Dense to prove: \(K_0(A) = \{ [1_n] - [I_n] \} \in H(A^+) \) : \(K_0(p) = 1_n \).

\[
\text{Let } M_n(A^+) \quad 1_n = 1_n \theta 0. \quad \epsilon M_n(A^+)
\]

We had gotten. \(\eta \in K_0(A) \) given, a had written it is

\[
[e_0] - [f_0] = [e_0] - [f_0] \quad \epsilon \quad f_0 = f_0 \oplus (1 - f_0) \quad f_0 \epsilon \text{EM}_n(A^+).
\]

New states here. Set \(s = \begin{pmatrix} f_0 & 1 - f_0 \\ 1 - f_0 & f_0 \end{pmatrix} \). Check: \(s^2 = 1_{2n} \) so \(s \) is invertible.

\[
\begin{pmatrix} f_0 & 1 - f_0 \\ 1 - f_0 & f_0 \end{pmatrix}
\]

such that \(1_0, K_0(e_0) = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix} \) (Can take any if \(e_0 \) proj).

We have \(s : A^+ \ni \lambda \mapsto s \lambda \). Let \(t = (\text{id}_{M_{2n}} \otimes \sigma) (b) \in \text{inv}(M_{2n}(A^+)) \).

Define \(p = t \circ s \). Check that \(K(p) = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} \), because \(K \circ \tau = \text{id} \).

Recall notation: \(0 \to A \xrightarrow{1} A \xrightarrow{p} B \to 0 \). Assume \(p \to A \) is the inclusion.

Lem: \(\text{inv}(B) \to \text{inv}(A) \) is the zero map. \(\Box \) Otherwise: \(\text{inv}(p) = 0 \).

Pf: Let \(\eta \in \text{inv}(B) \). Write \(\eta = [p] - [I_n] \) as above.

\[
\eta, 1_n \in \text{EM}_n(\mathbb{Z}_+). \quad \text{Def: } \tau \text{ induces } \pi^+ : A^+ \to B^+.
\]

\[
\tau_1(\eta) = C = \frac{\eta}{\text{vol}(A^+)} = \lambda \cdot 1_B^+.
\]

\[
K_0(p) = 1_n \oplus 0. \quad \text{So } \tau_1(p) = 1_n \oplus 0 = 1_n \oplus 0 = \frac{1_n \oplus 0}{\text{vol}(B^+)}.
\]

Thus \(\tau_1(p) = \pi_1(1_n) \) so certainly equivalent in \(H(A^+) \). Thus \(\pi_1(B(p)) = 0 \).

Now need lemma on \(\text{inv}(B(A)) \).

Notation: \(A \) is the ring of \(\epsilon_0(A) \) the set of invertible \(\epsilon \) in \(A \).

\(\epsilon \) in \(A \) is the convex component of \(\text{inv}(A) \) containing \(1 \).

\(\epsilon \) in \(A \) is the convex component of \(\text{inv}(A) \) containing \(1 \).

\(\text{inv}(A(A)) \) is the convex component of \(\text{inv}(A) \) containing \(1 \).

[Note: \(V(A) \) etc. need a topology here]
Lemma. A subset B on a. Then \(\text{inv}(A) = \frac{1}{n} \exp(a) \exp(-a) \exp(a) \exp(-a) \exp(a) \).

C-version: A subset \(C \) of \(\mathbb{R} \). Then \(\exp(C) = \int \exp(a) \exp(-a) \exp(a) \exp(-a) \exp(a) \).

This shows \(\text{inv}(A), \) \(\text{inv}(B) \) are pull, and both have \(x \rightarrow \exp(ax) \) a set path of invertible functions from \(I \) to \(\exp(a) \). Do this to all of the factorials.

Generally: \(\exp(A+B) \neq \exp(A) \exp(B) \). Do get equality if \(AB = BA \).

Exercise: prove equality if \(AB = BA \), and give counter-example in \(\mathbb{M}_2(C) \) otherwise.

Proof. Let \(G \) be the RHS. Claim: \(G \) is a subgroup. Certainly inverse.

Given: \(\exp(a)^{-1} = \exp(-a) \), so \(\exp(a)^{-1} = \exp(-a) \exp(-a) \exp(a) \exp(a) \exp(a) \exp(-a) \exp(-a) \).

Claim: multiply in order of indices [not usually accepted]

Claim: \(G \) is open.

Let \(s \in G \). Set \(\varepsilon = \| s - 1 \|^{-1} \). Suppose \(t \in A \) and \(\| s - t \| < \varepsilon \).

Then \(\| s^{-1} t^{-1} \| < \| s - t \| < \varepsilon \).

So \(\exp(b) = s^{-1} t^{-1} \). So \(t = \exp(a) \).

