x and z are compact elements. The general case is obtained
through successive generalizations.

Let w = (x+ z)∧ (y+ z). Choose w′ ∈ Cu(A) such that w′ � w. Applying (O5)

(or rather, (̃O5)) to the inequality w′ � w ≤ x + z, we find v ∈ Cu(A) such that
w′+ v ≤ x+ z ≤ w+ v. We get x+ z ≤ y+ z+ v. As A has stable rank one, Cu(A)
has cancellation of compact elements (see Remark 10.4), and since z is compact by
assumption, we obtain x ≤ y + v. By Lemma 11.7, x ≤ (x ∧ y) + v. Adding z on
both sides we get x + z ≤ (x ∧ y) + v + z. Since both x and z are compact, so is
x+ z, and thus

w′ + v ≤ x+ z � x+ z ≤ (x ∧ y) + z + v .

Now weak cancellation implies w′ ≤ (x∧ y) + z and, since w′ is arbitrary satisfying
w′ � w, the inequality (x+ z) ∧ (y + z) ≤ (x ∧ y) + z holds. �

12. The classical Cuntz semigroup, its relation to Cu(A), and the
Blackadar-Handelman conjecture

In the previous section we studied the basic structural properties of the Cuntz
semigroup of any separable C∗-algebra with stable rank one. We will obtain now an
easy consequence of Theorem 11.15, which allows us to solve, in the stable rank one
case, a conjecture due to Blackadar and Handelman on the structure of dimension
functions.

Definition 12.1 ([38]). Let A be a unital C∗-algebra. Set M∞(A) =
⋃
n∈NMn(A),

identifying each Mn(A) inside Mn+1(A) as the upper left corner. Then M∞(A) is
a local C∗-algebra, and the relation of Cuntz (sub)equivalence from Definition 2.1
can be restricted to it. Define

W(A) = M∞(A)+/∼,

the so-called classical Cuntz semigroup of A.
A dimension function on A is a map d : M∞(A)+ → [0,∞) satisfying the follow-

ing properties:

• d(a⊕ b) = d(a) + d(b) for all a, b ∈M∞(A)+;
• d(a) ≤ d(b) whenever a - b;
• d(1A) = 1.



44 EUSEBIO GARDELLA AND FRANCESC PERERA

Denote the set of dimension functions of A by DF(A). If we also denote by K∗0(A)
the Grothendieck group of W(A), it is not hard to verify that there is a bijection
between DF(A) and St(K∗0(A), [1A]), the state space of the group K∗0(A). Indeed,
given a dimension function d on A, one sets sd([a]− [b]) = d(a)−d(b), which defines
a state on K∗0(A).

The following first appeared in [17]:

Conjecture 12.2. (Blackadar-Handelman). Let A be a unital C∗-algebra. Then
DF(A) is a Choquet simplex.

The above conjecture was verified for C∗-algebras with real rank zero and stable
rank one ([68]), for certain C∗-algebras of stable rank 2 ([2]), and for C∗-algebras
with finite radius of comparison and finitely many extremal quasitraces ([39]). It
was also asked in [2, Problem 3.13] for which unital C∗-algebras does it hold that
K∗0(A) is an interpolation group.

Note that we also have

W(A) = {x ∈ Cu(A) : x = [a] for some a ∈M∞(A)+}.
In the case that A has stable rank one, we show below that W(A) is a hereditary
subset of Cu(A); see [1, Lemma 3.4]. This means that, if x ≤ y in Cu(A) and
y ∈W(A), then x ∈W(A).

Lemma 12.3. Let A be a C∗-algebra of stable rank one. Then W(A) is hereditary
in Cu(A). In particular,

W(A) = {x ∈ Cu(A) : x ≤ n[a] for some a ∈ A+, n ∈ N}.

Proof. Let a ∈ (A⊗K)+, b ∈ M∞(A)+, and assume that a - b. We need to show
that there is c ∈M∞(A)+ such that c ∼ a.

Since A ⊗ K is the completion of M∞(A) and a ∈ (A ⊗ K)+, there exists a
sequence (an)n∈N in M∞(A)+ with a = lim

n→∞
an and ‖a−an‖ ≤ 1

n . By Lemma 2.5,

for each n ∈ N there exists dn ∈ A⊗K such that (a− 1
n )+ = dnand

∗
n and then

(a− 1
n )+ = dnand

∗
n ∼ a

1
2
nd
∗
ndna

1
2
n .

Put bn := a
1
2
nd∗ndna

1
2
n ∈M∞(A)+. We have [a] = sup

n∈N
[bn] in Cu(A), and ([bn])n∈N is

�-increasing in Cu(A).
Now, the sequence ([bn])n∈N is bounded above in W(A) by [b]. Therefore, it also

has a supremum [c] in W(A), by [26, Lemma 4.3]. In fact, the arguments in [26]
show that for each n there exist m and δn > 0 with (c − 1

n )+ - (bm − δn)+, and
such that (δn)n∈N strictly decreases to zero. Therefore

(c− 1
n )+ - (bm − δn)+ - bm - a

in A⊗K, and thus c - a.
On the other hand, since also bn - c for all n, and [a] = sup

n∈N
[bn] in Cu(A), we

see that a - c. Thus c ∼ a, as desired. �

Lemma 12.4. Let S be a positively ordered semigroup that has the Riesz inter-
polation property. Then its Grothendieck group G(S) is an interpolation group.

Proof. Let a1, a2, b1, b2 be elements in G(S) such that ai ≤ bj for all i, j = 1, 2.
There exist elements z, xi, yj ∈ S such that ai = [xi] − [z] and bj = [yj ] − [z]. (If
ai = [xi] − [vi] and bi = [yi] − [wi], then one may take z = v1 + v2 + w1 + w2.)
Therefore, by adding [z] to the inequality we get [xi] ≤ [yj ] for all i, j = 1, 2. Thus
there exists t ∈ S such that

xi + t ≤ yj + t
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for all i, j = 1, 2. By assumption, there exists x ∈ S interpolating the above
inequality. Consider the element e = [x]− [z + t] ∈ G(S). Then it is easy to check
that e satisfies ai ≤ e ≤ bj for all i, j = 1, 2. �

Theorem 12.5. Let A be a C∗-algebra of stable rank one. Then K∗0(A) is an
interpolation group and thus DF(A) is a Choquet simplex. In particular, Conjec-
ture 12.2 holds if A has stable rank one.

Proof. We know from Lemma 12.3 that W(A) is hereditary. We use this to show
that W(A) has the Riesz interpolation property. By Theorem 11.15, this is the
case for Cu(A). Let x, y, z, t ∈W(A) be such that x, y ≤ z, t. Then this also holds
in Cu(A) and thus there is w ∈ Cu(A) such that x, y ≤ w ≤ z, t. Since W(A) is
hereditary, we have w ∈W(A).

By Lemma 12.4, K∗0(A) is an interpolation group, and using [53, Theorem 10.17],
we obtain that its state space, that is, DF(A), is a Choquet simplex. �

One of the reasons for introducing Cu(A) was the need of a continuous invariant.
Regarding W as a functor from C∗-algebras to the category of positively ordered
semigroups, it is clear that W is not continuous. (This already fails for K = lim−→Mn.)

As it turns out, Cu(A) can be regarded as the completion of W (A), just as
A ⊗ K is the completion of M∞(A). In order to outline the exact relationship
between these two semigroups, we need some additional concepts. The following is
inspired by [49, Definition I-1.11, p.57].

Definition 12.6. Let (X,≤) be a partially ordered set. A binary relation ≺ on X
is called an auxiliary relation if the following properties are satisfied:

(i) If x ≺ y then x ≤ y, for all x, y ∈ X.
(ii) If w ≤ x ≺ y ≤ z then w ≺ z, for all w, x, y, z ∈ X.

If, further, X is a monoid, then an auxiliary relation ≺ is said to be additive if it
is compatible with addition and 0 ≺ x for every x ∈ X.

