Band Schemes and Moduli Spaces of Matroids Joint work with Oliver Lorscheid and Tong Jin

Matt Baker

Georgia Institute of Technology

July 25, 2025

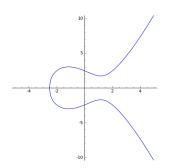
Table of contents

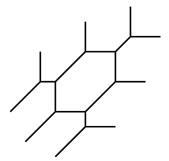
- Motivation: Three analogies
- 2 Bands and band schemes
- 3 Applications to matroid theory

Analogy #1: Tropical geometry

Let K be a complete and algebraically closed non-archimedean field.

Given a closed subscheme X of \mathbb{G}_m^n , one associates to X a *tropical* variety $\operatorname{Trop}(X) \subseteq \mathbb{R}^n$. It is a balanced weighted polyhedral complex.

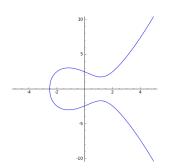


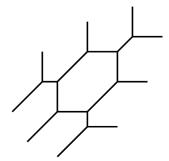


Analogy #1: Tropical geometry

Let K be a complete and algebraically closed non-archimedean field.

Given a closed subscheme X of \mathbb{G}_m^n , one associates to X a *tropical variety* $\operatorname{Trop}(X) \subseteq \mathbb{R}^n$. It is a balanced weighted polyhedral complex.





Analogy: Weyl groups \leftrightarrow "Algebraic groups over \mathbb{F}_1 "

Example: Weyl group of GL_n is S_n , which should be " $GL_n(\mathbb{F}_1)$ ".

Heuristic:
$$\#\mathrm{GL}_n(\mathbb{F}_q)=(q-1)^nq^{\binom{n}{2}}[n]_q!$$
, where

$$[n]_q! = (1+q+\cdots+q^{n-1})(1+q+\cdots+q^{n-2})\cdots(1+q)\cdot 1$$

If T is the diagonal torus in GL_n , then

$$\lim_{q\to 1}\frac{\#\mathrm{GL}_n(\mathbb{F}_q)}{\#T(\mathbb{F}_q)}=n!=\#S_n.$$

Similar phenomenon happens for other reductive groups.

Analogy: Weyl groups \leftrightarrow "Algebraic groups over \mathbb{F}_1 "

Example: Weyl group of GL_n is S_n , which should be " $\mathrm{GL}_n(\mathbb{F}_1)$ ".

Heuristic:
$$\#GL_n(\mathbb{F}_q) = (q-1)^n q^{\binom{n}{2}}[n]_q!$$
, where

If T is the diagonal torus in GL_n , then

$$\lim_{q\to 1} \frac{\#\mathrm{GL}_n(\mathbb{F}_q)}{\#T(\mathbb{F}_q)} = n! = \#S_n.$$

Similar phenomenon happens for other reductive groups

Analogy: Weyl groups \leftrightarrow "Algebraic groups over \mathbb{F}_1 "

Example: Weyl group of GL_n is S_n , which should be " $GL_n(\mathbb{F}_1)$ ".

Heuristic:
$$\#\mathrm{GL}_n(\mathbb{F}_q)=(q-1)^nq^{\binom{n}{2}}[n]_q!$$
, where

$$[n]_q! = (1+q+\cdots+q^{n-1})(1+q+\cdots+q^{n-2})\cdots(1+q)\cdot 1.$$

If T is the diagonal torus in GL_n , then

$$\lim_{q \to 1} \frac{\#\mathrm{GL}_n(\mathbb{F}_q)}{\#T(\mathbb{F}_q)} = n! = \#S_n$$

Similar phenomenon happens for other reductive groups

Analogy: Weyl groups \leftrightarrow "Algebraic groups over \mathbb{F}_1 "

Example: Weyl group of GL_n is S_n , which should be " $GL_n(\mathbb{F}_1)$ ".

Heuristic:
$$\#\mathrm{GL}_n(\mathbb{F}_q)=(q-1)^nq^{\binom{n}{2}}[n]_q!$$
, where

$$[n]_q! = (1+q+\cdots+q^{n-1})(1+q+\cdots+q^{n-2})\cdots(1+q)\cdot 1.$$

If T is the diagonal torus in GL_n , then

$$\lim_{q\to 1}\frac{\#\mathrm{GL}_n(\mathbb{F}_q)}{\#\mathcal{T}(\mathbb{F}_q)}=n!=\#\mathcal{S}_n.$$

Similar phenomenon happens for other reductive groups

Analogy: Weyl groups \leftrightarrow "Algebraic groups over \mathbb{F}_1 "

Example: Weyl group of GL_n is S_n , which should be " $GL_n(\mathbb{F}_1)$ ".

Heuristic:
$$\#\mathrm{GL}_n(\mathbb{F}_q)=(q-1)^nq^{\binom{n}{2}}[n]_q!$$
, where

$$[n]_q! = (1+q+\cdots+q^{n-1})(1+q+\cdots+q^{n-2})\cdots(1+q)\cdot 1.$$

If T is the diagonal torus in GL_n , then

$$\lim_{q\to 1}\frac{\#\mathrm{GL}_n(\mathbb{F}_q)}{\#T(\mathbb{F}_q)}=n!=\#S_n.$$

Similar phenomenon happens for other reductive groups.

Analogy #3: Grassmannian and matroids

Following the philosophy of Tits, we have $\#\mathrm{Gr}(r,n)(\mathbb{F}_q)=\binom{n}{r}_q$, and

$$\lim_{q\to 1} \#\mathrm{Gr}(r,n)(\mathbb{F}_q) = \binom{n}{r}.$$

So perhaps the combinatorial analogue of the Grassmannian is the collection of all r-element subsets of $[n] := \{1, \ldots, n\}$.

However, following the philosophy of Rota, the combinatorial analogue of an r-dimensional subspace of K^n is a matroid of rank r on [n]...

Analogy #3: Grassmannian and matroids

Following the philosophy of Tits, we have $\#\mathrm{Gr}(r,n)(\mathbb{F}_q)=\binom{n}{r}_q$, and

$$\lim_{q\to 1} \#\mathrm{Gr}(r,n)(\mathbb{F}_q) = \binom{n}{r}.$$

So perhaps the combinatorial analogue of the Grassmannian is the collection of all r-element subsets of $[n] := \{1, \dots, n\}$.

However, following the philosophy of Rota, the combinatorial analogue of an r-dimensional subspace of K^n is a matroid of rank r on [n]...

Analogy #3: Grassmannian and matroids

Following the philosophy of Tits, we have $\#Gr(r,n)(\mathbb{F}_q)=\binom{n}{r}_q$, and

$$\lim_{q\to 1} \#\mathrm{Gr}(r,n)(\mathbb{F}_q) = \binom{n}{r}.$$

So perhaps the combinatorial analogue of the Grassmannian is the collection of all r-element subsets of $[n] := \{1, \ldots, n\}$.

However, following the philosophy of Rota, the combinatorial analogue of an r-dimensional subspace of K^n is a matroid of rank r on [n]...

Goal

Our goal in this talk is to illuminate all of these analogies – especially the last one – through the unifying lens of *band schemes*.

Bands are like commutative rings, but where we don't assume that + comes from a binary operation.

A pointed monoid is a commutative monoid B with an identity element 1 and an absorbing element 0.

The *ambient semiring* of a pointed group B is the group semiring

$$B^+ = \mathbb{N}[B - \{0\}].$$

An *ideal of* B^+ is a subset that contains 0 and is closed under addition and under multiplication by elements of B^+ .

Bands are like commutative rings, but where we don't assume that + comes from a binary operation.

A pointed monoid is a commutative monoid B with an identity element 1 and an absorbing element 0.

The ambient semiring of a pointed group B is the group semiring

$$B^+ = \mathbb{N}[B - \{0\}].$$

An *ideal of* B^+ is a subset that contains 0 and is closed under addition and under multiplication by elements of B^+ .

Bands are like commutative rings, but where we don't assume that + comes from a binary operation.

A pointed monoid is a commutative monoid B with an identity element 1 and an absorbing element 0.

The ambient semiring of a pointed group B is the group semiring

$$B^+ = \mathbb{N}[B - \{0\}].$$

An *ideal of* B^+ is a subset that contains 0 and is closed under addition and under multiplication by elements of B^+ .

Bands are like commutative rings, but where we don't assume that + comes from a binary operation.

A pointed monoid is a commutative monoid B with an identity element 1 and an absorbing element 0.

