Our goal: Understand and compute W with morphisms blow up in order to answer the Big Q.

Easiest way to work w/ an algebra = generators + relations. Start with something abstract, like HTT.

Choose symbols for certain elements — i.e. T_H. Now can form $[\text{words}]$ $T_H T_H T_H$ (4 linear combos).

Relations are rules for replacing certain words w/ others, i.e. $T_H T_H = (T_H + T_H T_H)^2$.

Key technology & words: What makes it tick? Associativity + (unit) axiom.

But now look at a monoidal category... words aren't the right thing!! $\text{If: } A \to B$

Then $(\text{id}_A, 1_B) : A \times B \to B$ and your brain hurts. 2 kinds of composition...

...need some kind of planar diagram,

planar diagrams are the correct tool for the job! $\text{It's a notational convention, but as modality}$

Analogy: Words for categories (algebra w/ multiple objects)

planar diagram for 2-categories

Linear diagrams for 1-categories

Our convention is the dual of what you're used to,

Old way: $P \to N \leftarrow M$

"dual": $P \leftarrow M \to N$

In picture: A (generic) point is actually an object.

A ($\text{\mathbf{n}}$) interval is a morphism $\text{\mathbf{f}}$.

Composition $[\text{Diagram}]$ \rightarrow identity $[\text{Linear isotropy}]$

Axioms of category \iff diagram \rightarrow linear isotopy

Unambiguously represents a morphism. (positioning is irrelevant)

Like if f represents a brown map g then $g \circ f$ is also brown.
First, some examples of 2-cats:

CAT
- **Ob**: categories
- 1-mor: functors
- 2-mor: natural transformations

BIM
- **Ob**: rings
- 1-mor: bimodules
- 2-mor: bimodule maps

Example in BIM:

-

Also, have map

\[R \xrightarrow{f} R \]

Excuse as \(\mu_R R \)

Then

\[Envelope \]

\[\begin{array}{c}
\text{is a bimorphism of } B_5, \\
\text{and is } R \end{array} \]

Meanwhile,

\[\begin{array}{c}
\text{is some bimorphism of } B_5, \\
\text{and is } R \end{array} \]

But these are equal. No accident!

Axioms of 2-cats \(\leftrightarrow \) Diagram / Restrilinearization unambiguously represents a 2-morphism.
Ex: ABC a prob. ext

Equipped with 4 maps

Try better notation: $\text{id}_{\text{Ind}} = A$, $\text{id}_{\text{Res}} = B$

with this convention, we have a meaning for any connected labeled 1-manifolds!

Axioms of Fibr G~

Formalize: Whenever $E \cong E'$ we have chosen $1 \mapsto E \mapsto 1$, draw as

but if also $E \cong E'$, get E as well.

However, sparse $E \cong E'$ \rightarrow $F \cong F'$ \leftarrow Nothing guarantees that $E \cong E'$

If they are equal, say E is cyclic with the fixed order of adjunction. Draw with

left side as $\frac{1}{2}$, without this, could never impose E in our isotopies.
If all 1-morphisms have fixed biadjoints AND all 2-morphisms are cyclic.

Then the axioms of biadjunction reduce to the property

\[\Rightarrow \text{Diagram is isomorphic to a 2-morphism.} \]

Given such a thing, you **should** use diagrams, because isomorphisms make your life easier!

Rekt: When "taking biadjoints" is functorial, all 2-morphisms are automatically cyclic.

Common situation in geometry and representation.

Ex. Full Rep of \(\mathbb{C} \times \mathbb{C} \) or biadjunct \(\mathcal{V} \) is a functor.

\(\mathcal{OB} \) is such a monoidal category.