Kazhdan-Lusztig polynomials of matroids

Nicholas Proudfoot

University of Oregon
AMS Special Session on Arrangements of Hypersurfaces

Arrangements and Flats

Let V be a finite dimensional vector space
\mathcal{A} a finite set of hyperplanes in V with $\bigcap_{H \in \mathcal{A}} H=\{0\}$
$F \subset V$ a flat (intersection of some hyperplanes)

Arrangements and Flats

Definition

The contraction of \mathcal{A} at F is the arrangement

$$
\mathcal{A}^{F}:=\{H \cap F \mid F \not \subset H \in \mathcal{A}\}
$$

in the vector space F.

\mathcal{A}

\mathcal{A}^{F}

Arrangements and Flats

Definition

The localization of \mathcal{A} at F is the arrangement

$$
\mathcal{A}_{F}:=\{H / F \mid F \subset H \in \mathcal{A}\}
$$

in the vector space V / F.

Characteristic Polynomial

Let $\chi_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ be the characteristic polynomial of \mathcal{A}.
If V is a vector space over $\mathbb{F}_{q}, \chi_{\mathcal{A}}(q)=\left|V \backslash \bigcup_{H \in \mathcal{A}} H\right|$.

Example

$$
\chi_{\mathcal{A}}(t)=t^{2}-3 t+2
$$

Kazhdan-Lusztig Polynomial

Theorem

There exists a unique way to assign to each arrangement \mathcal{A} a polynomial $P_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ subject to the following conditions:

- If $\operatorname{dim} V=0, P_{\mathcal{A}}(t)=1$
- If $\operatorname{dim} V>0, \operatorname{deg} P_{\mathcal{A}}(t)<\frac{1}{2} \operatorname{dim} V$
- $t^{\operatorname{dim} V} P_{\mathcal{A}}\left(t^{-1}\right)=\sum_{F} \chi_{\mathcal{A}_{F}}(t) P_{\mathcal{A}^{F}}(t)$.
$P_{\mathcal{A}}(t)$ is called the Kazhdan-Lusztig polynomial of \mathcal{A}.

Remark

The theory of Kazhdan-Lusztig-Stanley polynomials provides a common generalization of these polynomials and classical Kazhdan-Lusztig polynomials.

Geometric Interpretation

$$
V \hookrightarrow \bigoplus_{H \in \mathcal{A}} V / H \cong \bigoplus_{H \in \mathcal{A}} \mathbb{A}^{1} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}
$$

Definition

We define the Schubert variety of \mathcal{A}

$$
Y_{\mathcal{A}}:=\bar{V} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}
$$

Have $H^{*}\left(Y_{\mathcal{A}}\right) \curvearrowright \boldsymbol{H}^{*}\left(Y_{\mathcal{A}}\right)$, both concentrated in even degree.

Geometric Interpretation

Theorem (Huh-Wang, P-Xu-Young, Elias-P-Wakefield)

- $\sum t^{i} \operatorname{dim} H^{2 i}\left(Y_{\mathcal{A}}\right)=\sum_{F} t^{\operatorname{codim} F}$
- $\sum t^{i} \operatorname{dim} I H^{2 i}\left(Y_{\mathcal{A}}\right)=\sum_{F} t^{\operatorname{codim} F} P_{\mathcal{A}^{F}}(t)=: Z_{\mathcal{A}}(t)$
- $\sum t^{i} \operatorname{dim}\left(I H^{2 i}\left(Y_{\mathcal{A}}\right) / H^{2}\left(Y_{\mathcal{A}}\right) \cdot I H^{2 i-2}\left(Y_{\mathcal{A}}\right)\right)=P_{\mathcal{A}}(t)$

Corollary

The polynomial $P_{\mathcal{A}}(t)$ has non-negative coefficients.

Remark

The definition of $P_{\mathcal{A}}(t)$ makes sense for matroids, but when the matroid is not realizable, non-negativity is still a conjecture. Work in progress by Braden-Huh-Matherne-P-Wang.

Example

Let \mathcal{A}_{n} be an arrangement of n generic hyperplanes in \mathbb{C}^{n-1}.
What are the flats?

- For each $k<n-1$, there are $\binom{n}{k}$ flats of codimension k. For such a flat F,

$$
\mathcal{A}_{n}^{F} \cong \mathcal{A}_{n-k}
$$

and $\left(\mathcal{A}_{n}\right)_{F}$ is Boolean of rank k.

- There is a unique flat of codimension $n-1$.

$$
\begin{aligned}
t^{n-1} P_{\mathcal{A}_{n}}\left(t^{-1}\right) & =\sum_{k=0}^{n-2}\binom{n}{k}(t-1)^{k} P_{\mathcal{A}_{n-k}}(t)+\chi_{\mathcal{A}_{n}(t)} \\
& =\sum_{k=0}^{n-2}\binom{n}{k}(t-1)^{k} P_{\mathcal{A}_{n-k}}(t)+\frac{(t-1)^{n}+(-1)^{n}(t-1)}{t}
\end{aligned}
$$

Example

Put it in a generating function:

$$
\Phi(t, u):=\sum_{n=2}^{\infty} P_{\mathcal{A}_{n}}(t) u^{n-1}
$$

Then our recursion becomes

$$
\begin{aligned}
\Phi\left(t^{-1}, t u\right) & =\sum_{n=2}^{\infty} t^{n-1} P_{\mathcal{A}_{n}}\left(t^{-1}\right) u^{n-1} \\
& =\sum_{n=2}^{\infty}\left(\sum_{k=0}^{n-2}\binom{n}{k}(t-1)^{k} P_{\mathcal{A}_{n-k}}(t)+\chi_{\mathcal{A}_{n}}(t)\right) u^{n-1} \\
& =\cdots \\
& =\frac{(1+u) \Phi\left(t, \frac{u}{1-u(t-1)}\right)+u(t-1)(1-u(t-1))}{(1+u)(1-u(t-1))^{2}}
\end{aligned}
$$

Example

Theorem (P-Wakefield-Young)

- $\Phi(t, u)=\frac{2}{u} \cdot \frac{(2 t+1) u-1+\sqrt{1-2(2 t u+1) u+u^{2}}}{1-(2 t u+1)^{2}}$
- $P_{\mathcal{A}_{n}}(t)=\sum_{i \geq 0} \frac{1}{i+1}\binom{n}{i}\binom{n-i-2}{i} t^{i}$

Corollary (Gedeon-P-Young)

The polynomial $P_{\mathcal{A}_{n}}(t)$ is real-rooted for all n.

Remark

The polynomial $P_{\mathcal{A}}(t)$ is conjecturally real-rooted for any \mathcal{A}, but this is the only non-trivial family of examples for which we can prove it!

Thanks!