Observe that an auxiliary relation as defined above is transitive. To see this,
if x ≺ y and y ≺ z, then x ≤ y by condition (i) and applying condition (ii) to
x ≤ y ≺ z ≤ z, we obtain x ≺ z. In the case of a Cu-semigroup S, the compact
containment relation � is an example of an auxiliary relation on S. If A is a C∗-
algebra, then W(A) may be equipped with the following auxiliary relation: [a] ≺ [b]
if and only if [a] ≤ [(b−ε)+] for some ε > 0; see [8, Proposition 2.2.5]. Equivalently
by Remark 4.2, [a] ≺ [b] in W(A) if and only if [a]� [b] in Cu(A).

Definition 12.7. A W-semigroup is a positively ordered semigroup S together
with an auxiliary relation ≺ such that the following axioms hold:

(W1) For each a ∈ S, the set a≺ = {b ∈ S : b ≺ a} has a ≺-increasing countable
cofinal subset (with respect to ≺).

(W3) ≺ is additive.
(W4) If a ≺ b+ c in S then there are b′ ≺ b and c′ ≺ c such that a ≺ b′ + c′.

A positively ordered semigroup morphism f : S → T between two W-semigroups
is a W-morphism provided it preserves ≺ and that is also continuous, in the sense
that if b ≺ f(a) in T , then there is a′ ≺ a in S such that b ≤ f(a′). We will denote
by W the category whose objects are the W-semigroups and whose morphisms are
the W-morphisms. The set of W-morphisms between W-semigroups S and T will
be denoted by W(S, T ).

We remark that the terminology has evolved so that initially a W-semigroup was
also required to satisfy (W2): for each a ∈ S, we have a = sup a≺, but this is not
relevant for the theory. It is not even relevant, for many purposes, to require that
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a W-semigroup is positively ordered (and only that it is equipped with a transitive
relation ≺ satisfying the axioms above).

Again, if A is a C∗-algebra, it was shown in [8, Proposition 2.2.5] that W(A) is
a W-semigroup with the auxiliary relation defined above. Moreover, if ϕ : A → B
is a homomorphism of C∗-algebras, then the restriction W(ϕ) of Cu(A) to W(A) is
a W-morphism W(ϕ) : W(A)→W(B).

It is easy to verify that Cu is a full subcategory of W and that W has limits;
see [8, Theorem 2.2.9]. It turns out it is also a reflective category, which follows
from the theorem below; see [8].

Theorem 12.8. Given a W-semigroup (S,≺), there are a Cu-semigroup γ(S) and
a W-morphism α : S → γ(S) such that:

(i) a′ ≺ a in S whenever α(a′)� α(a).
(ii) If b′ � b in γ(S), then there is a ∈ S such that b′ � α(a)� b.

Proof. (Outline) We just show how to construct γ(S). One considers the set S≺
of ≺-increasing sequences in S. Any two such sequences are added pointwise, and
one declares (an)n∈N - (bn)n∈N if for every k ∈ N there is n ∈ N such that ak ≺ bn.
This defines a translation invariant preorder that yields an equivalence relation by
setting (an)n∈N ∼ (bn)n∈N if and only if (an)n∈N - (bn)n∈N and (bn) - (an)n∈N.
We then define γ(S) to be S≺/∼. Addition is induced by addition of sequences
and the order is induced by -. It is possible to prove that [(an)n∈N] � [(bn)n∈N]
precisely if there is k ∈ N such that an ≺ bk for all n ∈ N.

In order to define α : S → γ(S), let a ∈ S and apply (W1) to find (an)n∈N ∈ S≺
which is cofinal in a≺. Then set α(a) = [(an)n∈N]. We omit the details. �

The construction just outlined defines a functor γ : W→ Cu which is a reflector
for the inclusion. Applied to C∗-algebras, this yields:

Theorem 12.9 ([8, Theorem 3.2.8]). The compositions γ◦W and Cu are naturally
isomorphic as functors from C∗ to Cu. In other words, if A is a C∗-algebra, then
Cu(A) is naturally isomorphic to γ(W(A)).

The result above is extremely useful when constructing objects in the category
Cu as certain “completions” of objects in W. We already saw an example of this
in Theorem 4.11, when we constructed inductive limits in Cu. Indeed, what we did
there was to consider the inductive limit of Cu-semigroups in the category W, and
then apply the functor γ. The same strategy can be used to construct other objects,
such as (infinite) direct sums. On the other hand, many other constructions (such
as products) will require a different treatment, since these constructions do not
obviously exist in W either. This is done in Section 14, where we consider an even
larger category Q and a natural functor τ : Q→ Cu; see Theorem 14.5.

13. Functionals and the realization of ranks

In this section, we formulate the problem of realization of ranks and sketch the
solution for C∗-algebras of stable rank one. The inf-semilattice ordered structure
of the Cuntz semigroup for such algebras is a key element for the solution. Another
ingredient that is needed in this setting is an additional axiom for Cu-semigroups,
called Edward’s condition; see [4]. Since we will omit the proofs where this axiom
is needed, we will also not discuss this condition here.

Recall from Definition 6.8 that a functional on a Cu-semigroup S is an additive
function λ : S → [0,∞] satisfying λ(0) = 0, that preserves order and suprema of
increasing sequences. We equip the set F (S) of functionals on S with operations
of addition and scalar multiplication by nonzero, positive real numbers, defined
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pointwise. Moreover, F (S) is a topological cone with respect to the topology whose
subbase is given by the collection of all sets

Vx,r = {λ ∈ F (S) : λ(x) > r} and Wx,r = {λ ∈ F (S) : λ(x′) < r for all x′ � x},
for x ∈ S and r ∈ (0,∞); see [60] and also [40]. With respect to this topology,
given λ ∈ F (S) and a net (λi)i∈I in F (S), we have λi → λ if and only if

lim supλi(x
′) ≤ λ(x) ≤ lim inf λi(x) for all x′, x ∈ S such that x′ � x.

It was shown in [60, Theorem 3.17] (see also [40, Theorem 4.8]) that, with this
topology, F (S) is a compact Hausdorff ordered topological cone.

By Theorem 6.9 and the comments after it, for any C∗-algebra A there is a nat-
ural bijection between F (Cu(A)) and the set of [0,∞]-valued, lower semicontinuous
2-quasitraces on A.

A significant difference when considering non-normalized functionals on Cu-
semigroups, is that these naturally arise from the ideal structure of the semigroup,
as follows:

Lemma 13.1. Let S be a Cu-semigroup, let I ⊆ S be an ideal, and let λ : I →
[0,∞] be a functional. Define λ̃ : S → [0,∞] by

λ̃(x) =

{
λ(x), if x ∈ I;

∞, otherwise.

Then λ̃ is a functional on S.

Proof. Let us show that λ̃ is order-preserving. If x ≤ y in S and y /∈ I, then
λ̃(y) =∞, and clearly λ̃(x) ≤ λ̃(y). If y ∈ I, then x ∈ I as well, since I is an ideal

of S, and thus λ̃(x) = λ(x) ≤ λ(y) = λ̃(y).
Next, let x, y ∈ S. Clearly x+ y ∈ I if and only if both x, y ∈ I. If x, y ∈ I, then

λ̃(x+ y) = λ(x+ y) = λ(x) + λ(y) = λ̃(x) + λ̃(y).

If either x /∈ I or y /∈ I, then x+ y /∈ I, hence λ̃(x+ y) =∞ = λ̃(x) + λ̃(y). That

λ̃ preserves suprema of increasing sequences follows in a similar manner. �

For a Cu-semigroup S that satisfies (O5), we give below the appropriate notion of
dual for the cone F (S). Denote by Lsc(F (S)) the set of functions f : F (S)→ [0,∞]
that are additive, order-preserving, homogeneous (with respect to nonzero, positive
scalars), lower semicontinuous, and satisfy f(0) = 0. This set is equipped with
pointwise order, addition, and scalar multiplication by nonzero positive scalars.

Definition 13.2. Let S be a Cu-semigroup and let x ∈ S. Given x ∈ S, the rank
of x is the function x̂ : F (S)→ [0,∞] given by evaluation, namely:

x̂(λ) = λ(x)

for all λ ∈ F (S). One can check that x̂ belongs to Lsc(F (S)).
The rank map rk : S → Lsc(F (S)) of S is defined by rk(x) = x̂ for all x ∈ S.

It is easy to check that the rank map preserves addition, order, and suprema of
increasing sequences.