The ambient semiring of a pointed group B is the group semiring

$$B^+ = \mathbb{N}[B - \{0\}].$$

An *ideal of* B^+ is a subset that contains 0 and is closed under addition and under multiplication by elements of B^+ .

Bands are like commutative rings, but where we don't assume that + comes from a binary operation.

A pointed monoid is a commutative monoid B with an identity element 1 and an absorbing element 0.

The ambient semiring of a pointed group B is the group semiring

$$B^+ = \mathbb{N}[B - \{0\}].$$

An *ideal of* B^+ is a subset that contains 0 and is closed under addition and under multiplication by elements of B^+ .

Tracts and homomorphisms

A band B is called a *tract* if every nonzero element of B has a multiplicative inverse.

A homomorphism of bands is a multiplicative map $f: B_1 \to B_2$ with f(0) = 0, f(1) = 1, and f(-1) = -1 such that the induced map $B_1^+ \to B_2^+$ sends every element of N_{B_1} to an element of N_{B_2} .

Tracts and homomorphisms

A band *B* is called a *tract* if every nonzero element of *B* has a multiplicative inverse.

A homomorphism of bands is a multiplicative map $f: B_1 \to B_2$ with f(0) = 0, f(1) = 1, and f(-1) = -1 such that the induced map $B_1^+ \to B_2^+$ sends every element of N_{B_1} to an element of N_{B_2} .

- Every ring R (meaning commutative ring with 1) is naturally a band, where $N_R = \{ \sum a_i \mid \sum a_i = 0 \in R \}$.
- ② The initial band is $\mathbb{F}_1^{\pm} = \{0, 1, -1\}$ with the usual multiplication and null set $\{0, 1-1, 1+1-1-1, \ldots\}$.
- **③** The *Krasner hyperfield* is $\mathbb{K} = \{0, 1\}$ with the usual multiplication and null set $\{0, 1+1, 1+1+1, 1+1+1+1, \ldots\}$.
- ① The tropical hyperfield is $\mathbb{T} = \mathbb{R}_{\geq 0}$ with the usual multiplication and null set consisting of 0 and all $\sum a_i$ such that the maximum among a_1, \ldots, a_n occurs at least twice.

- Every ring R (meaning commutative ring with 1) is naturally a band, where $N_R = \{ \sum a_i \mid \sum a_i = 0 \in R \}$.
- ② The initial band is $\mathbb{F}_1^{\pm} = \{0,1,-1\}$ with the usual multiplication and null set $\{0,1-1,1+1-1-1,\ldots\}$.
- **③** The *Krasner hyperfield* is $\mathbb{K} = \{0, 1\}$ with the usual multiplication and null set $\{0, 1+1, 1+1+1, 1+1+1+1, \ldots\}$.
- ① The tropical hyperfield is $\mathbb{T} = \mathbb{R}_{\geq 0}$ with the usual multiplication and null set consisting of 0 and all $\sum a_i$ such that the maximum among a_1, \ldots, a_n occurs at least twice.

- Every ring R (meaning commutative ring with 1) is naturally a band, where $N_R = \{ \sum a_i \mid \sum a_i = 0 \in R \}$.
- ② The initial band is $\mathbb{F}_1^{\pm} = \{0, 1, -1\}$ with the usual multiplication and null set $\{0, 1-1, 1+1-1-1, \ldots\}$.
- **3** The Krasner hyperfield is $\mathbb{K} = \{0, 1\}$ with the usual multiplication and null set $\{0, 1+1, 1+1+1, 1+1+1+1, \ldots\}$.
- ① The tropical hyperfield is $\mathbb{T} = \mathbb{R}_{\geq 0}$ with the usual multiplication and null set consisting of 0 and all $\sum a_i$ such that the maximum among a_1, \ldots, a_n occurs at least twice.

- Every ring R (meaning commutative ring with 1) is naturally a band, where $N_R = \{ \sum a_i \mid \sum a_i = 0 \in R \}$.
- ② The initial band is $\mathbb{F}_1^{\pm} = \{0, 1, -1\}$ with the usual multiplication and null set $\{0, 1-1, 1+1-1-1, \ldots\}$.
- **3** The Krasner hyperfield is $\mathbb{K} = \{0, 1\}$ with the usual multiplication and null set $\{0, 1+1, 1+1+1, 1+1+1+1, \ldots\}$.
- The tropical hyperfield is $\mathbb{T} = \mathbb{R}_{\geq 0}$ with the usual multiplication and null set consisting of 0 and all $\sum a_i$ such that the maximum among a_1, \ldots, a_n occurs at least twice.

More examples

- **1** The sign hyperfield is $\mathbb{S} = \{0, 1, -1\}$ with the usual multiplication and null set consisting of 0 and all $\sum a_i$ such that at least one a_i is positive and at least one is negative.
- ② The triangle hyperfield is $\mathbb{T}_1 = \mathbb{R}_{\geq 0}$ with the usual multiplication and null set consisting of 0 and all $\sum a_i$ such that the a_i form the side lengths of a polygon.

More examples

- **1** The sign hyperfield is $\mathbb{S} = \{0, 1, -1\}$ with the usual multiplication and null set consisting of 0 and all $\sum a_i$ such that at least one a_i is positive and at least one is negative.
- ② The triangle hyperfield is $\mathbb{T}_1 = \mathbb{R}_{\geq 0}$ with the usual multiplication and null set consisting of 0 and all $\sum a_i$ such that the a_i form the side lengths of a polygon.

- If R is a ring, a homomorphism $R \to \mathbb{K}$ is the same thing as a prime ideal of R.
- ② If K is a field, a homomorphism $K \to \mathbb{S}$ is the same thing as an ordering on K.
- ① If K is a field, a homomorphism $K \to \mathbb{T}$ is the same thing as a non-archimedean absolute value on K.
- ① If R is a ring, a homomorphism $R \to \mathbb{T}$ is the same thing as a prime ideal $\mathfrak p$ of R and a non-archimedean absolute value on the fraction field of $R/\mathfrak p$.

- If R is a ring, a homomorphism $R \to \mathbb{K}$ is the same thing as a prime ideal of R.
- ② If K is a field, a homomorphism $K \to \mathbb{S}$ is the same thing as an ordering on K.
- ③ If K is a field, a homomorphism $K \to \mathbb{T}$ is the same thing as a non-archimedean absolute value on K.
- ① If R is a ring, a homomorphism $R \to \mathbb{T}$ is the same thing as a prime ideal $\mathfrak p$ of R and a non-archimedean absolute value on the fraction field of $R/\mathfrak p$.

- If R is a ring, a homomorphism $R \to \mathbb{K}$ is the same thing as a prime ideal of R.
- ② If K is a field, a homomorphism $K \to \mathbb{S}$ is the same thing as an ordering on K.
- **3** If K is a field, a homomorphism $K \to \mathbb{T}$ is the same thing as a non-archimedean absolute value on K.
- ① If R is a ring, a homomorphism $R \to \mathbb{T}$ is the same thing as a prime ideal $\mathfrak p$ of R and a non-archimedean absolute value on the fraction field of $R/\mathfrak p$.

- If R is a ring, a homomorphism $R \to \mathbb{K}$ is the same thing as a prime ideal of R.
- ② If K is a field, a homomorphism $K \to \mathbb{S}$ is the same thing as an ordering on K.
- **3** If K is a field, a homomorphism $K \to \mathbb{T}$ is the same thing as a non-archimedean absolute value on K.
- **①** If R is a ring, a homomorphism $R \to \mathbb{T}$ is the same thing as a prime ideal $\mathfrak p$ of R and a non-archimedean absolute value on the fraction field of $R/\mathfrak p$.

The category of bands is complete and cocomplete, and in particular admits products and tensor products.

For example:

- ① The product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{F}_1^{\pm} .
- ② The tensor product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{K} .

We also have free objects, for example $B[x_1, \ldots, x_n]$. The pointed monoid of $B[x_1, \ldots, x_n]$ consists of all monomials

$$\left\{b \cdot \prod_{i=1}^n x_i^{m_i}\right\}$$

The category of bands is complete and cocomplete, and in particular admits products and tensor products.

For example:

- ① The product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{F}_1^{\pm} .
- ② The tensor product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{K} .

We also have free objects, for example $B[x_1, \ldots, x_n]$. The pointed monoid of $B[x_1, \ldots, x_n]$ consists of all monomials

$$\left\{b \cdot \prod_{i=1}^n x_i^{m_i}\right\}$$

The category of bands is complete and cocomplete, and in particular admits products and tensor products.

For example:

- ① The product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{F}_1^{\pm} .
- ② The tensor product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{K} .

