The Classical Approach to Soergel Bimodules

Jacob Matherne (LSU)

Setup: \((W,S)\) Coxeter system

- \(\mathfrak{h}\) (geometric) realization of \((W,S)\)
- \(R = S(\mathfrak{h}^*)\) = polynomial functions on \(\mathfrak{h}\)
- \(W \otimes R\) & \(R^s = \text{s-invt polys}\)

Consider all of \(R\)-Bim for the moment.

Standard bimodules: graded \(R\)-bimodules

Let \(x \in W\).

Def: Define \(R_x \in R\)-Bim by

1. \(R_x = R\) as a left \(R\)-module
2. As a right \(R\)-module, \(m \cdot r = x(r)m\).

Visualization:
Recall \(B_5\) can be viewed as "border patrol"

<table>
<thead>
<tr>
<th>Semi-porous wall where s-invt polys can slide through</th>
</tr>
</thead>
<tbody>
<tr>
<td>For (R_x), we have "puberty"</td>
</tr>
</tbody>
</table>

\[f = x(f) \]

| Completely-porous wall where anything can slide through but act by \(x\) |
Facts:
1. \(R_x \otimes_R R_y \cong R_{xy} \)
2. \(\text{Hom}(R_x, R_y) = \begin{cases} R & \text{if } x=y \\ 0 & \text{else} \end{cases} \) since \(h \) is a faithful rep.

Define \(\text{StdBim} \) = full \((\oplus, (\cdot), (\otimes))\) subcat of \(R\text{-Bim} \) gen by \(\mathcal{E} R^3_{x \times y} \).

1 & 2 \Rightarrow \text{StdBim} is a realization of the additive 2-groupoid of \(W \) over \(R \).

- Tensor is multiplication, but
- Now we have more than just id maps, have mult by elts of \(R \) (polys in boxes)

\[f = \begin{array}{c}
\begin{array}{c}
\vdots \\
\end{array}
\end{array}
\]
\[A \in \mathcal{S}. \]

Filtrations:
Consider the SES
\[\begin{array}{c}
\begin{array}{c}
1 \\
\rightarrow d_0 := \frac{1}{2}(a_0 \otimes 1 + 1 \otimes a_0)
\end{array}
\end{array}
\]

(\(\Delta\)) \[R_{s(-1)} \rightarrow B_s \rightarrow R_i d(1) \]
\[f \circ g \rightarrow f g \]

(\(\nabla\)) \[R_i d(-1) \rightarrow B_s \rightarrow R_{s(1)} \]
\[f \circ g \rightarrow f s(g) \]

In alternate notation: \[f \circ g \rightarrow f g \leq \text{here } \otimes \text{ is the wall from before.} \]
So, R_s is filtered by both R_{id} and R_s, but with no particular order (and grading shifts depend on this order).

Soon, we will fix this by specifying an order.

Def. A bimodule M_{R}-R-Bim is said to have property (\ast) if it has a finite filtration with subquotients $\left\{ \bigoplus_{x} R_x(\cdot) \right\}$.

Facts:

1. Having (\ast) is closed under \otimes.

 - Suppose $0 \leq B' \leq \ldots \leq B^m = B$ with subquotients $\left\{ \bigoplus R_x(\cdot) \right\}$
 - \& $0 \leq C' \leq \ldots \leq C^n = C$

 Lemma: If M can be filtered so that subquotients have (\ast), then M has (\ast).

 - For i, j, $B_{i+1}/B_i \otimes C_{j+1}/C_j$ is a std bimod,
 - So $B \otimes C_{j+1}/C_j$ has (\ast).
 - By Lemma, $B \otimes C$ has (\ast).

2. Having (\ast) is closed under direct summands.

 - We are working in a Krull-Schmidt cat.
 - A filt of $B \otimes C$ by indec subquotients $R_x(\cdot)$ (is indec) will give a filt of $B \otimes C$ separately.
Observations:

i) Bott-Samelsons have (★) by SESs & ①

ii) Summands of Bott-Samelsons (and therefore Soergel bimods) have (★) by②

iii) R_x are not Soergel bimods.

They can appear as submods & quotients of Bott-Samelsons (as in SESs from before), but not as summands. (Except $R = R_{id} = B_{id}$).

Time to pin down this order/grading shift issue!