The realification of S, denoted by SR, was introduced in [74] as the smallest
subsemigroup of Lsc(F (S)) that is closed under suprema of increasing sequences
and contains all elements of the form 1

n x̂ for x ∈ S and n ≥ 1. It can be shown
that SR ∼= S ⊗Cu [0,∞], thus justifying the term “realification”; see the proof of
Theorem 14.7 for the definition of tensor products in Cu. Moreover, it was proved
in [74, Proposition 3.1.1] that SR is a Cu-semigroup satisfying (O5); see also [8,
Proposition 7.5.6].
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Given f, g ∈ Lsc(F (S)), we write f C g if f ≤ (1 − ε)g for some ε > 0 and if f
is continuous at each λ ∈ F (S) satisfying g(λ) < ∞. We denote by L(F (S)) the
subsemigroup of Lsc(F (S)) consisting of those f ∈ Lsc(F (S)) that can be written
as the pointwise supremum of a sequence (fn)n∈N in Lsc(F (S)) such that fnCfn+1

for all n ∈ N.
One has that in fact SR = L(F (S)), as was shown in [74, Theorem 3.2.1]. It

was also proved in [74, Theorem 4.2.2] that L(F (S)) is inf-semilattice ordered. The
semigroup L(F (S)) is thought of as the dual of F (S), since F (L(F (S)) = F (S),
although it is not known whether L(F (S)) = Lsc(F (S)).

Problem 13.3. The problem of realizing functions as ranks. Let S be a Cu-
semigroup satisfying (O5). The problem of realizing functions on F (S) as ranks
of elements in S consists of finding necessary and sufficient conditions for the map
x 7→ x̂ to be a surjection from S to L(F (S)).

The following notion is crucial to solve the problem of realization of ranks in the
stable rank one setting. The motivation for the terminology can be found in [87].
Recall that by an ideal in a C*-algebra we always mean a closed, two-sided ideal.

Definition 13.4. An ideal-quotient in a C∗-algebra A is a quotient of the form
I/J , where J ⊆ I are ideals of A. A C∗-algebra is nowhere scattered if it has no
non-zero elementary12 ideal quotients.

Nowehere scatteredness can be nicely characterized in terms of Cuntz semigroups
and functionals. To this end we need the lemma below, which is a nice application
of the axioms (O5) and (O6) of independent interest. Recall the notation ∞s from
Notation 5.6.

Lemma 13.5. Let S be a Cu-semigroup satisfying axioms (O5) and (O6), let
λ ∈ F (S) satisfying

(i) λ(S) = N, and
(ii) λ(s) = 0 if and only if s = 0,

and fix s0 ∈ S with λ(s0) = 1. Then I = {s ∈ S : s ≤ ∞s0} is an ideal in S, and λ
restricts to an isomorphism I ∼= N of Cu-semigroups.

Proof. Let s ∈ S satisfy λ(s) = k < ∞. We claim that s is compact. To see this,
write s = sup

n∈N
tn with tn � tn+1. Since k = λ(s) = sup

n∈N
λ(tn) and λ(tn) ∈ N for all

n, there exists n0 ∈ N such that for all n ≥ n0 we have λ(tn) = k. For such n ≥ n0,
apply (O5) to tn � tn+1 ≤ s to find c ∈ S such that tn+c ≤ s ≤ tn+1 +c. Applying
λ yields λ(c) = 0, which implies c = 0 by (i). This shows that s is compact.

Fix m ∈ N and t ∈ S. We claim that t ≤ ms0 if and only if there exists k ≤ m
with t = ks0. One implication is obvious, so we prove the other one. The inequality
t ≤ ms0 implies that λ(t) ≤ mλ(s0) < ∞, and thus t is compact by the previous
claim. In order to establish the claim, we may clearly assume that t 6= 0 and
proceed by induction on m. Suppose that m = 1. Use Remark 10.7 to find t′ ∈ S
with t+t′ = s0. Applying λ we get λ(t′) = 0, which again by (i) implies that t′ = 0,
showing that t = s0. This proves the case m = 1 of the induction.

Assume now that t ≤ ms0 = (m − 1)s0 + s0. Apply (O6) to find elements
t1, t2 ∈ S such that t1 ≤ (m − 1)s0, t and t2 ≤ t, s0. Notice that t1 and t2 are
compact elements as well, since they are dominated by the compact element t. By
the induction assumption, there is k ≤ m − 1 such that t1 = ks0. If t2 = 0, then
ks0 = t1 ≤ t ≤ t1 + t2 = ks0, and hence t = ks0. If t2 6= 0, then t2 = s0 since

12Recall that a C∗-algebra is said to be elementary if it is isomorphic to the compact operators
on some Hilbert space. Equivalently, a C∗-algebra A is elementary if it is simple and there exists
a projection p ∈ A satisfying pAp ∼= C.
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t2 ≤ s0. Now t1 = ks0 ≤ t ≤ t1 + t2 = (k+ 1)s0, and we may find elements c, d ∈ S
such that ks0 + c = t and t + d = (k + 1)s0. Putting these equalities together we
obtain ks0 + c + d = (k + 1)s0, and applying λ we get λ(c + d) = 1. Thus one of
c or d must be zero, and hence t equals either ks0 or (k + 1)s0, as desired. This
proves the claim.

Let t ∈ S \ {0} satisfy t ≤ ∞s0 . Find a �-increasing sequence (tn)n∈N in S with
t = sup

n∈N
tn. Fix n ∈ N. Since

tn � t = sup
m∈N

ms0,

there exists k ∈ N with tn ≤ mns0. By the second claim, there exists kn ≤ mn such
that tn = kns0. Thus we must have either t = ks0 for some k ∈ N, or else t =∞s0 .

Set I = {s ∈ S : s ≤ ∞s0}, and observe that I is an ideal in S. In particular,
I is a Cu-semigroup. The paragraph above shows that I = {ms0 ∈ S : m ∈ N}.
Furthermore, by applying λ we see that ks0 ≤ ms0 precisely when k ≤ m. In other
words, this shows that λ restricts to a Cu-semigroup isomorphism I ∼= N. �

Proposition 13.6. Let A be a C∗-algebra. Then the following are equivalent:

(i) A is not nowhere scattered,
(ii) there exists a functional λ ∈ F (Cu(A)) such that λ(Cu(A)) ∼= N.

Proof. Assume that (i) holds, and find closed, two sided ideals I, J in A with J ⊆ I
such that I/J is elementary. Then Cu(I/J) ∼= N by Example 3.3. Moreover,
by Theorem 5.9 the quotient map π : I → I/J induces a surjective Cu-morphism
Cu(π) : Cu(I) → Cu(I/J) ∼= N; in particular, Cu(π) is a functional on Cu(I). Let
λ : Cu(A) → [0,∞] be the functional obtained by extending Cu(π) to Cu(A) as in
Lemma 13.1. It is then clear from the definition of λ that λ(Cu(A)) = N.

Conversely, write S = Cu(A) and let λ : S → [0,∞] be a functional satisfying
λ(S) = N. Consider the ideal K = λ−1(0). It is easy to check that λ induces a func-
tional λ : S/K → [0,∞] such that λ(S/K) = N. We may now apply Lemma 13.5
to obtain an ideal L of S/K which is isomorphic to N. Thus, there is an ideal
L of S that contains K such that L/K ∼= N. This implies that A has an ideal-
quotient whose Cuntz semigroup is isomorphic to N, and thus this ideal-quotient is
elementary by [87, Lemma 8.2].13 Therefore A is not nowhere scattered. �

The key to solve the problem posed in Problem 13.3 in the stable rank one case
relies on the following:

Definition 13.7 (The map α). Let A be a separable C∗-algebra with stable rank
one. Define

α : L(F (Cu(A))→ Cu(A)

by setting α(f) = sup{x ∈ Cu(A) : x̂� f}.

It is not at all obvious that the set {x ∈ Cu(A) : x̂� f} has a supremum – this
follows from the fact that A is assumed to have stable rank one, and is shown in
[5, Theorem 7.2, Proposition 7.3].

Lemma 13.8. The map α from Definition 13.7 preserves order, suprema of in-
creasing sequences, and infima of pairs of elements.