We also have free objects, for example $B[x_1, \ldots, x_n]$. The pointed monoid of $B[x_1, \ldots, x_n]$ consists of all *monomials*

$$\left\{b \cdot \prod_{i=1}^n x_i^{m_i}\right\}$$

The category of bands is complete and cocomplete, and in particular admits products and tensor products.

For example:

- The product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{F}_1^{\pm} .
- ② The tensor product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{K} .

We also have free objects, for example $B[x_1, \ldots, x_n]$. The pointed monoid of $B[x_1, \ldots, x_n]$ consists of all monomials

$$\left\{b \cdot \prod_{i=1}^n x_i^{m_i}\right\}$$

The category of bands is complete and cocomplete, and in particular admits products and tensor products.

For example:

- ① The product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{F}_1^{\pm} .
- ② The tensor product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{K} .

We also have free objects, for example $B[x_1, \ldots, x_n]$.

The pointed monoid of $B[x_1, \ldots, x_n]$ consists of all *monomials*

$$\left\{b \cdot \prod_{i=1}^n x_i^{m_i}\right\}$$

The category of bands is complete and cocomplete, and in particular admits products and tensor products.

For example:

- ① The product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{F}_1^{\pm} .
- ② The tensor product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{K} .

We also have free objects, for example $B[x_1, ..., x_n]$. The pointed monoid of $B[x_1, ..., x_n]$ consists of all *monomials*

$$\left\{b \cdot \prod_{i=1}^n x_i^{m_i}\right\}$$

Properties of the category of bands

The category of bands is complete and cocomplete, and in particular admits products and tensor products.

For example:

- The product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{F}_1^{\pm} .
- ② The tensor product of \mathbb{F}_2 and \mathbb{F}_3 is \mathbb{K} .

We also have free objects, for example $B[x_1, ..., x_n]$. The pointed monoid of $B[x_1, ..., x_n]$ consists of all *monomials*

$$\{b \cdot \prod_{i=1}^n x_i^{m_i}\}$$

and the null set consists of all formal sums of monomials in which, for each fixed monomial, the sum of the coefficients of belongs to N_B .

Prime ideals

A *prime k-ideal* in a band B is the kernel of a band homomorphism $B \to \mathbb{K}$.

A prime m-ideal in a band B is the kernel of a monoid homomorphism $B \to \mathbb{K}$.

We let Spec B denote the set of prime m-ideals of B, with the Zariski topology generated by $U_h = \{ \mathfrak{p} \mid h \notin \mathfrak{p} \}$ for $h \in B$.

Prime ideals

A *prime k-ideal* in a band B is the kernel of a band homomorphism $B \to \mathbb{K}$.

A *prime m-ideal* in a band B is the kernel of a monoid homomorphism $B \to \mathbb{K}$.

We let Spec B denote the set of prime m-ideals of B, with the Zariski topology generated by $U_h = \{ \mathfrak{p} \mid h \notin \mathfrak{p} \}$ for $h \in B$.

Prime ideals

A *prime k-ideal* in a band B is the kernel of a band homomorphism $B \to \mathbb{K}$.

A *prime m-ideal* in a band B is the kernel of a monoid homomorphism $B \to \mathbb{K}$.

We let Spec B denote the set of prime m-ideals of B, with the Zariski topology generated by $U_h = \{\mathfrak{p} \mid h \notin \mathfrak{p}\}$ for $h \in B$.

The structure sheaf \mathcal{O}_X on $X = \operatorname{Spec} B$ is characterized by $\mathcal{O}_X(U_h) = B[h^{-1}].$

An affine band scheme is a pair consisting of $X = \operatorname{Spec} B$ and the sheaf of bands \mathcal{O}_X .

A band space is a topological space X together with a sheaf of bands \mathcal{O}_X . Band spaces form a category in the "standard" way.

The structure sheaf \mathcal{O}_X on $X = \operatorname{Spec} B$ is characterized by $\mathcal{O}_X(U_h) = B[h^{-1}].$

An affine band scheme is a pair consisting of $X = \operatorname{Spec} B$ and the sheaf of bands \mathcal{O}_X .

A band space is a topological space X together with a sheaf of bands \mathcal{O}_X . Band spaces form a category in the "standard" way.

The structure sheaf \mathcal{O}_X on $X = \operatorname{Spec} B$ is characterized by $\mathcal{O}_X(U_h) = B[h^{-1}].$

An affine band scheme is a pair consisting of $X = \operatorname{Spec} B$ and the sheaf of bands \mathcal{O}_X .

A band space is a topological space X together with a sheaf of bands \mathcal{O}_X . Band spaces form a category in the "standard" way.

The structure sheaf \mathcal{O}_X on $X = \operatorname{Spec} B$ is characterized by $\mathcal{O}_X(U_h) = B[h^{-1}].$

An affine band scheme is a pair consisting of $X = \operatorname{Spec} B$ and the sheaf of bands \mathcal{O}_X .

A band space is a topological space X together with a sheaf of bands \mathcal{O}_X . Band spaces form a category in the "standard" way.

Functors between scheme theories

There is a functor from band schemes to schemes which locally takes a band B to the ring generated by B^+ modulo the ideal generated by N_B .

There is no functor from schemes to band schemes. However, we can associate a band scheme \mathfrak{X} to a separated scheme X together with an open affine covering \mathcal{U} .

We call such a band scheme \mathfrak{X} a *model* for X.

Functors between scheme theories

There is a functor from band schemes to schemes which locally takes a band B to the ring generated by B^+ modulo the ideal generated by N_B .

There is no functor from schemes to band schemes. However, we can associate a band scheme \mathfrak{X} to a separated scheme X together with an open affine covering \mathcal{U} .

We call such a band scheme \mathfrak{X} a *model* for X.

Functors between scheme theories

There is a functor from band schemes to schemes which locally takes a band B to the ring generated by B^+ modulo the ideal generated by N_B .

There is no functor from schemes to band schemes. However, we can associate a band scheme $\mathfrak X$ to a separated scheme X together with an open affine covering $\mathcal U$.

We call such a band scheme \mathfrak{X} a *model* for X.

If X is a band scheme and C is a band, we can define X(C) as in usual algebraic geometry to be Mor(Spec(C), X).

There is a natural topology on the Krasner hyperfield $\mathbb K$ whose open subsets are \emptyset , $\{1\}$, and $\mathbb K$. This induces a topology on the point set $X(\mathbb K)$.

For example, if $X = \operatorname{Spec} B$ is affine, then $X(\mathbb{K})$ is naturally identified with the set of prime k-ideals of B, and the topology on $X(\mathbb{K})$ is the Zariski topology.

We define the *Tits space* of *X* to be the set of closed points of $X(\mathbb{K})$.

If X is a band scheme and C is a band, we can define X(C) as in usual algebraic geometry to be Mor(Spec(C), X).

There is a natural topology on the Krasner hyperfield \mathbb{K} whose open subsets are \emptyset , $\{1\}$, and \mathbb{K} . This induces a topology on the point set $X(\mathbb{K})$.

For example, if $X = \operatorname{Spec} B$ is affine, then $X(\mathbb{K})$ is naturally identified with the set of prime k-ideals of B, and the topology on $X(\mathbb{K})$ is the Zariski topology.

We define the *Tits space* of X to be the set of closed points of $X(\mathbb{K})$.

If X is a band scheme and C is a band, we can define X(C) as in usual algebraic geometry to be Mor(Spec(C), X).

There is a natural topology on the Krasner hyperfield \mathbb{K} whose open subsets are \emptyset , $\{1\}$, and \mathbb{K} . This induces a topology on the point set $X(\mathbb{K})$.

For example, if $X = \operatorname{Spec} B$ is affine, then $X(\mathbb{K})$ is naturally identified with the set of prime k-ideals of B, and the topology on $X(\mathbb{K})$ is the Zariski topology.

We define the *Tits space* of X to be the set of closed points of $X(\mathbb{K})$.

If X is a band scheme and C is a band, we can define X(C) as in usual algebraic geometry to be Mor(Spec(C), X).

There is a natural topology on the Krasner hyperfield \mathbb{K} whose open subsets are \emptyset , $\{1\}$, and \mathbb{K} . This induces a topology on the point set $X(\mathbb{K})$.

For example, if $X = \operatorname{Spec} B$ is affine, then $X(\mathbb{K})$ is naturally identified with the set of prime k-ideals of B, and the topology on $X(\mathbb{K})$ is the Zariski topology.

We define the *Tits space* of X to be the set of closed points of $X(\mathbb{K})$.

