Proof.

Consider the locally compact group \(G \rightarrow \text{L(H)} \) with cyclic unitary representation \(M \subset C(G) = \pi(G)' \). There exists a standard measure space \((X, \mathcal{S}, \mu) \) with \(\mu \) finite and a real field \(\mathbb{R} \) of Hilbert spaces over \(X \), with a b foul fied field \(\pi \) of unitary rep of \(G \), along with a unitary \(\eta : H \rightarrow \int_X H_x d\mu(x) \), such that:

1. \(\eta \pi_x(x) = \sum \eta(a) \pi(a) d\mu(a) \quad \forall a \in G \).
2. \(\eta \pi_x(f) \eta^* = \sum \pi_x(f(a)) \eta(a) d\mu(a) \quad \forall f \in L^1(G) \).
3. \(\eta M \eta^* \) is the alg of diagonal operators on \(\int_X H_x d\mu(x) \).

What we did \(\nu \) will be:

Choose a cyclic vector \(\xi \in H \) s.t. \(||\xi|| = 1 \). Set \(\nu = \meas(M) \), i.e., \(M \) is identified with \(C(G) \).

For \(\eta \in L^p(G) \), define \(\eta \) as the measure \(\lambda \eta = \eta \xi \xi \) and set \(\phi \in A \cap \mathcal{S}, \phi \ni \xi, \xi \) where \(A \in \mathcal{S} \).

Claim 1. \(C(G) \Rightarrow \lambda \phi \xi \xi = 0 \quad \forall \phi \in \mathcal{S} \).

Claim 2. Let \(b \in M \). Then \(\lambda bs_0 \xi, \xi \ll \nu \) and \(b \rightarrow \text{R-N den.} \).

Claim 3. \(\lambda s_0 \xi, \xi \ll \nu \) for \(s_0 \in V \).

Pf of Claim 3: Enough to do for \(s_0 = b, s_0 = c_0 \).

Use \(\lambda bs_0, c_0 = \lambda bs_0, c_0 \ll \nu \) and Claim 2.

Claim 4. For \(b \in M' \), \(\exists ! T(b) \in \text{L(H)} \) s.t. \(\langle T(b) \xi, \xi \rangle = \int_X \delta_b d\lambda \xi, \xi \quad \forall \xi \in V \).

Moreover, \(||T(b)|| \leq ||b|| \) and \(T \) is Hermitian.

Pf of Claim 4. Define \(I \) on \(V \) by \(I \xi, \xi = \int_X \delta_b d\lambda \xi, \xi \) (by Claim 3).

Claim 2 (corrected). Enough to show \(\eta \in C(G) \Rightarrow \int_X \eta f(x) ds_0, s_0 || \leq ||b|| \int_X \eta || f || d\mu \).

Take \(a \in M \), \(f = x \).

Polar decomposition: \(a = s(x^2) v_2 = sc_0 \quad \text{with} \quad c_0 \geq 0 \).

Also \(||s_0|| = 1 \) and \(s_0 = c_0 \in M \). Now \(\delta_s = \delta_0 \).

\(||s_0 s_0|| = ||s_0|| \delta_0 \).

\(||\lambda s_0, s_0|| = \int_X <\xi, \xi, s_0 s_0 > = \int_X <s_0, s_0, s_0> = \int_X <s_0, s_0, s_0> \leq ||b|| ||s_0|| \delta_0 \).

Thus \(\lambda s_0, s_0 \ll \nu \), which is what we wanted. Claim 2 done.
Claim 6. If \(b \in E' \) then \(T(b) = b \). and \(\delta = \delta_\mu \), a.e. \([\mu_b] \).

Proof. For \(a \in E' \),
\[
\int \hat{a} \delta_b \delta_{\mu_b} \, d\nu = \int \delta_{\mu_b} \hat{a} \delta_b \delta_{\mu_b} \, d\nu = \int \delta_{\mu_b} \delta_b \, d\nu = \int \delta_b \, d\nu_b.
\]

Since \(\hat{a} \) is an \(L^1 \) function, \(\int \delta_{\mu_b} \delta_b \, d\nu = 0 \). Thus \(\int \delta_b \, d\nu_b = 0 \), and \(\hat{a} \delta_b \delta_{\mu_b} \, d\nu = 0 \).

Claim 7. \(b \in E' \) if and only if \(\delta_b \delta_{\mu_b} \# \nu_b \). Pf. \(a \in E' \),
\[
\int \hat{a} \delta_b \delta_{\mu_b} \, d\nu = \int \delta_{\mu_b} \hat{a} \delta_b \delta_{\mu_b} \, d\nu = \int \delta_{\mu_b} \delta_b \, d\nu_b = \int \delta_b \, d\nu_b.
\]

Since \(\hat{a} \) is an \(L^1 \) function, \(\int \delta_{\mu_b} \delta_b \, d\nu = 0 \). Thus \(\int \delta_b \, d\nu_b = 0 \), and \(\hat{a} \delta_b \delta_{\mu_b} \, d\nu = 0 \).

Claim 8. \(\nu_b \) has full support. Pf. Need to show \(a \in E' \), \(\nu = \nu_b \) on \(\text{supp}(\nu) \Rightarrow a = 0 \).

For such a \(a \), set \(\nu = \gamma \nu \hat{a} \nu \) and \(\delta_g = \delta_{\mu_b} \). Then \(\nu \mu = \gamma \nu \hat{a} \nu \) and \(\frac{1}{2} \gamma \nu \hat{a} \nu = 0 \), by Claim 3. Then \(\int \hat{a} \delta_b \delta_{\mu_b} \, d\nu = 0 \), and \(\nu \) a.e. \(\Rightarrow a = 0 \). Claim proved.

It follows that \(T(b) \) is the unique \(\hat{a} \) in \(E' \) which agrees with \(\hat{a} \), a.e. \(\Rightarrow \delta_b = T(b) \).

Next, for \(b \in E' \), regarded as \(b : \text{V} \rightarrow 2^{\text{V}} \), an homomorphism, define \(\gamma_b : \text{L}^1(\mu) \rightarrow \text{L}^1(\mu) \) by \(\gamma_b(f)(x) = \int \text{V} \delta_b(x) \delta_{\mu_b} \, d\mu \).

Claim 9. \(\gamma_b \) is an \(L^1 \) homomorphism. Pf. \(a \in E' \),
\[
\int \hat{a} \gamma_b(f)(x) \, d\mu = \int \hat{a} \int \text{V} \delta_b(x) \delta_{\mu_b} \, d\mu = \int \delta_b \hat{a} \, d\mu = \int \hat{a} \, d\nu_b.
\]

Since \(\hat{a} \) is an \(L^1 \) function, \(\int \delta_b \hat{a} \, d\mu = 0 \). Thus \(\int \hat{a} \, d\nu_b = 0 \), and \(\hat{a} \gamma_b(f)(x) \, d\mu = 0 \).

Claim 10. For \(f \in \text{L}^1(\mu) \), \(\gamma_b(f)(x) = \int \text{V} \delta_b(x) \delta_{\mu_b} \, d\mu \) if and only if \(f \in \text{L}^1(\mu) \). So \(\gamma_b \) is a homomorphism.