Δ- & \forall-filtrations:

\begin{equation}
\text{Def: A } \Delta \text{-filtration on } B \in SBim \text{ is a finite filtration by } R-Bim \text{ of } \mathcal{O} \subset B^m \subset \ldots \subset B_i \subset B_0 = B \text{ such that } B_i^j / B_i^{j+1} = \bigoplus R_x(\nu) \text{ with } l(\nu) = i \text{ & } \nu \in \mathbb{Z}.
\end{equation}

Analogously, \forall-filtration on $B \in SBim$ is a finite filtration by $R-Bim$ of $\mathcal{O} \subset B^0 \subset \ldots \subset B^m = B$ such that $B^i / B^{i-1} = \bigoplus R_x(\nu)$ with $l(\nu) = i$ & $\nu \in \mathbb{Z}$.

\textbf{NOTE:} The SES (Δ) gives a Δ-filtration on B & (\forall) gives a \forall-filtration on B.

Thm (Soergel 2006)
Any $BSBim$ has a unique Δ/∇-filt.

Pf (Sketchy Sketch):
Having (Δ) is preserved under taking summands
(same reason as for (\ast)).

Having (Δ) is closed under \otimes with B_s.
\[\Rightarrow \text{Gives } (\Delta) \text{ for all Bott-Samelsons}. \]

The subquotients do not depend on the choice of refinement,
but order & grading shifts are very different!

Remark: Support filtrations give an explicit construction of
Δ/∇-filtls!

One can define two notions of character.
We will use ch_Δ.

\[\text{ch}_\Delta : S_{Bim} \to H \]
\[\text{ch}_\Delta(B) = \sum_{x \in \mathbb{W}}^e(x) + \text{shift on } R_x \cdot H_x \]

E.g.: From SES, $\text{ch}_\Delta(B_s) = VH_{id} + H_s = H_s$.

Remark: (1) This gives an inverse to the isomorphism

\[E : H \to [SBim] \]
\[H_s \mapsto [B_s] \]

(2) In the course of the proof of the theorem
above, Soergel showed

\[\text{ch}_\Delta(M \otimes B_s) = \text{ch}_\Delta(M) \cdot H_s \]

Recall: Soergel conj: $\forall x \in W$, $\text{ch}_\Delta(B_x) = H_x$.

Localization:

Soergel bimodules become much simpler after localization, (become "like" standards).

Let \(Q \) be the homogeneous fraction field of \(R \).
Even though \(Q \) is graded, \(Q \cong Q(2) \) in this case.

\textbf{Def:} The "localization" of \(B \in \text{R-Bim} \) is \(B \otimes_R Q \).

\textbf{Notation:} \(B^Q_s := B_s \otimes_R Q \), \(BS^Q(w) := BS(w) \otimes_R Q \),
\(Q_s := R_s \otimes_R Q \).

\textbf{Note that:} \(BS^Q(w) \cong Q_{Q_s} \cdots \otimes Q_{Q_s(w)} \) if \(w = s_1 \cdots s_n \).

Observation:
Suppose \(M \) is free as an \(R \)-module.

Then, it includes into its own localization (injection since \(M \) is free).

But \(\text{Hom}(B_x, B_y) \) is free as a right \(R \)-module,
so get injection:
\(\text{Hom}(B_x, B_y) \hookrightarrow \text{Hom}(B_x, B_y) \otimes_R Q \).

Localization is a faithful functor!

Back to \(\text{SESs} \):

After localization, these \(\text{SESs} \) split each other:

\[R_s(-1) \rightarrow B_s \rightarrow R_s(1) \]
\[1 \rightarrow d_s = \frac{1}{2}(x_s \otimes 1 - 1 \otimes x_s) \rightarrow \alpha_s \]

and

\[R_{id}(-1) \rightarrow B_s \rightarrow R_{id}(1) \]
\[1 \rightarrow c_s = \frac{1}{2}(x_s \otimes 1 + 1 \otimes x_s) \rightarrow \alpha_s \]

But \(\alpha_s \) is invertible now!
So,
\(B_s^Q \cong Q(1) \oplus Q_s(1) \).
By expansion:
\[BS^w(w) = \bigoplus_{\text{ec} w} Q_{we}(l(w)) \]

This is key! Bott-Samelsons are easy after localization.

Why is localization useful?

1. **Proposition:** For a rex \(w, \exists! \) indec summand \(B_w \) in \(BS(w) \) which contains \(Q_w \) after localization, and \(B_w \) is not a summand of any shorter sequence.

 Proof: Look at the decomposition of \(BS^w(w) \) above. Since \(Q_w \) is indec and appears exactly once, there is certainly a unique summand which contains it. Again by looking above, it is clear that \(Q_w \) does not appear in the localization of any shorter sequence.

 Note: This does not prove that all the other summands in \(BS(w) \) do appear in some shorter sequence.

2. Localization is a faithful functor, so can check if two morphisms of Soergel bimods are equal by checking after localization.

 - Geordie writes computer programs exploiting this fact.
There are nice diagrammatics for playing with localization!