If X is a band scheme and C is a band, we can define X(C) as in usual algebraic geometry to be Mor(Spec(C), X).

There is a natural topology on the Krasner hyperfield \mathbb{K} whose open subsets are \emptyset , $\{1\}$, and \mathbb{K} . This induces a topology on the point set $X(\mathbb{K})$.

For example, if $X = \operatorname{Spec} B$ is affine, then $X(\mathbb{K})$ is naturally identified with the set of prime k-ideals of B, and the topology on $X(\mathbb{K})$ is the Zariski topology.

We define the *Tits space* of *X* to be the set of closed points of $X(\mathbb{K})$.

Toric varieties

Every toric variety X over a field K admits a canonical band scheme model \mathfrak{X} over \mathbb{F}_1^{\pm} .

If Δ is a rational polyhedral fan in \mathbb{R}^n , σ is a cone in Δ , and $A_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$ is the set of lattice points of the dual cone, we set

$$U_{\sigma} = \operatorname{\mathsf{Spec}} \mathbb{F}_1^{\pm}[t^{\lambda}]_{\lambda \in A_{\sigma}}$$

and $X(\Delta) = \operatorname{colim}_{\sigma \in \Delta} U_{\sigma}$.

The points of $X(\Delta)$ correspond bijectively to the cones $\sigma \in \Delta$, with points of the open affine subset U_{σ} of $X(\Delta)$ corresponding to the faces of σ .

Toric varieties

Every toric variety X over a field K admits a canonical band scheme model \mathfrak{X} over \mathbb{F}_1^{\pm} .

If Δ is a rational polyhedral fan in \mathbb{R}^n , σ is a cone in Δ , and $A_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$ is the set of lattice points of the dual cone, we set

$$U_{\sigma} = \operatorname{\mathsf{Spec}} \mathbb{F}_1^{\pm}[t^{\lambda}]_{\lambda \in A_{\sigma}}$$

and $X(\Delta) = \operatorname{colim}_{\sigma \in \Delta} U_{\sigma}$.

The points of $X(\Delta)$ correspond bijectively to the cones $\sigma \in \Delta$, with points of the open affine subset U_{σ} of $X(\Delta)$ corresponding to the faces of σ .

Toric varieties

Every toric variety X over a field K admits a canonical band scheme model \mathfrak{X} over \mathbb{F}_1^{\pm} .

If Δ is a rational polyhedral fan in \mathbb{R}^n , σ is a cone in Δ , and $A_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$ is the set of lattice points of the dual cone, we set

$$U_{\sigma} = \operatorname{\mathsf{Spec}} \mathbb{F}_1^{\pm}[t^{\lambda}]_{\lambda \in A_{\sigma}}$$

and $X(\Delta) = \operatorname{colim}_{\sigma \in \Delta} U_{\sigma}$.

The points of $X(\Delta)$ correspond bijectively to the cones $\sigma \in \Delta$, with points of the open affine subset U_{σ} of $X(\Delta)$ corresponding to the faces of σ .

Examples

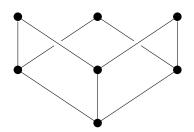


Figure: The projective line \mathbb{P}^1 and the projective plane \mathbb{P}^2

Let K be a field equipped with a valuation, i.e., a band homomorphism $v:K\to\mathbb{T}$.

Let $X = \operatorname{Spec} R$ be an affine K-scheme of finite type, which we can consider as a band scheme by considering the K-algebra R as a band.

Then $X(\mathbb{T}) = \operatorname{Hom}_K(R, \mathbb{T})$ is canonically homeomorphic to the Berkovich analytification of X.

Let K be a field equipped with a valuation, i.e., a band homomorphism $v:K\to\mathbb{T}$.

Let $X = \operatorname{Spec} R$ be an affine K-scheme of finite type, which we can consider as a band scheme by considering the K-algebra R as a band.

Then $X(\mathbb{T}) = \operatorname{Hom}_K(R, \mathbb{T})$ is canonically homeomorphic to the Berkovich analytification of X.

Let K be a field equipped with a valuation, i.e., a band homomorphism $v:K\to\mathbb{T}$.

Let $X = \operatorname{Spec} R$ be an affine K-scheme of finite type, which we can consider as a band scheme by considering the K-algebra R as a band.

Then $X(\mathbb{T}) = \operatorname{Hom}_{K}(R, \mathbb{T})$ is canonically homeomorphic to the Berkovich analytification of X.

Let K be a field equipped with a valuation, i.e., a band homomorphism $v:K\to \mathbb{T}$.

Let $X = \operatorname{Spec} R$ be an affine K-scheme of finite type, which we can consider as a band scheme by considering the K-algebra R as a band.

Then $X(\mathbb{T}) = \operatorname{Hom}_{K}(R, \mathbb{T})$ is canonically homeomorphic to the Berkovich analytification of X.

Choosing generators a_1, \ldots, a_n for R as a K-algebra yields a presentation $R = K[a_1, \ldots, a_n]/I$ for some ideal I.

Let C be the band consisting of the pointed submonoid of R generated by K and a_1, \ldots, a_n , with null set given by those formal sums $\sum c_i$ with $\sum c_i \in I$.

Let Y be the K-band scheme Spec C.

Theorem (Lorscheid)

Choosing generators a_1, \ldots, a_n for R as a K-algebra yields a presentation $R = K[a_1, \ldots, a_n]/I$ for some ideal I.

Let C be the band consisting of the pointed submonoid of R generated by K and a_1, \ldots, a_n , with null set given by those formal sums $\sum c_i$ with $\sum c_i \in I$.

Let Y be the K-band scheme Spec C.

Theorem (Lorscheid)

Choosing generators a_1, \ldots, a_n for R as a K-algebra yields a presentation $R = K[a_1, \ldots, a_n]/I$ for some ideal I.

Let C be the band consisting of the pointed submonoid of R generated by K and a_1, \ldots, a_n , with null set given by those formal sums $\sum c_i$ with $\sum c_i \in I$.

Let Y be the K-band scheme Spec C.

Theorem (Lorscheid)

Choosing generators a_1, \ldots, a_n for R as a K-algebra yields a presentation $R = K[a_1, \ldots, a_n]/I$ for some ideal I.

Let C be the band consisting of the pointed submonoid of R generated by K and a_1, \ldots, a_n , with null set given by those formal sums $\sum c_i$ with $\sum c_i \in I$.

Let Y be the K-band scheme Spec C.

Theorem (Lorscheid)

Algebraic groups

Lorscheid proved that every split reductive group G has a band scheme model $\mathfrak G$ over $\mathbb F_1^\pm$ with the property that the Tits space of $\mathfrak G$ is the Weyl group of G.

For example, when $G = SL_2$, we let B be the band whose underlying pointed monoid is generated by indeterminates a, b, c, d and whose null set is generated by ad - bc - 1.

The Tits space of $\mathfrak{G} = \operatorname{Spec} B$ is naturally isomorphic to the Weyl group S_2 of G.

Algebraic groups

Lorscheid proved that every split reductive group G has a band scheme model $\mathfrak G$ over $\mathbb F_1^\pm$ with the property that the Tits space of $\mathfrak G$ is the Weyl group of G.

For example, when $G = SL_2$, we let B be the band whose underlying pointed monoid is generated by indeterminates a, b, c, d and whose null set is generated by ad - bc - 1.

The Tits space of $\mathfrak{G} = \operatorname{Spec} B$ is naturally isomorphic to the Weyl group S_2 of G.

Algebraic groups

Lorscheid proved that every split reductive group G has a band scheme model $\mathfrak G$ over $\mathbb F_1^\pm$ with the property that the Tits space of $\mathfrak G$ is the Weyl group of G.

For example, when $G = SL_2$, we let B be the band whose underlying pointed monoid is generated by indeterminates a, b, c, d and whose null set is generated by ad - bc - 1.

The Tits space of $\mathfrak{G} = \operatorname{Spec} B$ is naturally isomorphic to the Weyl group S_2 of G.

Inspired by Hannah Markwig's talk this morning, suppose F is a tract. Here is a (tentative) definition of the *Grothendieck–Witt band* GW(F):

- ① The pointed monoid of GW(F) is $F^{\times}/(F^{\times})^2$.
- ② The null set of GW(F) is generated by relations of the form $\langle a \rangle + \langle b \rangle \langle c \rangle \langle d \rangle$, where $a \neq -b$, $a+b-c \in N_F$, and $a^2b+ab^2-d \in N_F$.

When F = K is a field, this coincides with the usual Grothendieck–Witt ring of K.