13Indeed, if a C∗-algebra B satisfies Cu(B) ∼= N, then B must be elementary. The basic idea is
this: Since Cu(B) is simple, so is B. Now, using [25, Theorem 5.8], choose a projection q ∈ B⊗K
that corresponds to 1. If a ∈ B+ \ {0}}, then q - a, hence there is a projection p ∈ B with p ∼ q.
Now p is minimal, so pBp = Cp, which is known to imply that B is elementary.
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Proof. The core of the argument consists of proving that in fact α(f) = sup If ,
where

If = {x ∈ Cu(A) : ŷ � f for all y � x}.
We will not prove this, and isntead we will only explain how to to prove the lemma
using it. To see that α preserves the order, let f ≤ g in L(F (Cu(A))). Then
If ⊆ Ig, and thus α(f) ≤ α(g).

To check that α preserves suprema, let (fn)n∈N be an increasing sequence of
elements in L(F (Cu(A))), and set f = sup

n∈N
fn. Since, as observed, α is order-

preserving, the sequence (α(fn))n∈N is increasing in Cu(A) and thus it has a supre-
mum x = sup

n∈N
α(fn). Since α(fn) ≤ α(f) for all n ∈ N, we have x ≤ α(f). Now let

z ∈ Cu(A) satisfy ẑ � f . Using that, by definition, α(f) is the supremum of all
such z, it suffices to show that z ≤ x. As ẑ � f , we have ẑ � fn for some n ∈ N,
and then z ∈ Ifn . Therefore z ≤ α(fn) ≤ x.

Finally, to prove that α preserves infima, let f, g ∈ L(F (Cu(A))). Since α is
order-preserving, we get α(f ∧ g) ≤ α(f) ∧ α(g). To show the converse inequality,
let 0 < ε < 1 and suppose that z ≤ α((1− ε)f) ∧ α((1− ε)g). Then

ẑ ≤ (1− ε)f ∧ (1− ε)g = (1− ε)(f ∧ g),

whence z ≤ α(f ∧ g). This implies α((1 − ε)f) ∧ α((1 − ε)g) ≤ α(f ∧ g). Finally,
let ε → 0 and use that α preserves suprema of increasing sequences to obtain
α(f) ∧ α(g) ≤ α(f ∧ g). �

In general, the map α defined above is superadditive, in the sense that α(f) +
α(g) ≤ α(f + g). Furthermore, if A is separable and nowhere scattered, then it
is additive; see [5, Proposition 7.4(iv), Corollary 8.5(ii)]. In general, however, α is
not additive. The simplest (not nowhere scattered) example is A = C. In this case,
Cu(A) ∼= N, and, identifying λ ∈ F (Cu(C)) with λ(1), we have F (Cu(C)) ∼= [0,∞].
Thus (L(F (Cu(A))),�) ∼= ([0,∞], <), again identifying a function f with f(1).
Now the map

α : [0,∞] ∼= L(F (Cu(A)))→ Cu(A) ∼= N
is given by α(z) = sup{n ∈ N : n < z} = bzc for all z ∈ [0,∞], which is clearly not
additive.

Recall the definition of ∞a from Notation 5.6.

Theorem 13.9. Let A be a separable, nowhere scattered C∗-algebra of stable rank
one. Then, for all f ∈ L(F (Cu(A))) we have

f = α̂(f).

Proof. (Outline) The set {x ∈ Cu(A) : x̂ ≤ ∞f} is an ideal of Cu(A), and thus has
the form Cu(I) for a closed two-sided ideal I of A. Note that I is automatically
separable, nowhere scattered, and has stable rank one.

Using that L(F (Cu(A))) = Cu(A)R, one can choose a sequence (xn)n∈N in Cu(A)

and (kn)n∈N in N such that f = sup
n∈N

x̂n
kn

. Notice that xn ∈ I for all n ∈ N. Consid-

ering x̂n
kn
∈ L(F (Cu(I))), denote by f0 its supremum, so that f(λ) = f0(λ|Cu(I)).

One now checks that f0 is full in L(F (Cu(I))). By letting αI : L(F (Cu(I))) →
Cu(I) be the map as in Definition 13.7 it is possible to show, with considerable

effort, that f0 = α̂I(f0); see [5, Theorem 7.10].
Next, we claim that α(f) = α(f0). To see this, let

L =
{
x ∈ Cu(A) : x̂ ≤ (1− ε)f in L(F (Cu(A))) for some ε > 0

}
.

Using the definition of α, we have that α(f) is the supremum of L in Cu(A). If
x ∈ Cu(A) and ε > 0 satisfy x̂ ≤ (1− ε)f in L(F (Cu(A))), then x belongs to Cu(I)
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and hence x̂ ≤ (1−ε)f0 in L(F (Cu(I))). This implies that L ⊆ Cu(I) and so α(f0)
is the supremum of L in Cu(I). Using that Cu(I) ⊆ Cu(A) is hereditary, we see
that the supremum of L in Cu(I) and in Cu(A) agree. Therefore α(f) = α(f0), as
was claimed.

Finally, if λ ∈ F (Cu(A)), we have

α̂(f)(λ) = λ(α(f)) = λ|Cu(I)(α(f0)) = f0(λ|Cu(I)) = f(λ),

and thus α̂(f) = f in L(F (Cu(A))). �

14. Structure of the category Cu

This section will be devoted to discussing the following result, which combines
results from a number of papers; see [8, 9, 11].

Theorem 14.1. The category Cu of abstract Cuntz semigroups is a closed, sym-
metric, monoidal, bicomplete category.

Below we shall present the constructions that are used in order to prove the
above theorem; see Theorem 14.7, Theorem 14.9, and Theorem 14.11. We will also
give the relevant definitions of the concepts that appear in its statement.

Definition 14.2. A Q-semigroup is a positively ordered monoid satisfying axioms
(O1) and (O4) from Definition 4.5, together with an additive auxiliary relation ≺
as in Definition 12.6. A Q-morphism is a morphism of positively ordered monoids
that preserves the auxiliary relation and suprema of increasing sequences. Given
Q-semigroups S and T , we denote by Q(S, T ) the set of all Q-morphisms from S
to T .

Given a Cu-semigroup S, then S together with the relation� is a Q-semigroup.
Moreover, given two Cu-semigroups S and T , a map ϕ : S → T is a Cu-morphism
if and only if it is a Q-morphism when considered as a map from (S,�) to (T,�).
We obtain a functor ι : Cu→ Q that sends a Cu-semigroup S to the Q-semigroup
(S,�), and embeds Cu as a full subcategory of Q.

Definition 14.3 (The τ -construction). Let S = (S,≺) be a Q-semigroup. A path
in S is an order-preserving map f : (−∞, 0] → S such that f(t) = sup

t′<t
f(t′) for all

t ∈ (−∞, 0], and such that f(t′) ≺ f(t) whenever t′ < t. We denote the set of paths
in S by Paths(S).

Pointwise addition, together with the constant zero path, give Paths(S) the
structure of a commutative monoid. Given f, g ∈ Paths(S), we write f - g if,
for every t < 0, there is t′ < 0 such that f(t) ≺ g(t′). Set f ∼ g if f - g and
g - f . It follows from [9, Lemma 3.4] that the relation - is reflexive, transitive,
and compatible with addition of paths. We set

τ(S) := Paths(S)/∼ .
Given f ∈ Paths(S), its equivalence class in τ(S) is denoted by [f ]. Equip τ(S)
with an addition and order by setting [f ] + [g] := [f + g] and [f ] ≤ [g] if f - g.

The construction just outlined will be referred to as the τ -construction, and it
has a number of features that we now describe.

Theorem 14.4. ([9, Theorem 3.15]). Retaining the notation in Definition 14.2, if
S is a Q-semigroup, then τ(S) is a Cu-semigroup.

Proof. (Outline) Let ([fn])n∈N be an increasing sequence of paths in S. An inductive
process allows one to construct a strictly increasing sequence (tm)m∈N in (−∞, 0]
and a path f in S satisfying
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(i) sup
m∈N

tm = 0

(ii) fn(tm) ≺ fl(tl) whenever n,m < l.
(iii) fn(tn) = f( −1

n+1 ) for all n ≥ 1.

Then one can verify that [f ] = sup
n∈N

[fn] and thus τ(S) satisfies (O1). In order to

verify (O2), given f ∈ Paths(S) and ε > 0, define fε : (−∞, 0]→ S by

fε(t) =

{
f(t), if t < −ε
0, otherwise.