Claim proved.

Proof:

\(\log (s^{-1} t^{-1}) = \log (1 - (s^{-1} t^{-1})) = -\frac{1}{2} (s^{-1} t^{-1})^2 - \frac{1}{3} (s^{-1} t^{-1})^3 - \cdots \)

The series converges absolutely since \(\| s^{-1} t^{-1} \| < 1 \). Or we have to calculus for rest of \(\log \).

To finish, note \(G \) is an open connected group. Need to know that an open subgroup of a top group is closed.

Proof: \(H \) top gp, \(H \subset G \) open subgroup. Den \(H \uparrow A = \bigcup H_a \) (union of all \(a \in H \)).

Costs almost like \(H \), which is clearly open. Claim follows.

Now we know \(G \) is connected, so under \(\text{inv}(A) \), and is closed and open, so \(\text{inv}(A), G \).

Exercise: Prove the \(C \)-version. (pf is essentially the same)

Note: \(u \) unit, \(\| u - 1 \| < 1 \) \(\Rightarrow \log(u) \in C \). Ask [cheap: we count fnl calculus,

\(\log - i \) log is real valued on \(\mathbb{R} \).]

(\(\log - i \) log is real valued on \(\mathbb{R} \).)

Key consequence: Lemma. Let \(\text{inv}(A) \) be a surjective hom of unital Banach algs. Then \(\text{inv}(A) \) is surjective.

[For \(C \)-algs: \(\text{inv}(A) \Rightarrow \text{inv}(B) \) surjective,]
Not true that \(\text{inv}(A) \to \text{inv}(B) \) is surjective.

Ex. Let \(X = \mathbb{C}, |x| \leq 1 \), let \(Y = \mathbb{C}, |y| = 1 \).

Let \(\text{AC} \) be \(\mathbb{C}, |z| = 1 \). Therefore, let \(U \in \text{AC} \) be the unitary \(u(z) = z \).

If \(z \in A \) is invertible and \(\overline{z} \notin A \), then the limiting number of \(u \) about \(0 \) would be \(0 \), but \(u \) is really 1.

Proof:

Clearly that \(\text{inv}_0(\pi(A)) \subseteq \text{inv}_1(B) \).

For reverse, let \(t \in \text{inv}_0(B) \). Write \(t = \frac{1}{\overline{z}} \exp(b) \) with \(b_1, \ldots, b_n \in \mathbb{R} \).

Choose \(a_k \in A \) so \(\pi(a_k) = b_k \). Set \(s = \sum \exp(a_k) \in \text{inv}(A) \). Then \(\text{inv}(s) = 0 \). \(\square \)

Lemma.

Let \(B \) be a unital Banach algebra. Let \(s \in \text{inv}(B) \). Then \(\left(\begin{array}{cc} s & 0 \\ 0 & s^{-1} \end{array} \right) \in \text{inv}(M_2(B)) \).

Proof.

Define \(\tilde{z}_\lambda \in M_2(B) \), for \(\lambda \in \mathbb{C} \), by

\[
\tilde{z}_\lambda = \begin{pmatrix}
\cos(\lambda) & \sin(\lambda) \\
-\sin(\lambda) & \cos(\lambda)
\end{pmatrix}.
\]

Then \(\tilde{z}_\lambda \) is unitary (check) \(\tilde{z}_0 = 1 \) and \(\tilde{z}_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \).

Regard \(s \) being in \(M_2(B) \) via \(\tilde{z} \mapsto B \) as \(\lambda \mapsto \tilde{z}_\lambda \).

Set \(\tilde{t}_\lambda = \begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix} \tilde{z}_\lambda^{-1} \). Then \(s_i \) given by \(i = 1 \) and \(\tilde{t}_{1/2} = \begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix} \). \(\square \)

For hol. func. calculus, need a hol. function defined in a nbhd of \(\text{sp}(a) \).

For power series: need a series \(\sum_{n=0}^{\infty} a_n z^n \) with radius of convergence \(R \) s.t. \(R > |a| \). (True fact: easy to see that \(R > |a| \) will do). Then \(f(a) = \sum_{n=0}^{\infty} a_n a^n \).

Spectral radius.

(1) If series version is defined, then \(f \) is hol. in a nbhd of \(\text{sp}(a) \).

(2) In this case, \(f(a) \) via hol. calculus is equal to \(\sum a_n a^n \).

(Proof: use Cauchy formula.)

The hol. version doesn't apply if, for example, \(\text{sp}(a) = \overline{1} \) and \(f \) is hol. in \(\mathbb{C}, \frac{1}{2} < |a| < 2 \), but does not have a hol. extension to \(|a| < 2 \).