When $F = \mathbb{F}_1^{\pm}$, $\mathrm{GW}(\mathbb{F}_1^{\pm})$ is the pointed monoid $\{0, \langle 1 \rangle, \langle -1 \rangle\}$, with null set generated by $\langle 1 \rangle - \langle 1 \rangle$.

Inspired by Hannah Markwig's talk this morning, suppose F is a tract. Here is a (tentative) definition of the *Grothendieck–Witt band* GW(F):

- **1** The pointed monoid of GW(F) is $F^{\times}/(F^{\times})^2$.
- ② The null set of GW(F) is generated by relations of the form $\langle a \rangle + \langle b \rangle \langle c \rangle \langle d \rangle$, where $a \neq -b$, $a+b-c \in N_F$, and $a^2b+ab^2-d \in N_F$.

When F = K is a field, this coincides with the usual Grothendieck–Witt ring of K.

When $F = \mathbb{F}_1^{\pm}$, $\mathrm{GW}(\mathbb{F}_1^{\pm})$ is the pointed monoid $\{0, \langle 1 \rangle, \langle -1 \rangle\}$, with null set generated by $\langle 1 \rangle - \langle 1 \rangle$.

Inspired by Hannah Markwig's talk this morning, suppose F is a tract. Here is a (tentative) definition of the *Grothendieck–Witt band* GW(F):

- **1** The pointed monoid of GW(F) is $F^{\times}/(F^{\times})^2$.
- ② The null set of GW(F) is generated by relations of the form $\langle a \rangle + \langle b \rangle \langle c \rangle \langle d \rangle$, where $a \neq -b$, $a + b c \in N_F$, and $a^2b + ab^2 d \in N_F$.

When F = K is a field, this coincides with the usual Grothendieck–Witt ring of K.

When $F = \mathbb{F}_1^{\pm}$, $\mathrm{GW}(\mathbb{F}_1^{\pm})$ is the pointed monoid $\{0, \langle 1 \rangle, \langle -1 \rangle\}$, with null set generated by $\langle 1 \rangle - \langle 1 \rangle$.

Inspired by Hannah Markwig's talk this morning, suppose F is a tract. Here is a (tentative) definition of the *Grothendieck–Witt band* GW(F):

- **1** The pointed monoid of GW(F) is $F^{\times}/(F^{\times})^2$.
- ② The null set of GW(F) is generated by relations of the form $\langle a \rangle + \langle b \rangle \langle c \rangle \langle d \rangle$, where $a \neq -b$, $a + b c \in N_F$, and $a^2b + ab^2 d \in N_F$.

When F = K is a field, this coincides with the usual Grothendieck–Witt ring of K.

When $F = \mathbb{F}_1^{\pm}$, $GW(\mathbb{F}_1^{\pm})$ is the pointed monoid $\{0, \langle 1 \rangle, \langle -1 \rangle\}$, with null set generated by $\langle 1 \rangle - \langle 1 \rangle$.

Inspired by Hannah Markwig's talk this morning, suppose F is a tract. Here is a (tentative) definition of the *Grothendieck–Witt band* GW(F):

- **1** The pointed monoid of GW(F) is $F^{\times}/(F^{\times})^2$.
- ② The null set of GW(F) is generated by relations of the form $\langle a \rangle + \langle b \rangle \langle c \rangle \langle d \rangle$, where $a \neq -b$, $a + b c \in N_F$, and $a^2b + ab^2 d \in N_F$.

When F = K is a field, this coincides with the usual Grothendieck–Witt ring of K.

When $F = \mathbb{F}_1^{\pm}$, $\mathrm{GW}(\mathbb{F}_1^{\pm})$ is the pointed monoid $\{0, \langle 1 \rangle, \langle -1 \rangle\}$, with null set generated by $\langle 1 \rangle - \langle 1 \rangle$.

Irresponsible speculation

Inspired by Hannah Markwig's talk this morning, suppose F is a tract. Here is a (tentative) definition of the *Grothendieck–Witt band* GW(F):

- **1** The pointed monoid of GW(F) is $F^{\times}/(F^{\times})^2$.
- ② The null set of GW(F) is generated by relations of the form $\langle a \rangle + \langle b \rangle \langle c \rangle \langle d \rangle$, where $a \neq -b$, $a + b c \in N_F$, and $a^2b + ab^2 d \in N_F$.

When F = K is a field, this coincides with the usual Grothendieck–Witt ring of K.

When $F = \mathbb{F}_1^{\pm}$, $\mathrm{GW}(\mathbb{F}_1^{\pm})$ is the pointed monoid $\{0, \langle 1 \rangle, \langle -1 \rangle\}$, with null set generated by $\langle 1 \rangle - \langle 1 \rangle$.

Question: Do the enriched point counts for the enumerative problems which Hannah discussed "naturally live" in $\mathrm{GW}(\mathbb{F}_1^\pm)$?

Matroids

Recall that a matroid M of rank r on [n] is a non-empty collection $\mathcal B$ of r-element subsets of E, called the bases of M, such that for all $B, B' \in \mathcal B$ and $x \in B - B'$, there exists $y \in B' - B$ such that B - x + y and B' - y + x belong to $\mathcal B$.

Let $\mathcal{G}(r,n)$ be the projective band scheme over \mathbb{F}_1^{\pm} defined by the *Plücker relations*.

For example, the "homogeneous null set" of $\mathcal{G}(2,4)$ is defined by the relation $x_{12}x_{34} - x_{13}x_{24} + x_{14}x_{23}$.

Matroids

Recall that a matroid M of rank r on [n] is a non-empty collection $\mathcal B$ of r-element subsets of E, called the bases of M, such that for all $B, B' \in \mathcal B$ and $x \in B - B'$, there exists $y \in B' - B$ such that B - x + y and B' - y + x belong to $\mathcal B$.

Let $\mathcal{G}(r,n)$ be the projective band scheme over \mathbb{F}_1^{\pm} defined by the *Plücker relations*.

For example, the "homogeneous null set" of $\mathcal{G}(2,4)$ is defined by the relation $x_{12}x_{34} - x_{13}x_{24} + x_{14}x_{23}$.

Matroids

Recall that a matroid M of rank r on [n] is a non-empty collection $\mathcal B$ of r-element subsets of E, called the bases of M, such that for all $B, B' \in \mathcal B$ and $x \in B - B'$, there exists $y \in B' - B$ such that B - x + y and B' - y + x belong to $\mathcal B$.

Let $\mathcal{G}(r,n)$ be the projective band scheme over \mathbb{F}_1^{\pm} defined by the *Plücker relations*.

For example, the "homogeneous null set" of $\mathcal{G}(2,4)$ is defined by the relation $x_{12}x_{34} - x_{13}x_{24} + x_{14}x_{23}$.

Properties of the band scheme Grassmannian

- If K is a field, $\mathcal{G}(r,n)(K)$ is the set of r-dimensional subspaces of K^n .
- ② For the Krasner hyperfield \mathbb{K} , $\mathcal{G}(r, n)(\mathbb{K})$ is the set of rank r matroids on [n].
- ③ The Tits space of $\mathcal{G}(r,n)$ consists of the rank r matroids on [n] with a unique basis, which can be identified with the set of r-element subsets of [n]. In particular, the Tits space has $\binom{n}{r}$ elements.

Properties of the band scheme Grassmannian

- If K is a field, $\mathcal{G}(r,n)(K)$ is the set of r-dimensional subspaces of K^n .
- ② For the Krasner hyperfield \mathbb{K} , $\mathcal{G}(r, n)(\mathbb{K})$ is the set of rank r matroids on [n].
- ③ The Tits space of $\mathcal{G}(r,n)$ consists of the rank r matroids on [n] with a unique basis, which can be identified with the set of r-element subsets of [n]. In particular, the Tits space has $\binom{n}{r}$ elements.

Properties of the band scheme Grassmannian

- If K is a field, $\mathcal{G}(r,n)(K)$ is the set of r-dimensional subspaces of K^n .
- ② For the Krasner hyperfield \mathbb{K} , $\mathcal{G}(r, n)(\mathbb{K})$ is the set of rank r matroids on [n].
- **3** The Tits space of $\mathcal{G}(r,n)$ consists of the rank r matroids on [n] with a unique basis, which can be identified with the set of r-element subsets of [n]. In particular, the Tits space has $\binom{n}{r}$ elements.

For any tract F, we can define the set $\mathcal{G}(r, n)(F)$ of F-matroids of rank r on [n].

Nathan Bowler and I gave cryptomorphic descriptions of *F*-matroids in terms of *F-circuits* and *dual pairs* of *F-circuits* and *F-cocircuits*.

