Lemma. \(G \) opt, \(f_1 + f_2 : G \to G \) below, \(f_1 = f_2 \text{ a.e.} \). \(f_1(gh) = f_2(hg) \) for a.e. \((g,h) \in G \times G \).

Then \(f_1(gh) = f_2(hg) \) for a.e. \((g,h) \in G \times G \).

Proof: assuming \(G \) is 2nd oth., so can use Borel sets. (not results).

If \(G \) assumes we have \(G \). Borel set \(M \). \(G \) a.e. \(\mathcal{N} \) and \(f_1 = f_2 \) a.g. \(G \times \mathcal{M} \).

Define \(R = \{(g,h) \in G \times G : gh \in \mathcal{M}\} \). \(S = \{(g,h) : h \in \mathcal{M}\} \), and

\(\mathcal{N}_1 = \{(g,h) : f_1(gh) \neq f_2(hg)\} \). By \(\text{hyp}, \ (\mu, \nu)(\mathcal{N}_1) = 0 \).

Also (which): \(\mathcal{N}_2 \subseteq \mathcal{N}_1 \cup \mathcal{N} \times \mathcal{N} \). So enough to show \(\mu(\mathcal{N}_1 \cap \mathcal{N}_2) = 0 \).

If \(\mathcal{N}_1 \cap \mathcal{N}_2 \) see the same: only do first. Use Fabini. M Borel so \(R \approx \text{Borel} \), so Fabini applies. For \(g \in G \), \(\mathcal{S} \not\subseteq G \) \((g,h) \in G \). \(S \not\subseteq \mathcal{M} \) which has measure 0.

So Fabini says \(\exp(R) = 0 \).

Remark. \(G \) opt. Then \(\mathcal{L}^1(G) \), \(f \to \mu(G \mid \mathcal{F}), \) is a Banach alg under convolution, similarly for \(\mathcal{A} \).

\[
\text{[For } p \neq 1, \text{ don't get bdd approx identities.]}
\]

Proof: For \(\mathcal{L}^p(G) \), need \(\mu(G) = 1 \), so \(p_1 \leq p_2 \Rightarrow \|f\|_{p_1} \leq \|f\|_{p_2} \). Thus \(f_1, f_2 \in \mathcal{L}^p(G) \Rightarrow f_1 \ast f_2 \in \mathcal{L}^p(G) \), and \(\|f_1 \ast f_2\|_p \leq \|f_1\|_p \|f_2\|_p \).

For \(\mathcal{A} \) need to know \(f_1, f_2 \text{ cont} \Rightarrow f_1 \ast f_2 \text{ cont.} \) (See Gilard, Prop 2.43)

Recall notation: spaces of central tests [an ideal for us] are \(\mathcal{Z} \mathcal{L}^0(G), \mathcal{Z} \mathcal{C}(G) \).

Lemma. For \(G \) opt, \(p \in [1, \infty] \), \(\mathcal{Z} \mathcal{L}^p(G) \) is the center of the Banach alg \(\mathcal{L}^p(G) \).

\(\mathcal{Z} \mathcal{C}(G) \) is the center of \(\mathcal{C}(G) \) with convolution.

Proof. Do \(\mathcal{L}^p(G) \) first. Let \(Z \in \mathcal{L}^p(G) \). Then \(Z \) is in the center if \(\mathcal{A} \), \(\mathcal{A} \) of \(\mathcal{L}^p(G) \).

One has \(Z + f = f + Z \), that is, for a.e. \(g \in G \), \(\int_G Z(h)^{-1} v(g) \, dP(h) = \int_G f(h) Z(h^{-1}) \, dP(h) \).

Choose \(v \) on both to get \(Z(h) = \int_G Z(hy) \, dP(y) = \int_G Z(hy) \, dP(h) \) (why?

If \(Z(h) = Z(hy) \) for a.e. \((g, h) \in G \times G \), then, by Fabini, for a.e. \(g \), one has \(Z(h) = Z(hy) \) for almost every \(h \), so for those \(g \), (4) holds for any \(f \).

Thus, \(Z \) is in the center.

For reverse, problem: the set of \(g \) for which (4) holds depends on \(f \).

Rewrite: \(\int_G (Z(gh) - Z(wh)) f(wh) \, dP(h) = 0 \) \(\forall f \in L^1(G) \).\]
In (4.4), replace \(f \) with \(h \mapsto f_h \) which sends \(L^1(G) \to L^p(G) \). (using \(L^1 \sim L^p \))

So assume that \(\forall f \in L^p(G) \) \(\exists N \subseteq G \) with \(\mu(N) = 0 \) s.t. \(\forall g \in N \Rightarrow \int_G (z(gh) - z(hg)) f(h) d\mu(h) = 0 \).

The assignment \(g \mapsto \left[\text{for } h \mapsto z(gh) \right] \) is continuous \(G \to L^1(G′) \). Using \(L^p(G) \subseteq L^1(G) \) similarity with \(z(hg) \).

Thus \(g \mapsto \int_G (z(gh) - z(hg)) f(h) d\mu(h) \) is cont. whenever \(f \in L^1(G) \).

Since \(L^1(G) \subseteq L^p(G) \) \(\mu(g) = \text{zero for } \forall g, \text{ for } f \in L^1(G) \). \(\mu_g = \phi \).

Now by Riesz rep., \(\forall g \), the \(\text{for } h \mapsto z(gh) - z(hg) \) is zero a.e.

If take \(G = \mathbb{R} \) (which we can do using prev. lemma), have the measurability needed to use Fabius \(\alpha \) and conclude \(z(gh) = z(hg) \) for a.e. \((g, h) \in G \times G . \)

This is the \(L^p \) case.

For \(C(G) \). If \(z \) is a constant function, then \(z \) is in the center of \(\int \) \((G) \)
by prev. case, and \(C(G) \subseteq L^1(G) \), so \(z \) is in the center of \(C(G) \).

Conversely, similarly to above. Enough to show: \(\int G (z(gh) - z(hg)) f(h) d\mu(h) = 0 \)
for all \(h \in C(G) \).

(We don't need to worry about \(N \) as above, since now every thing is cont.)

Sending \(g \) to the \(\text{for } h \mapsto z(gh) - z(hg) \) is cont. \(G \to L^1(G) \).

Also \(C(G) \) is dense \(\subseteq L^1(G) \). So we have \(\left< f_g, f \right> = 0 \) \(\forall h \in C(G) \).

Thus \(\forall h \text{ is the zero function in } L^1(G) \).

Use Fabius, \(z(gh) = z(hg) \) for a.e. \((g, h) \in G \times G . \)

But this is cont. in \((g, h) \), so \(z(g) = z(h) \) for all \(g, h \in G \).

At least if \(G = 2nd \) Alex, then \(\text{for } f \in \mathcal{D} \), \(\text{mable with } f_gh = f(hg) \) \(\forall \alpha \) \(\in \mathcal{D} \).

(We need this above and approximate identities in \(\mathcal{D}(G) \) for \(L^1(G) \).)