If follows by construction that [f ] = sup
ε>0

[fε]. We need to check that [fε]� [f ]. To

this end, let ([gn])n∈N be an increasing sequence in τ(S) such that [f ] ≤ sup
n∈N

[gn].

By the construction outlined at the beginning of the proof, there are a path g
in S and an increasing sequence (tm)m∈N in (−∞, 0] with supremum 0 such that
[g] = sup

n∈N
[gn] and g(−1

m ) = gm(tm) for all m ∈ N.

Choose m0 ≥ 1 such that −ε < − 1
m0

. Since f - g, there is r > 0 such that

f(− 1
m0

) ≺ g(r). Now choose m1 such that r < − 1
m1+1 . Then, if t < −ε, we have

fε(t) = f(t) ≺ f
(−1
m0

)
≺ g(r) ≺ g

( −1
m1+1

)
= gm1

(tm1
),

which shows that fε ≺ gm1 . This implies that τ(S) satisfies (O2). Axioms (O3)
and (O4) are more routine to verify. �

We define εS : τ(S) → S by εS([f ]) = f(0) for f ∈ Paths(S). One can check
that εS is a well-defined Q-morphism. Since for a path f ∈ Paths(S), we think of
f(0) as the endpoint of f , we call εS the endpoint map.

Given a Q-morphism ϕ : S → T , we define τ(ϕ) : τ(S) → τ(T ) by τ(ϕ)([f ]) =
[ϕ ◦ f ] for f ∈ Paths(S). One can show that τ(ϕ) is a Cu-morphism. This defines
a covariant functor τ : Q→ Cu. We omit the proof of the following result.

Theorem 14.5 ([9, Theorem 4.12]). The category Cu is a full, coreflective sub-
category of Q. The functor τ : Q → Cu is a right adjoint to the inclusion functor
ι : Cu → Q. Moreover, given a Q-semigroup S, the endpoint map εS : τ(S) → S
is a universal Q-morphism, in the sense that for every Cu-semigroup T , there is a
natural bijection

Cu
(
T, τ(S)

) ∼= Q
(
ι(T ), S

)
,

implemented by sending a Cu-morphism ψ : T → τ(S) to εS ◦ ψ.

We now define what is meant by a monoidal category; see also [64].

Definition 14.6. A monoidal category is a category C together with a bifunctor
⊗ : C×C→ C, a unit object I, and natural isomorphisms

(X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z) and I ⊗X ∼= X ∼= X ⊗ I,
whenever X,Y, Z are objects in C. (Other coherence axioms are also required.) We
say that C is moreover symmetric if X ⊗ Y ∼= Y ⊗X for any X,Y ∈ C.

Theorem 14.7. The category Cu is monoidal.

Proof. To show that Cu is monoidal we need to construct the tensor product of
any two Cu-semigroups S and T . We only sketch here how to proceed and refer
the reader to the material in [8, Chapter 6].

Given Cu-semigroups S, T , we first form the algebraic tensor product S � T
as positively ordered monoids, based on expressions on the free abelian monoid
N[S× × T×] so that if a′ ≤ a in S and b′ ≤ b in T , one has a′ � b′ ≤ a � b. For
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f, g ∈ N[S××T×], we set f � g provided g =
∑
j∈J aj � bj and f ≤

∑
j∈J′ a

′
j � b′j ,

where J ′ ⊆ J and a′j � aj , b
′
j � bj for each j ∈ J ′.

With this structure one can show, after considerable effort, that (S � T,�) is a
W-semigroup and it follows that γ(S � T ) is the tensor product S ⊗Cu T of S and
T in the category Cu, where γ is as in the proof of Theorem 12.8. The unit for the
tensor product is N. �

We now focus on the adjoint of the tensor product.

Definition 14.8. We say that a monoidal category C is closed if, for each object
Y ∈ C, the functor −⊗ Y : C→ C has a right adjoint, that we denote by JY,−K.

In a closed, monoidal category C, we thus have a natural bijection (in X and Z)

C(X ⊗ Y, Z) ∼= C(X, JY, ZK).

Unlike in the category of abelian groups, the adjoint of the tensor product in
Cu does not merely consist of the usual hom-set in the category. The reason for
this is that, for Cu-semigroups S and T , the set Cu(S, T ) may be too small, and
not even a Cu-semigroup. Indeed, for any Cu-semigroup S we have Cu(N, S) ∼=
Sc, so in particular Cu(N,N) ∼= N is not a Cu-semigroup. Instead, one has to
consider the set of generalized Cu-semigroups, as in Definition 4.5. Notice that,
given Cu-semigroups S and T , the set Cu[S, T ] is a positively ordered monoid,
when equipped with pointwise order and addition. It also satisfies axioms (O1)
and (O4): the supremum of a sequence of generalized Cu-morphisms is just the
pointwise supremum.

Define a binary relation on Cu[S, T ] by setting f ≺ g if, whenever s′ � s in
S, we have f(s′) � g(s) in T . With this relation, a generalized Cu-morphism
f : S → T is a Cu-morphism precisely when f ≺ f . It is an easy exercise to verify
that ≺ is an auxiliary relation for the pointwise order in Cu[S, T ] which makes the
latter into a Q-semigroup, although not necessarily a Cu-semigroup.

For example, write P = [0,∞], which is known to be the Cuntz semigroup of
the Jacelon-Razak algebra W (see [58] and [71]). One can show that (Cu[P,P],≺)
is isomorphic to (P,≺1), where ≺1 is defined as follows: a ≺1 b if and only if
a ≤ ∞ and a ≤ b; see [9, Examples 4.14 and 5.13]. With this structure, (P,≺1)
is a Q-semigroup, and the τ -construction applied to it yields [0,∞) t (0,∞] where
the compact elements are the ones in the first component. Let us denote these
elements by ca, for a ∈ [0,∞), and the elements in the second component by sa,
for a ∈ (0,∞]. Addition and order are given by:

• ca + cb = ca+b, sa + sb = sa+b, and ca + sb = sa+b.
• sa ≤ cb if and only if a ≤ b; ca ≤ sb if and only if a < b.

Theorem 14.9. The category Cu is closed.

Proof. We define JS, T K = τ(Cu[S, T ],�), which by Theorem 14.4 is a Cu-semi-
group, and refer to this as the internal-hom functor for S and T .

The internal-hom functor is the adjoint of the tensor product as defined in The-
orem 14.7. In fact, it was shown in [9, Theorem 5.10] that there is a natural
isomorphism of positively ordered monoids

Cu(S, JT, P K) ∼= Cu(S ⊗Cu T, P ). �

In these notes we will only discuss completeness (and not cocompleteness), as it
is what will be used below in the construction of ultraproducts. We now recall the
basic notions.

Definition 14.10. Let C be a category, let I be a small category, and let F: I→ C
be a functor. A cone to F is a pair (L,ϕ), where L is an object in C and ϕ = (ϕi)i∈I
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is a collection of morphisms ϕi : L → F(i) in C such that F(f) ◦ ϕi = ϕj for any
morphism f : i→ j in I.

A small limit of F is a universal cone (L,ϕ), that is, if (L′, ϕ′) is another cone,
there exists a unique C-morphism α : L′ → L such that ϕ′i = ϕi ◦α for every i ∈ I.
This is summarized in the diagrams below:

F(i)

F(f)

��

F(i)

F(f)

��
L

ϕi 66

ϕj ((
L′

α //

ϕ′i **

ϕ′j

33

L

ϕi 66

ϕj ((
F(j), F(j).

If a limit of F exists, then it is unique up to natural isomorphism, and we denote
it by (C-lim←−F, π) or just by C-lim←−F.

The category C is said to be complete if all functors from small categories into
it have limits. (Cocompleteness is defined dually.)

The following is proved in [11, Theorem 3.8].

Theorem 14.11. The category Cu is complete.

Proof. Let F: I → Cu be a functor from a small category I. The basic strategy
consists of completing, via the τ -construction, the limit of the composition I →
Cu ↪→ Q. We outline the procedure below.

Denote by PoM the category of positively ordered monoids. Let (Si)i∈I be a
collection of objects in PoM. The product of this family in PoM is given by

PoM−
∏
i∈I

Si = {(si)i∈I : si ∈ Si for all i ∈ I},

with componentwise addition and order. Regarding F as a functor F: I → PoM,
set

S :=
{

(si)i∈I ∈ PoM-
∏
i∈I

F(i) : F(f)(si) = sj for all f : i→ j in I
}
.

