Lemma: Let \(p, q \in \mathbb{Z} \). Then \(\sum_{\omega \in \mathbb{Z}} \delta_{(\sum \omega)} = \sum_{\|\sum \omega\|^2 = \|\sum \omega\|^2} \delta_{(\sum \omega)} = 0 \quad (p, q) \neq (0, 0) \) and \(\delta_{(p, q)} = \gamma_{p, q} \) if \(p, q \neq (0, 0) \).

Let \(P \) be the set of a polynomial \(f_{m, n} \) on \(\mathbb{Z} = \{ (\sum \omega) \in \mathbb{Z}^2 : \|\sum \omega\|^2 = \|\sum \omega\|^2 \} \) and \(P_n \) be the set of polynomials of degree \(m \). The degree \(\|\sum \omega\|^2 \) is the degree of the polynomial. The following is a fundamental result:

\[
\pi \cdot \Sigma(\omega) \rightarrow L(\mathbb{R}) \quad \text{by} \quad (\pi(\omega))p(\sum \omega) = \pi(\omega) p(\sum \omega) \quad \text{(interpolation of weights \(\omega \)).}
\]

For \(\omega = \left(\begin{array}{c} e^{i\theta} \\ 0 \end{array} \right) \):

\[
\psi(\omega) = \left(\begin{array}{c} \cos(\theta) \\ \sin(\theta) \end{array} \right), \quad \xi(\omega) = \left(\begin{array}{c} -\sin(\theta) \\ \cos(\theta) \end{array} \right), \quad \zeta(\omega) = \left(\begin{array}{c} \cos(\theta) \\ \sin(\theta) \end{array} \right).
\]

Corollary: For \(\omega = \sum \omega \rightarrow \frac{1}{(\sum \omega)^{\frac{m}{2}}} \).

\(v_{(n-m)} \) are an ONB of \(P \).

For fixed \(m \), get ONB for \(P_m \).

Corollary: \(P_m \perp P_l \) for \(m \neq l \).

We want to show that \(\pi \) is well defined for \(m = 0, 1, 2, \ldots \).

Lemma: Let \(V \subset P_m \) be an invariant subspace. Then \(V \) is well defined for \(m = 0, 1, 2, \ldots \).

(These questions are the actions of the derivatives at 0 of \(Y \) and \(Z \).)

Conclude: \(\Theta \rightarrow \left(\pi(\omega) \psi(\omega) \right) \sum \omega = \pi(\omega) \psi(\omega) \left(\begin{array}{c} \cos(\theta) \sum \omega \\ \sin(\theta) \sum \omega \end{array} \right) \).

Differentiate \(\Theta : \pi(\omega) \psi(\omega) \sum \omega \):

\[
\partial_{\psi(\omega)} = \left(\begin{array}{c} \cos(\theta) \sum \omega \end{array} \right) \rightarrow \sum \omega \partial_{\sum \omega} \psi(\omega) = \sum \omega \psi(\omega) \partial_{\sum \omega} \pi(\omega).
\]

Put \(\Theta = 0 : \partial_{\omega} \left(\begin{array}{c} \cos(\theta) \sum \omega \\ \sin(\theta) \sum \omega \end{array} \right) \).

Claim: \(\Theta \) is in \(V \). Normally, need to check that the quotient at but of difference.

\(Y \) and \(Z \) are indeed, so that one gets something in \(V \). Here \(M \) is just a polynomial topology of plane convergence in the usual topology, and \(M \) is already closed.

Do some with \(Z(\Theta) \).

Conclusion: \(Z(\Theta) = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \psi(\omega) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \).

If \(\pi \) were a projection in \(Y \), then we would need to find that for \(\pi \in M \),

\[
\pi_{(n-m)}^2 \psi(\omega) \left(\begin{array}{c} \cos(\theta) \sum \omega \end{array} \right) \rightarrow \pi_{(n-m)}^2 \psi(\omega) \sum \omega.
\]

So we must prove \(\psi(\omega) \sum \omega \rightarrow \pi(\omega) \partial_{\sum \omega} \psi(\omega) \sum \omega \).