Given a tract homomorphism $F \to F'$ and an F-matroid M, we can define a push-forward F'-matroid M'.

In particular, every F-matroid has an underlying matroid corresponding to the canonical homomorphism $F \to \mathbb{K}$.

For any tract F, we can define the set $\mathcal{G}(r, n)(F)$ of F-matroids of rank r on [n].

Nathan Bowler and I gave cryptomorphic descriptions of *F*-matroids in terms of *F*-circuits and dual pairs of *F*-circuits and *F*-cocircuits.

Given a tract homomorphism $F \to F'$ and an F-matroid M, we can define a push-forward F'-matroid M'.

In particular, every F-matroid has an underlying matroid, corresponding to the canonical homomorphism $F \to \mathbb{K}$.

For any tract F, we can define the set $\mathcal{G}(r, n)(F)$ of F-matroids of rank r on [n].

Nathan Bowler and I gave cryptomorphic descriptions of *F*-matroids in terms of *F*-circuits and dual pairs of *F*-circuits and *F*-cocircuits.

Given a tract homomorphism $F \to F'$ and an F-matroid M, we can define a push-forward F'-matroid M'.

In particular, every F-matroid has an underlying matroid, corresponding to the canonical homomorphism $F \to \mathbb{K}$.

For any tract F, we can define the set $\mathcal{G}(r, n)(F)$ of F-matroids of rank r on [n].

Nathan Bowler and I gave cryptomorphic descriptions of *F*-matroids in terms of *F*-circuits and dual pairs of *F*-circuits and *F*-cocircuits.

Given a tract homomorphism $F \to F'$ and an F-matroid M, we can define a push-forward F'-matroid M'.

In particular, every F-matroid has an underlying matroid, corresponding to the canonical homomorphism $F \to \mathbb{K}$.

Matroids over a field

When F = K is a field, an F-matroid of rank r on [n] is the same thing as an r-dimensional subspace W of K^n .

Given an $r \times n$ matrix A of rank r whose row space is W, the bases of the underlying matroid M of W are those r-element subsets of [n] for which the corresponding columns of A are linearly independent over K

Matroids over a field

When F = K is a field, an F-matroid of rank r on [n] is the same thing as an r-dimensional subspace W of K^n .

Given an $r \times n$ matrix A of rank r whose row space is W, the bases of the underlying matroid M of W are those r-element subsets of [n] for which the corresponding columns of A are linearly independent over K.

Given a matroid M and a tract F:

- ① The thin Schubert cell $Gr_M(F)$ is the set of F-matroids with underlying matroid M.
- ② The realization space $\underline{\mathrm{Gr}}_M(F)$ is the set of $(F^\times)^n$ -orbits of $\mathrm{Gr}_M(F)$.

Note for the experts: we frequently use just the 3-term Plücker relations when defining realization spaces.

For every matroid M, $\operatorname{Gr}_M(F)$ and $\operatorname{\underline{Gr}}_M(F)$ can naturally be identified with the F-points of affine band schemes Gr_M and $\operatorname{\underline{Gr}}_M$, respectively, which are defined over \mathbb{F}_1^{\pm} .

Given a matroid M and a tract F:

- The thin Schubert cell $Gr_M(F)$ is the set of F-matroids with underlying matroid M.
- ② The realization space $\underline{\mathrm{Gr}}_M(F)$ is the set of $(F^\times)^n$ -orbits of $\mathrm{Gr}_M(F)$.

Note for the experts: we frequently use just the 3-term Plücker relations when defining realization spaces.

For every matroid M, $\operatorname{Gr}_M(F)$ and $\underline{\operatorname{Gr}}_M(F)$ can naturally be identified with the F-points of affine band schemes Gr_M and $\underline{\operatorname{Gr}}_M$, respectively, which are defined over \mathbb{F}_+^{\pm} .

Given a matroid M and a tract F:

- The thin Schubert cell $Gr_M(F)$ is the set of F-matroids with underlying matroid M.
- ② The realization space $\underline{\mathrm{Gr}}_M(F)$ is the set of $(F^\times)^n$ -orbits of $\mathrm{Gr}_M(F)$.

Note for the experts: we frequently use just the 3-term Plücker relations when defining realization spaces.

For every matroid M, $\operatorname{Gr}_M(F)$ and $\operatorname{\underline{Gr}}_M(F)$ can naturally be identified with the F-points of affine band schemes Gr_M and $\operatorname{\underline{Gr}}_M$, respectively, which are defined over \mathbb{F}_1^{\pm} .

Given a matroid M and a tract F:

- The thin Schubert cell $Gr_M(F)$ is the set of F-matroids with underlying matroid M.
- ② The realization space $\underline{\mathrm{Gr}}_M(F)$ is the set of $(F^\times)^n$ -orbits of $\mathrm{Gr}_M(F)$.

Note for the experts: we frequently use just the 3-term Plücker relations when defining realization spaces.

For every matroid M, $\operatorname{Gr}_M(F)$ and $\operatorname{\underline{Gr}}_M(F)$ can naturally be identified with the F-points of affine band schemes Gr_M and $\operatorname{\underline{Gr}}_M$, respectively, which are defined over \mathbb{F}_1^{\pm} .

Given a matroid M and a tract F:

- The thin Schubert cell $Gr_M(F)$ is the set of F-matroids with underlying matroid M.
- ② The realization space $\underline{\mathrm{Gr}}_M(F)$ is the set of $(F^\times)^n$ -orbits of $\mathrm{Gr}_M(F)$.

Note for the experts: we frequently use just the 3-term Plücker relations when defining realization spaces.

For every matroid M, $\operatorname{Gr}_M(F)$ and $\operatorname{\underline{Gr}}_M(F)$ can naturally be identified with the F-points of affine band schemes Gr_M and $\operatorname{\underline{Gr}}_M$, respectively, which are defined over \mathbb{F}_1^{\pm} .

Given a matroid M and a tract F:

- The thin Schubert cell $Gr_M(F)$ is the set of F-matroids with underlying matroid M.
- ② The realization space $\underline{\mathrm{Gr}}_M(F)$ is the set of $(F^\times)^n$ -orbits of $\mathrm{Gr}_M(F)$.

Note for the experts: we frequently use just the 3-term Plücker relations when defining realization spaces.

For every matroid M, $\operatorname{Gr}_M(F)$ and $\operatorname{\underline{Gr}}_M(F)$ can naturally be identified with the F-points of affine band schemes Gr_M and $\operatorname{\underline{Gr}}_M$, respectively, which are defined over \mathbb{F}_1^{\pm} .

Let $M = U_{2,4}$, whose bases are all 2-element subsets of $\{1, 2, 3, 4\}$.

If K is a field, then up to the action of $(K^{\times})^4$, every 2-dimensional subspace W of K^4 can be written as the row space of

$$\begin{pmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & t
\end{pmatrix}$$

for a unique $t \in K - \{0, 1\}$.

The foundation F_M has underlying pointed monoid generated by x, x^{-1}, y, y^{-1} and null set generated by x + y - 1.

The realization space $\underline{\mathrm{Gr}}_M$ is the affine band scheme $\mathrm{Spec}\,F_M$

Let $M = U_{2,4}$, whose bases are all 2-element subsets of $\{1, 2, 3, 4\}$.

If K is a field, then up to the action of $(K^{\times})^4$, every 2-dimensional subspace W of K^4 can be written as the row space of

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & t \end{pmatrix}$$

for a unique $t \in K - \{0, 1\}$.

The foundation F_M has underlying pointed monoid generated by x, x^{-1}, y, y^{-1} and null set generated by x + y - 1.

The realization space $\underline{\mathrm{Gr}}_M$ is the affine band scheme Spec F_M

Let $M = U_{2,4}$, whose bases are all 2-element subsets of $\{1, 2, 3, 4\}$.

If K is a field, then up to the action of $(K^{\times})^4$, every 2-dimensional subspace W of K^4 can be written as the row space of

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & t \end{pmatrix}$$

for a unique $t \in K - \{0, 1\}$.

The foundation F_M has underlying pointed monoid generated by x, x^{-1}, y, y^{-1} and null set generated by x + y - 1.

The realization space \underline{Gr}_M is the affine band scheme Spec F_M .

Let $M = U_{2,4}$, whose bases are all 2-element subsets of $\{1, 2, 3, 4\}$.

If K is a field, then up to the action of $(K^{\times})^4$, every 2-dimensional subspace W of K^4 can be written as the row space of

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & t \end{pmatrix}$$

for a unique $t \in K - \{0, 1\}$.