It is straightforward to verify that 0 ∈ S and that S is closed under addition in
PoM-

∏
i∈I F(i), hence S is also a positively ordered monoid.

For each i ∈ I, the projection map πi : PoM-
∏
j∈J F(j) → F(i) restricts to a

PoM-morphism πi : S → F(i). Set π = (πi)i∈I. It is also straightforward to verify
that (S, π) is the limit of F in PoM. If further F(i) satisfies (O1) and (O4) for each
i ∈ I, then this is also the case for S.

Also, since the range of F is contained in Q (in fact, in Cu), we may define
an auxiliary relation ≺pw on S by stating (si) ≺pw (ti) precisely when si ≺ ti in
F(i) for each i ∈ I. This construction shows that (S,≺pw) is the limit of F in the
category Q. In fact, the argument just outlined shows that Q is complete.

Let (S, (πi)i∈I) be the limit of F in Q as outlined, and let τ(S) be the τ -
completion of S. Set Si := τ(F(i)), which we identify with F(i), and set

ψi = τ(πi) : τ(S)→ τ(Si) ∼= Si.

Then τ(S) together with (ψi)i∈I is the limit of F in Cu, that is:

Cu- lim←−F = τ
(
Q- lim←−F

)
= τ

(
PoM- lim←−F,�pw

)
. �

As an immediate consequence, we have:
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Corollary 14.12. The category Cu has arbitrary products, arbitrary inverse lim-
its, and finite pullbacks. In particular, if (Si)i∈I is a family of Cu-semigroups,
then

Cu-
∏
i∈I

Si = τ

(
Q-
∏
i∈I

Si

)
= τ

(
PoM-

∏
i∈I

Si,�pw

)
.

Since we are mostly interested in the category Cu, we will from now on denote
the product in Cu simply by

∏
, instead of Cu-

∏
. (The notation should not be

confused with the product of C∗-algebras.)

15. Applications to products and ultraproducts of C∗-algebras

In this section we explore the extent to which the Cuntz semigroup functor
preserves products and ultraproducts of C∗-algebras. We begin with a simple ob-
servation, which is a consequence of the universal property of the product.

Remark 15.1. Let (Aj)j∈J be a family of C∗-algebras, and set A =
∏
j∈J Aj .

For each j ∈ J , the natural projection πj : A → Aj induces a Cu-morphism
π̃i : Cu(A) → Cu(Aj). Then, by the universal property of the product, there is
a unique Cu-morphism

Φ: Cu(A)→
∏
j∈J

Cu(Aj)

such that π̃i = σi ◦ Φ for all j ∈ J , where σi :
∏
j∈J Cu(Aj)→ Cu(Ai) denotes the

natural Cu-morphism associated to the product in the category Cu.

Lemma 15.2. Let (Aj)j∈J be a family of C∗-algebras, and set A =
∏
j∈J Aj . Let

a = (aj)j∈J and b = (bj)j∈J ∈ A+. Then a - b in A if, and only if, Φ([a]) ≤ Φ([b])
in
∏
j∈J Cu(Aj).

Proof. We show that the conditions in the statement are equivalent to:

(∗) For every ε > 0 there exists δ > 0 such that (aj − ε)+ - (bj − δ)+ in Aj for
every j ∈ J .

To see this, set ϕt(a) = ([(aj + t)+])j , and ϕt(b) = ([(bj + t)+])j , for any t ∈
(−∞, 0], whence Φ([a]) = [ϕt(a)t∈(−∞,0]], and Φ([b]) = [ϕt(b)t∈(−∞,0]].

As shown in Theorem 14.11, we have∏
j∈J

Cu(Aj) = τ
(
PoM-

∏
j∈J

Cu(Aj),�pw

)
,

and thus Φ([a]) ≤ Φ([b]) if and only if for every t < 0 there exists t′ < 0 such that
ϕt(a) �pw ϕt′(b). That is, given ε > 0 there exists δ > 0 such that ϕ−ε(a) �pw

ϕ−δ(b). Thus the second condition in the statement is equivalent to (*).
Rørdam’s lemma (Theorem 2.7) shows that the first condition of the statement

implies (∗). For the converse, assume (∗) and let ε > 0. Again by Rørdam’s lemma,
we need to find s in A such that ss∗ = (a − ε)+ and s∗sAb. By assumption, for
each j ∈ J there is δ > 0 such that (aj − ε

2 )+ - (bj − δ)+ in Aj . By Rørdam’s
lemma applied to (aj − ε

2 )+ - (bj − δ)+ and ε
2 , we obtain sj ∈ Aj such that

(aj − ε)+ =
(
(aj − ε

2 )+ − ε
2

)
+

= sjs
∗
j , and s∗jsj ∈ (Aj)(bj−δ)+ .

Since ‖sj‖ ≤ ‖aj‖
1
2 for all j ∈ J , we see that (sj)j∈J is bounded, and thus

s := (sj)j∈J ∈ A satisfies ss∗ = (a− ε)+. Now let fδ : R→ [0, 1] be continuous with
f(t) = 0 for t ≤ 0 and f(t) = 1 for t ≥ δ. Then fδ(bj)s

∗
jsjfδ(bj) = s∗jsj for each j,

and therefore fδ(b)s
∗sfδ(b) = s∗s, which implies that s∗s belongs to the hereditary

algebra generated by b. �
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Proposition 15.3. Let (Aj)j∈J be a family of stable C∗-algebras. Then the canon-
ical map Φ from Remark 15.1 is a Cu-isomorphism.

Proof. Recall first that a C∗-algebra A is said to have property (S) if if for every
a ∈ A+ and every ε > 0 there exist b ∈ A+ and x ∈ A such that a = x∗x, b = xx∗

and ‖ab‖ ≤ ε. It is known that any stable C∗-algebra has property (S), and the
converse holds in the separable case; see [57].

Set A =
∏
j∈J Aj . We claim that if all Aj are stable, then A has property (S).

To show this, let a = (aj)j∈J ∈ A+ and ε > 0, and use that each Aj has property
(S) to find bj ∈ (Aj)+ and xj ∈ Aj such that

aj = x∗jxj , bj = xjx
∗
j , and ‖ajbj‖ ≤ ε.

Set b := (bj)j∈J and x := (xj)j∈J . Note that ‖x‖ = sup
i
‖xi‖ < ∞ since ‖xj‖ =

‖aj‖
1
2 ≤ ‖a‖ 1

2 for each j. Similarly, ‖b‖ <∞. Hence b, x belong to A, so a = x∗x,
b = xx∗ and ‖ab‖ ≤ ε.

Since A has property (S), it is possible to compute its Cuntz semigroup by just
looking at Cuntz classes of its positive elements (withouth need to go to matrices).
The basic idea is that if a is a positive element in the stabilisation of A, then one
may choose a separable subalgebra of A with property (S) that contains a, and such
subalgebra will then be stable. This is used to show that Cuntz equivalence on A
and on A⊗K agree.

We now prove that the natural map Φ from Remark 15.1 is an isomorphism. We
already know from Lemma 15.2 that Φ is an order-embedding. Therefore, to see
it is surjective it is enough to verify, using that Cu(A) has suprema of increasing
sequences preserved by Φ, that the image of Φ is order-dense.

Let x, y ∈
∏
j∈J Cu(Aj) satisfy x � y. We will find b ∈ A+ such that x �

Φ([b])� y. Choose �pw-increasing paths

(xt)t∈(−∞,0], (yt)t∈(−∞,0] ∈ PoM-
∏
j∈J

Cu(Aj)

representing x and y, respectively. By [9, Lemma 3.16], we may choose t < 0 such
that x0 �pw yt.

For each j ∈ J , choose x0,j ∈ Cu(Aj) such that x0 = (x0,j)j∈J , and choose
aj ∈ (Aj)+ such that yt = ([aj ])j∈J . Then x0,j � [aj ]. Using functional calculus
(see [11, Lemma 5.8]), one can find a contraction bj ∈ (Aj)+ such that x0,j �
[(bj− 1

2 )+], and [bj ] = [aj ]. Set b := (bj)j∈J , which is a contraction in A+. We have

x0 �pw ([(bj − 1
2 )+])j∈J = ϕ− 1

2
(b), and

ϕ0(b) = ([bj ])j∈J = ([aj ])j∈J = yt �pw y t
2
.