Claim: \(\pi(\omega) \partial_{\sum \omega} \psi(\omega) \sum \omega = \partial_{\sum \omega} \psi(\omega) \sum \omega \).

Corollary: \(Y \): Taking line comb shows that the quotient in the state must send \(V \) to \(M \).
Proof: Let MC_{P_m} be a minimal inv. subalg. Choose nonzero p_m to write $p_m \in \sum_{k=0}^{\infty} M_k$.

Let k_0 be the largest k s.t. $C_k \neq 0$. Apply induction $(p_m) \subset (C_0 \oplus \cdots \oplus C_k) \subset \cdots \\
\Rightarrow \quad (C_{k+1})_m \subset \cdots$

Note: Can put k_0 from $m \to m+1$. by \(u \). Let m in first m with $k_0 = m$.

Same m, but one m less. **Repeat:** After a total of k_0 repetitions, left with me form $\sum_{k=0}^{m} M_k$ with $\sum_{k=0}^{\infty} M_k \cong \{0\}$.

Conclusion: The only $p_m \in \sum_{k=0}^{m} M_k$.

Use the above equation, $p_m \sum_{k=0}^{m} M_k \subset \sum_{k=0}^{m} M_k$. So $\sum_{k=0}^{m} M_k \subset M$. **Repeat:** $\sum_{k=0}^{m+1} M_k \sum_{k=0}^{m} M_k$ for $k_0 = 0, 1, 2, \ldots - m$. Hence $\sum_{k=0}^{m} M_k$. So $M = P_m$.

Theorem: If $\sum_{k=0}^{m} M_k \not\cong \{0\}$ then $\sum_{k=0}^{m} M_k \cong \{0\}$.

For outline: Show that $\sum_{k=0}^{m} M_k \not\cong \{0\}$ in $ZC(P_m)$ is all of $ZC(P_m)$.

We have $ZC(P_m)$ is dense in $ZC(\sum_{k=0}^{m} M_k)$, this will imply they have a dense subset of $ZC(\sum_{k=0}^{m} M_k)$. If we had any other element at $(\forall \gamma)$ it would have been P_m

for all m, so no $\sum_{k=0}^{m} M_k \not\cong \{0\}$ can exist.

Recall that $\gamma, f \mapsto f(\gamma) = (\gamma, e^{i \varphi}, \eta)$ is an isomorphism.

$ZC(\sum_{k=0}^{m} M_k)$

From $ZC(\sum_{k=0}^{m} M_k)$ to $C[10, t]$.

Define $\gamma_m(\gamma) = T_m(\gamma, (\gamma, 1, 0, \ldots, 0))$. [Filling]

Need to calculate these. Take the matrix of $\gamma_m(\gamma, (\gamma, 1, 0, \ldots, 0))$ in the basis $\sum_{k=0}^{m} M_k$, \cdots [Filling]

So $\gamma_m(\gamma, (\gamma, 1, 0, \ldots, 0)) = e^{i \varphi}$.

$\mathrm{sp} (\gamma_m(\gamma, (\gamma, 1, 0, \ldots, 0)))$ is the set of all $f_m(\gamma) = \sum_{k=0}^{m} x_k e^{i \varphi} .

$\text{with } a \in \mathbb{Z}_2$ and (a, \ldots, a).

(b) monic: $\lambda_0 = 1, \lambda_1 = \lambda, \ldots \text{ (but one depends on which } m, \text{ even or odd.)}$

Rewrite as the span of the form $\sum_{k=0}^{m} x_k e^{i \varphi}$. The span is an algebra closed under complex numbers plus 10.

and contain the constants. (Using this Stone-Weierstrass implies result.)

Pl at claim: $\text{Constants: } f_0 = 1$. \[Ca \text{ conl: } f_0, f_1 are real. \]

Close under mult: that $f_0 f_0 = f_2 0 f_0 2 e^{i \varphi}$.

Separate pts. $f_1(\gamma) = 2 \sin(\theta)$ separate points.

\[\text{(Filling complete } \gamma_m(\gamma, (\gamma, 1, 0, \ldots, 0))) \]

Arvoun: An Invitation to C^\ast-Algebra

[Arvoun told me it was supposed to be "An Invitation to C^\ast-Algebras"]