The foundation F_M has underlying pointed monoid generated by x, x^{-1}, y, y^{-1} and null set generated by x + y - 1.

The realization space \underline{Gr}_M is the affine band scheme Spec F_M .

A valuated matroid of rank r on [n] is a \mathbb{T} -matroid.

For example, a valuated matroid with underlying matroid $U_{2,4}$ is a point $[p_{12}:p_{13}:p_{14}:p_{23}:p_{24}:p_{34}]\in\mathbb{P}^5(\mathbb{T})$ with $p_{ij}>0$ such that the maximum of $p_{12}p_{34},p_{13}p_{24},p_{14}p_{23}$ is achieved at least twice.

Valuated matroids are canonically in bijection with tropical linear spaces, i.e., tropical varieties of degree 1.

The (logarithm of the) tropical realization space $\underline{Gr}_M(\mathbb{T})$ is called the *Dressian* of M.

A valuated matroid of rank r on [n] is a \mathbb{T} -matroid.

For example, a valuated matroid with underlying matroid $U_{2,4}$ is a point $[p_{12}:p_{13}:p_{14}:p_{23}:p_{24}:p_{34}] \in \mathbb{P}^5(\mathbb{T})$ with $p_{ij}>0$ such that the maximum of $p_{12}p_{34},p_{13}p_{24},p_{14}p_{23}$ is achieved at least twice.

Valuated matroids are canonically in bijection with tropical linear spaces, i.e., tropical varieties of degree 1.

The (logarithm of the) tropical realization space $\underline{\mathrm{Gr}}_M(\mathbb{T})$ is called the *Dressian* of M.

A valuated matroid of rank r on [n] is a \mathbb{T} -matroid.

For example, a valuated matroid with underlying matroid $U_{2,4}$ is a point $[p_{12}:p_{13}:p_{14}:p_{23}:p_{24}:p_{34}] \in \mathbb{P}^5(\mathbb{T})$ with $p_{ij}>0$ such that the maximum of $p_{12}p_{34},p_{13}p_{24},p_{14}p_{23}$ is achieved at least twice.

Valuated matroids are canonically in bijection with tropical linear spaces, i.e., tropical varieties of degree 1.

The (logarithm of the) tropical realization space $\underline{Gr}_M(\mathbb{T})$ is called the *Dressian* of M.

A valuated matroid of rank r on [n] is a \mathbb{T} -matroid.

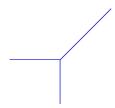
For example, a valuated matroid with underlying matroid $U_{2,4}$ is a point $[p_{12}:p_{13}:p_{14}:p_{23}:p_{24}:p_{34}]\in\mathbb{P}^5(\mathbb{T})$ with $p_{ij}>0$ such that the maximum of $p_{12}p_{34},p_{13}p_{24},p_{14}p_{23}$ is achieved at least twice.

Valuated matroids are canonically in bijection with tropical linear spaces, i.e., tropical varieties of degree 1.

The (logarithm of the) tropical realization space $\underline{\mathrm{Gr}}_M(\mathbb{T})$ is called the *Dressian* of M.

Example

The Dressian of $U_{2,4}$ is homeomorphic to the tropical line defined by x + y + 1:



Representability

A matroid M is representable over a tract F if the set of F-matroids with underlying matroid M is non-empty.

Equivalently, M is representable over F iff there is a homomorphism from F_M to F.

A matroid M is representable over F_1 and F_2 iff M is representable over $F_1 \times F_2$. Since $\mathbb{F}_2 \times \mathbb{F}_3 \cong \mathbb{F}_1^{\pm}$, the initial object in the category of tracts, we immediately obtain Tutte's theorem that a matroid M is representable over \mathbb{F}_2 and \mathbb{F}_3 iff M is representable over every field.

Representability

A matroid M is representable over a tract F if the set of F-matroids with underlying matroid M is non-empty.

Equivalently, M is representable over F iff there is a homomorphism from F_M to F.

A matroid M is representable over F_1 and F_2 iff M is representable over $F_1 \times F_2$. Since $\mathbb{F}_2 \times \mathbb{F}_3 \cong \mathbb{F}_1^{\pm}$, the initial object in the category of tracts, we immediately obtain Tutte's theorem that a matroid M is representable over \mathbb{F}_2 and \mathbb{F}_3 iff M is representable over every field.

Representability

A matroid M is representable over a tract F if the set of F-matroids with underlying matroid M is non-empty.

Equivalently, M is representable over F iff there is a homomorphism from F_M to F.

A matroid M is representable over F_1 and F_2 iff M is representable over $F_1 \times F_2$. Since $\mathbb{F}_2 \times \mathbb{F}_3 \cong \mathbb{F}_1^{\pm}$, the initial object in the category of tracts, we immediately obtain Tutte's theorem that a matroid M is representable over \mathbb{F}_2 and \mathbb{F}_3 iff M is representable over every field.

Properties of the foundation

- The foundation of M is isomorphic to the foundation of the dual matroid M^* .
- ② The foundation of $M_1 \oplus M_2$ is isomorphic to the tensor product $F_{M_1} \otimes F_{M_2}$.
- ③ If N is an embedded minor of M, i.e., $N = M \setminus I/J$ for disjoint sets $I, J \subseteq [n]$ with J independent and I co-independent, there is a canonical morphism $F_N \to F_M$. In particular, if M is representable over a tract F then so is N.

Properties of the foundation

- The foundation of M is isomorphic to the foundation of the dual matroid M^* .
- ② The foundation of $M_1 \oplus M_2$ is isomorphic to the tensor product $F_{M_1} \otimes F_{M_2}$.
- ③ If N is an embedded minor of M, i.e., $N = M \setminus I/J$ for disjoint sets $I, J \subseteq [n]$ with J independent and I co-independent, there is a canonical morphism $F_N \to F_M$. In particular, if M is representable over a tract F then so is N.

Properties of the foundation

- The foundation of M is isomorphic to the foundation of the dual matroid M^* .
- ② The foundation of $M_1 \oplus M_2$ is isomorphic to the tensor product $F_{M_1} \otimes F_{M_2}$.
- **3** If N is an *embedded minor* of M, i.e., $N = M \setminus I/J$ for disjoint sets $I, J \subseteq [n]$ with J independent and I co-independent, there is a canonical morphism $F_N \to F_M$. In particular, if M is representable over a tract F then so is N.

Canonical presentation for the foundation

There are special elements in the foundation of a matroid M called *cross-ratios*. These are the (finitely many) elements $x \in F_M$ for which there exists a $y \in F_M$ with x + y - 1 in the null set of F_M .

There is a natural action of S_3 on the set of such pairs (x, y), and the orbits of this action are canonically in bijection with embedded $U_{2,4}$ -minors of M.

Theorem (B-Lorscheid)

- ① The cross-ratios of M generate the foundation of M.
- ② All additive relations in F_M are inherited from embedded $U_{2,4}$ minors.
- ⓐ All multiplicative relations in F_M are inherited from embedded minors of M with at most 7 elements.

Canonical presentation for the foundation

There are special elements in the foundation of a matroid M called *cross-ratios*. These are the (finitely many) elements $x \in F_M$ for which there exists a $y \in F_M$ with x + y - 1 in the null set of F_M .

There is a natural action of S_3 on the set of such pairs (x, y), and the orbits of this action are canonically in bijection with embedded $U_{2,4}$ -minors of M.

Theorem (B-Lorscheid)

- ① The cross-ratios of M generate the foundation of M.
- ② All additive relations in F_M are inherited from embedded $U_{2,4}$ minors.
- ⓐ All multiplicative relations in F_M are inherited from embedded minors of M with at most 7 elements.

Canonical presentation for the foundation

There are special elements in the foundation of a matroid M called *cross-ratios*. These are the (finitely many) elements $x \in F_M$ for which there exists a $y \in F_M$ with x + y - 1 in the null set of F_M .

There is a natural action of S_3 on the set of such pairs (x, y), and the orbits of this action are canonically in bijection with embedded $U_{2,4}$ -minors of M.

Theorem (B-Lorscheid)

- The cross-ratios of M generate the foundation of M.
- ② All additive relations in F_M are inherited from embedded $U_{2,4}$ minors.
- 3 All multiplicative relations in F_M are inherited from embedded minors of M with at most 7 elements.

Canonical presentation for the foundation

There are special elements in the foundation of a matroid M called *cross-ratios*. These are the (finitely many) elements $x \in F_M$ for which there exists a $y \in F_M$ with x + y - 1 in the null set of F_M .