Therefore x = [(xt)t≤0]� [(ϕt(b))t≤0] = Φ([b])� [(yt)t≤0] = y. This shows that b
has the desired properties. �

Example 15.4. The above result does not hold if the algebras are not stable. Set
Aj := C for each j ∈ N, and set A :=

∏
j∈NAj

∼= `∞(N). We have Cu(Aj) ∼= N
for each j, and the product

∏
j∈N N is defined as the equivalence classes of �pw-

increasing paths (−∞, 0]→ PoM-
∏
j∈N N, so that

∏
j∈N N may be identified with

equivalence classes of componentwise increasing paths (−∞, 0) → PoM-
∏
j∈NN.

In particular, compact elements in
∏
j∈N N naturally corresponds to functions N→

N.
We claim that the natural order-embedding Φ: Cu(A) →

∏
j∈N N is not sur-

jective. To see this, note that Φ maps the Cuntz class of the unit of A to the
compact element in

∏
j∈NN corresponding to the function f : N→ N with f(j) = 1
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for all j. Let x be the compact element in
∏
j∈NN that corresponds to the func-

tion g : N → N with g(j) = j for all j. Since g � nf for every n ∈ N, we have
x �∞Φ([1A]). In particular, Φ([1A]) is not full, and Cu(A) is isomorphic to a proper
ideal of

∏
j∈N Cu(Aj); see Notation 5.6 and the comments after it.

In order to capture the Cuntz semigroup of the product of C∗-algebras in the
non-stable case, we need to keep track of the position of the algebra and to this
end the invariant needs to be modified.

Definition 15.5. A scale for a Cu-semigroup S is a downward hereditary subset
Σ ⊆ S that is closed under suprema of increasing sequences in S, and that generates
S as an ideal. The pair (S,Σ) will be referred to as a scaled Cu-semigroup.

Given scaled Cu-semigroups (S,Σ) and (T,Θ), a scaled Cu-morphism is a Cu-
morphism α : S → T satisfying α(Σ) ⊆ Θ. We let Cusc denote the category of
scaled Cu-semigroups and scaled Cu-morphisms.

For a C∗-algebra A, note that

ΣA :=
{
x ∈ Cu(A) : there exists a ∈ A+ such that x ≤ [a]

}
is a scale for Cu(A). We call Cusc(A) := (Cu(A),ΣA) the scaled Cuntz semigroup
of A. Given a homomorphism ϕ : A→ B of C∗-algebras, the induced Cu-morphism
Cu(ϕ) : Cu(A) → Cu(B) maps ΣA into ΣB , and thus Cusc defines a functor from
the category C∗ of C∗-algebras to Cusc. The following is [11, Theorem 4.6].

Theorem 15.6. The category Cusc is complete.

Proof. Let I be a small category, and let F: I → Cusc be a functor, written i 7→
F(i) = (Si,Σi). Considering the underlying functor I→ PoM given by i 7→ Si, we
let (S, (πi)i∈I) be the limit of F in PoM with S as in the proof of Theorem 14.11.
We have that

Σ0 := S ∩
∏
i∈I

Σi =
{

(si)i∈I ∈
∏
i∈I

Σi : F(f)(si) = sj for all f : i→ j in I
}
.

Then Σ0 is a downward hereditary subset of S satisfying πi(Σ0) ⊆ Σi for all i ∈ I.
Composing with the forgetful functor (that forgets the scaled structure), we get

as limit τ(S,�pw) together with maps

ψi := τ(πi) : τ(S,�pw)→ τ(Si,�) ∼= Si

for all i ∈ I; see the proof of Theorem 14.11. Set

Σ :=
{

[(xt)t≤0] ∈ τ(S,�pw) : xt ∈ Σ0 for all t < 0
}
.

Then Σ is a downward hereditary subset of τ(S,�pw) that is closed under passing
to suprema of increasing sequences. Let 〈Σ〉 denote the ideal of τ(S,�pw) generated
by Σ. Then (〈Σ〉,Σ) is a scaled Cu-semigroup. Moreover, for each i ∈ I we have
ψi(Σ) ⊆ Σi, which shows that ψi : (〈Σ〉,Σ) → (Si,Σi) is a scaled Cu-morphism.
One can show that this defines a limit for F in Cusc. We omit the details. �

Theorem 15.7. The scaled Cuntz semigroup functor preserves products.

Proof. We first show how to construct the product in the category Cusc. This uses
as an ingredient the proof of Theorem 15.6.

Let (Sj)j∈J be a family of Cu-semigroups and let (S,Σ) be their scaled product
in Cusc. To get a concrete description of this object, we first take the set-theoretic
product

∏
j∈J Σj , which is a downward hereditary subset of PoM-

∏
j∈J Sj , and

set

Σ =
{

[(xt)t≤0] ∈
∏
j∈J

Sj : xt ∈
∏
j∈J

Σj for every t < 0
}
.
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Then S is the ideal of
∏
j∈J Sj generated by Σ. Given [(xt)t≤0] ∈

∏
j∈J Sj , we have

[(xt)t≤0] ∈ S if and only if for every t < 0 there exist σ(1), . . . , σ(N) ∈
∏
j∈J Σj such

that xt �pw σ(1) + . . .+ σ(N).
If now (Aj)j∈J is a family of C∗-algebras, we use again (S,Σ) to denote the

scaled product of (Cusc(Aj))j∈J with Σ ⊆ S ⊆
∏
j∈J Cu(Aj) as defined above. Set

A =
∏
j∈J Aj . Then the map Φ: Cu(A) →

∏
j∈J Cu(Aj) defined in Remark 15.1

is an order-embedding by Lemma 15.2. Using the strategy in the proof of Proposi-
tion 15.3 with additional care, one can show that the image of Φ is S and moreover
it identifies the scale of Cu(A) with Σ:

Cusc(A) = (Cu(A),ΣA) ∼=
∏
j∈J

(Cu(Aj),ΣAj ) = (S,Σ). �

To close this section, we turn our attention to ultraproducts. First, we give a
categorical definition.

Definition 15.8. Let C be a category that has products and inductive limits, let
J be a set, let U be an ultrafilter on J , and let (Xj)j∈J be a family of objects in
C. Given a subset K ⊆ J and j ∈ K, we write πj,K :

∏
k∈K Xk → Xj for the

canonical quotient map. Given subsets G ⊆ K ⊆ J , the universal property of the
product gives a morphism

ϕG,K :
∏
j∈K

Xj →
∏
j∈G

Xj ,

such that πj,K = πj,G ◦ ϕG,K for each j ∈ G.
Ordering the elements of U by reversed inclusion, we have that U is upward

directed, and thus the objects
∏
j∈K Xj for K ∈ U , and morphisms ϕG,K for

K,G ∈ U with K ⊇ G, define an inductive system indexed over U . The inductive
limit of this system is called the (categorical) ultraproduct of (Xj)j∈J along U :∏

U
Xj := lim−→

K∈U

∏
j∈K

Xj .

We let πU :
∏
j∈J Xj →

∏
U Xj denote the natural morphism to the inductive limit.

Let C and D be categories with products and inductive limits, and let F: C→ D
be a functor that preserves inductive limits and products. Then for any set J , any
ultrafilter U on J , and any family (Xj)j∈J of objects in C, there is a natural
isomorphism

ΦU : F
(∏
U
Xj

)
→
∏
U

F(Xj).

Let (Aj)j∈J be a family of C∗-algebras and let U be an ultrafilter on J . Set
A =

∏
U Aj . The discussion above, combined with the properties of the categories

Cu and Cusc, as well as the functors Cu and Cusc, yield natural (scaled) Cu-
morphisms

ΦU : Cu(A)→
∏
U

Cu(Aj) and ΦU,sc : Cusc(A)→
∏
U

Cusc(Aj).

Applying Proposition 15.3 and Theorem 15.7, we obtain the following results:

Proposition 15.9. Given an ultrafilter U on a set J and a family (Aj)j∈J of stable
C∗-algebras, the map ΦU : Cu

(∏
U Aj

)
→
∏
U Cu(Aj) is an isomorphism.

Theorem 15.10. The scaled Cuntz semigroup functor preserves ultraproducts. In
other words, given an ultrafilter U on a set J and a family (Aj)j∈J of C∗-algebras,
the map ΦU,sc : Cusc

(∏
U Aj

)
→
∏
U Cusc(Aj) is an isomorphism.
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A different view on ultraproducts, more akin to the usual construction for C∗-
algebras, can also be given in this setting. We give the statement without proof,
and refer the reader to [11, Section 7] for further details.

Theorem 15.11. Let U be an ultrafilter on a set J , and let (Sj)j∈J be a family
of Cu-semigroups. Set

cU
(
(Sj)j

)
:=
{

[(xt)t≤0] ∈
∏
j∈J

Sj : supp(xt) /∈ U for each t < 0
}
.

Then cU
(
(Sj)j∈J

)
is an ideal in

∏
j∈J Sj , and there is a natural isomorphism∏

U
Sj ∼=

(∏
j∈J

Sj

)
/cU ((Sj)j∈J).

If now (Aj)j∈J is a family of C∗-algebras and (S,Σ) is the scaled product of
(Cusc(Aj))j∈J with Σ ⊆ S ⊆

∏
j∈J Cu(Aj) as in Theorem 15.6, we have a natural

isomorphism

Cu
(∏
U
Aj

)
∼= S/

(
S ∩ cU

(
(Cu(Aj))j∈J

))
.

In particular, the map ΦU from Definition 15.8 is an order-embedding that identifies
Cu
(∏
U Aj

)
with the image of S under the map πU from Theorem 15.11.

The computation of the Cuntz semigroup of ultraproducts of C∗-algebras in
terms of the semigroups of the individual algebras (by means of the scaled product
as described above) will be important in studying when the completion of the so-
called limit traces is dense in the trace simplex of an ultraproduct; see [6].

16. Outlook

In this final section, we give a sample of problems in the area of Cuntz semigroups
which we think are likely to guide the research in this field in the upcoming years.
Some of the problems are very difficult and should be regarded as long-term goals,
while other ones are more tangible. Also, some of the problems are stated in rather
vague terms, while other ones are fairly concrete. Some of the problems below were
suggested in the Cuntz semigroup workshop which took place in September 2022
in Kiel, Germany.

As explained in Theorem 9.6, Toms used the Cuntz semigroup to distinguish two
simple, separable, unital, nuclear C∗-algebras with identical Elliott invariants, thus
providing a counterexample to the original formulation of the Elliott conjecture.
The following is thus a natural task:

Problem 16.1. For the non Z-stable C∗-algebra A constructed by Toms (see
Theorem 9.6), compute Cu(A).

Since Toms’ construction is based on that of Villadsen, one should also attempt
the following:

Problem 16.2. For a Villadsen algebra A of the first type as in [97], compute
Cu(A).

Some Villadsen algebras of the first type are Z-stable, and in those cases the
computation of the Cuntz semigroup is given by Theorem 9.7. Both Problem 16.1
and Problem 16.2 are rather vague, and one concrete problem one should attempt
is the computation of the dimensions of these Cuntz semigroups, in the sense of
[88, 86].

It was shown in [93] that any two unital homomorphisms from Z into a Z-
stable C∗-algebra are approximately unitarily equivalent, and in particular they
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must agree at the level of the functor Cu. It would be interesting to find an explicit
example showing that this fails in the non Z-stable case. Therefore, we suggest:

Problem 16.3. Let A be a non Z-stable C∗-algebra as in either Problem 16.1 or
Problem 16.2. Are there two distinct Cu-morphisms Cu(Z) → Cu(A) preserving
unit classes?

Another class of C∗-algebras for which it would be very interesting to compute
the Cuntz semigroup is that of reduced group C∗-algebras, particularly for C∗-
simple groups. While obtaining an explicit computation may be out of reach,
it should be possible to obtain some structural information. As a first step, we
propose the following problem, which is a Cuntz semigroup version of Blackadar’s
fundamental comparison property [16] for projections in C∗r (Fn):

Problem 16.4. Compute Cu(C∗r (Fn)) for n ≥ 2, or at least determine whether it
is almost unperforated.

As it turns out, it is not easy to find examples of stably finite C∗-algebras whose
Cuntz semigroups fail to be weakly cancellative. There exist commutative examples,
but we do not know if simple ones exist as well.

Question 16.5. Does there exist a simple, unital, stably finite C∗-algebra whose
Cuntz semigroup does not have weak cancellation?

If a C∗-algebra as above exists, then its stable rank will necessarily be greater
than 1 by Theorem 10.3.

A Cu-semigroup is said to be almost divisible if, given x, x′ ∈ S with x′ � x,
then for all n ∈ N there is y ∈ S such that ny ≤ x and x′ ≤ (n + 1)y. If A is a
Z-stable C∗-algebra, then Cu(A) is almost divisible, as was shown by Rørdam in
[81]; this is proved very similar to Theorem 8.4. The question above is related to
the following algebraic question, raised in [8]:

Question 16.6. Under what additional axioms (besides (O5) and (O6)) is a simple
Cu-semigroup which is also almost unperforated and almost divisible necessarily
weakly cancellative?

We now turn to connections to classification. As mentioned in the introduction,
the Cuntz semigroup has been successfully used to classify interesting classes of
nonsimple C∗-algebras. The latest and most general result in this direction is due
to Leonel Robert [73], and there is reason to believe that the class of C∗-algebras
that Robert considered is the largest that can be classified solely in terms of Cu.

Question 16.7. Are there variations of the Cuntz semigroup that can be used to
classify larger classes of non-simple C∗-algebras?

The question above is very vague, but it is motivated by the invariant Cu∼

considered by Robert in [73] and by Robert-Santiago in [78], which is necessary
to obtain classification in the non-unital setting. Another direction in which this
question can be interpreted is by trying to incorporate K1-information into the
invariant. Some steps in this direction have been made by Cantier in [28] (see also
[29]).

As we saw in Theorem 9.7, in the simple, separable, nuclear, finite Z-stable
setting, the Elliott invariant Ell contains the same information as the pair (Cu,K1).
In particular, two simple, separable, unital, nuclear, finite Z-stable C∗-algebras A
and B satisfying the UCT are isomorphic if and only if Cu(A) ∼= Cu(B) and
K1(A) ∼= K1(B). The modern approach to classification focuses on the classification
of homomorphisms, and it would thus be interesting to know to what extent the
Cuntz semigroup can be used in this setting (for some results in this direction, see
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[30]). Since the invariant needed to classify homomorphisms is larger than Ell, in
particular including algebraic K1-data, the following seems like a natural question:

Question 16.8. To what extent can the algebraic K1-group be recovered from the
Cuntz semigroup?

The Cuntz semigroup is expected to be useful for classification also beyond the
Z-stable setting. A positive answer to the following question would be a significant
breakthrough in the area.

Question 16.9. Can one use (Cu(A),K1(A)) to classify a class of simple, nuclear
C∗-algebras bigger than the one in Theorem 9.3?

The study of group actions on C∗-algebras is a very fruitful one. Some of the
most recent research in the area has shown that Cuntz semigroup techniques are
extremely powerful in this setting (as proved in [44, 46, 45, 22, 21]), thus suggesting
that the theory of group actions on Cuntz semigroups (as developed in [20, 23])
may lead to interesting constructions:

Problem 16.10. Develop the theory of crossed products and Rokhlin properties
for group actions on Cu-semigroups.

For actions of compact groups, an equivariant version of the Cuntz semigroup,
resembling equivariant K-theory, has been studied in [48]. For actions with the
Rokhlin property, the induced dynamical system on Cu has been explored in [47,
42, 43].

KK-theory is a bivariant joint generalization of K-theory and K-homology: for
two C∗-algebras A and B, the KK-group KK(A,B) is a natural homotopy equiva-
lence class of (A,B)-Hilbert bimodules, and it behaves as K-homology in the first
coordinate and as K-theory in the second. KK-theory provides a strong link be-
tween operator algebras, noncommutative geometry and index theory.

Problem 16.11. Use the bivariant version of Cu introduced in [9, 10] to establish
more connections with noncommutative geometry.
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