There is a natural action of S_3 on the set of such pairs (x, y), and the orbits of this action are canonically in bijection with embedded $U_{2,4}$ -minors of M.

Theorem (B-Lorscheid)

- The cross-ratios of M generate the foundation of M.
- ② All additive relations in F_M are inherited from embedded $U_{2,4}$ minors.
- 3 All multiplicative relations in F_M are inherited from embedded minors of M with at most 7 elements.

Canonical presentation for the foundation

There are special elements in the foundation of a matroid M called *cross-ratios*. These are the (finitely many) elements $x \in F_M$ for which there exists a $y \in F_M$ with x + y - 1 in the null set of F_M .

There is a natural action of S_3 on the set of such pairs (x, y), and the orbits of this action are canonically in bijection with embedded $U_{2,4}$ -minors of M.

Theorem (B-Lorscheid)

- The cross-ratios of M generate the foundation of M.
- ② All additive relations in F_M are inherited from embedded $U_{2,4}$ minors.
- 3 All multiplicative relations in F_M are inherited from embedded minors of M with at most 7 elements.

The fact that cross-ratios generate the foundation immediately implies the well-known fact that a matroid with no $U_{2,4}$ -minor must be binary.

It also implies that there is a canonical embedding of the realization space Gr_M in a torus T.

Cross-ratios also give a canonical fan structure on the Dressian of M, which lives in the tropicalization of T, and this gives a canonical way to compactify \underline{Gr}_M , by taking the closure in the associated toric variety.

The canonical presentation can also be used to prove:

Theorem (B–Lorscheid)

The fact that cross-ratios generate the foundation immediately implies the well-known fact that a matroid with no $U_{2,4}$ -minor must be binary.

It also implies that there is a canonical embedding of the realization space \underline{Gr}_M in a torus T.

Cross-ratios also give a canonical fan structure on the Dressian of M, which lives in the tropicalization of T, and this gives a canonical way to compactify \underline{Gr}_M , by taking the closure in the associated toric variety.

The canonical presentation can also be used to prove:

Theorem (B–Lorscheid)

The fact that cross-ratios generate the foundation immediately implies the well-known fact that a matroid with no $U_{2,4}$ -minor must be binary.

It also implies that there is a canonical embedding of the realization space \underline{Gr}_M in a torus T.

Cross-ratios also give a canonical fan structure on the Dressian of M, which lives in the tropicalization of T, and this gives a canonical way to compactify $\underline{\operatorname{Gr}}_M$, by taking the closure in the associated toric variety.

The canonical presentation can also be used to prove

Theorem (B–Lorscheid)

The fact that cross-ratios generate the foundation immediately implies the well-known fact that a matroid with no $U_{2,4}$ -minor must be binary.

It also implies that there is a canonical embedding of the realization space \underline{Gr}_M in a torus T.

Cross-ratios also give a canonical fan structure on the Dressian of M, which lives in the tropicalization of T, and this gives a canonical way to compactify $\underline{\operatorname{Gr}}_M$, by taking the closure in the associated toric variety.

The canonical presentation can also be used to prove:

Theorem (B-Lorscheid)

The fact that cross-ratios generate the foundation immediately implies the well-known fact that a matroid with no $U_{2,4}$ -minor must be binary.

It also implies that there is a canonical embedding of the realization space \underline{Gr}_M in a torus T.

Cross-ratios also give a canonical fan structure on the Dressian of M, which lives in the tropicalization of T, and this gives a canonical way to compactify \underline{Gr}_M , by taking the closure in the associated toric variety.

The canonical presentation can also be used to prove:

Theorem (B-Lorscheid)

Exotic bijections between realization spaces

The previous theorem can be used to prove new results about matroid representations over **fields**. For example:

Theorem (B–Lorscheid)

Suppose q, q_1, q_2 are prime powers with $3 \nmid q$ such that $q - 2 = (q_1 - 2)(q_2 - 2)$. Then for every ternary matroid M,

$$\underline{\mathrm{Gr}}_{M}(\mathbb{F}_{q}) \cong \underline{\mathrm{Gr}}_{M}(\mathbb{F}_{q_{1}}) \times \underline{\mathrm{Gr}}_{M}(\mathbb{F}_{q_{2}}).$$

For example, if M is ternary then

$$\underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_{17}) \cong \underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_5) \times \underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_7).$$

Exotic bijections between realization spaces

The previous theorem can be used to prove new results about matroid representations over **fields**. For example:

Theorem (B-Lorscheid)

Suppose q, q_1, q_2 are prime powers with $3 \nmid q$ such that $q - 2 = (q_1 - 2)(q_2 - 2)$. Then for every ternary matroid M,

$$\underline{\mathrm{Gr}}_{M}(\mathbb{F}_{q}) \cong \underline{\mathrm{Gr}}_{M}(\mathbb{F}_{q_{1}}) \times \underline{\mathrm{Gr}}_{M}(\mathbb{F}_{q_{2}}).$$

For example, if M is ternary then

$$\underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_{17}) \cong \underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_5) \times \underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_7).$$

Exotic bijections between realization spaces

The previous theorem can be used to prove new results about matroid representations over **fields**. For example:

Theorem (B–Lorscheid)

Suppose q, q_1, q_2 are prime powers with $3 \nmid q$ such that $q - 2 = (q_1 - 2)(q_2 - 2)$. Then for every ternary matroid M,

$$\underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_q) \cong \underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_{q_1}) \times \underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_{q_2}).$$

For example, if M is ternary then

$$\underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_{17}) \cong \underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_5) \times \underline{\mathrm{Gr}}_{\mathcal{M}}(\mathbb{F}_7).$$

Application to Lorentzian polynomials

As explained in June Huh's second lecture, if M is any matroid the space \underline{L}_M of Lorentzian polynomials with support M, modulo rescaling of the variables, is canonically homeomorphic to $\underline{\mathrm{Gr}}_M(\mathbb{T}_1)$, where \mathbb{T}_1 is the triangle hyperfield.

Using this and our classification theorem, one can determine all possible homeomorphism types of \underline{L}_M for matroids without $U_{2,5}$ or $U_{3,5}$ minors:

Theorem (B.–Huh–Kummer–Lorscheid)

Let M be a matroid that does not have a $U_{2,5}$ or $U_{3,5}$ minor. Then $\underline{\mathrm{Gr}}_M(\mathbb{T}_1)$, and hence \underline{L}_M , is homeomorphic to a (finite) product of half-open intervals and discs with three points removed from the boundary.

Application to Lorentzian polynomials

As explained in June Huh's second lecture, if M is any matroid the space \underline{L}_M of Lorentzian polynomials with support M, modulo rescaling of the variables, is canonically homeomorphic to $\underline{\mathrm{Gr}}_M(\mathbb{T}_1)$, where \mathbb{T}_1 is the triangle hyperfield.

Using this and our classification theorem, one can determine all possible homeomorphism types of \underline{L}_M for matroids without $U_{2,5}$ or $U_{3,5}$ minors:

Theorem (B.-Huh-Kummer-Lorscheid)

Let M be a matroid that does not have a $U_{2,5}$ or $U_{3,5}$ minor. Then $\underline{\mathrm{Gr}}_M(\mathbb{T}_1)$, and hence \underline{L}_M , is homeomorphic to a (finite) product of half-open intervals and discs with three points removed from the boundary.

Application to Lorentzian polynomials

As explained in June Huh's second lecture, if M is any matroid the space \underline{L}_M of Lorentzian polynomials with support M, modulo rescaling of the variables, is canonically homeomorphic to $\underline{\mathrm{Gr}}_M(\mathbb{T}_1)$, where \mathbb{T}_1 is the triangle hyperfield.

Using this and our classification theorem, one can determine all possible homeomorphism types of \underline{L}_M for matroids without $U_{2,5}$ or $U_{3,5}$ minors:

Theorem (B.-Huh-Kummer-Lorscheid)

Let M be a matroid that does not have a $U_{2,5}$ or $U_{3,5}$ minor. Then $\underline{\mathrm{Gr}}_M(\mathbb{T}_1)$, and hence \underline{L}_M , is homeomorphic to a (finite) product of half-open intervals and discs with three points removed from the boundary.

A more general result

Theorem (B.-Huh-Kummer-Lorscheid)

If M is any matroid, then \underline{L}_M is homeomorphic to the inverse limit of a finite directed system of topological spaces, each of which is either a half-open interval, a disc with three points removed from the boundary, or a five-dimensional ball with a copy of the Petersen graph removed from the boundary.

Figure: The Petersen graph

Thanks

Thank you!