Interested in: Showing LIFs are nondegenerate.

Sudden switch to: studying GIT on \(\overline{B} \). How do they relate?

```
Analogous to: learned from: In geometry, Decomposition Theorem: (a statement about how things decompose into direct sums) \( \Lefschetz \) and GIT are dual (and analogous) in nature. 
```

```
Let \( H \) be a field. Define \( L \) as a \( \mathcal{L} \)-valued hom fom: \( \langle \alpha, \beta \rangle = \alpha \beta \). 
```

```
\textbf{Definition:} \( L : H \rightarrow H(\mathbb{R}) \) is a \textbf{Lefschetz operator} if \( \forall i \in \mathbb{Z}, \forall \alpha \in H^i(X), \langle L^i \alpha, \lambda \rangle = \langle \alpha, L^i \lambda \rangle \)
```

Example: \(H = \mathbb{R} \), \(\langle \alpha, \beta \rangle = \alpha \beta \) is \(\mathbb{R} \)-valued hom fom.

```
\textbf{Example:} \( X \) a smooth variety, \( \langle \alpha, \beta \rangle = \text{Tr}(\alpha \beta) = \sum_{x \in X} \alpha \beta \) \( \in \text{Hom}(H^i(X), H^j(X)) \).
```

```
\text{Analogy is no accident. When} \text{Weyl (Cohomology),} \text{} \mathbb{R} \text{\-valued hom fom:} \text{\} = H^* (\mathbb{R}) \text{\-valued hom fom.}
```

```
\text{As usual, if not, then there is no cohomology.}
```

```
\textbf{Definition:} \( L \) induces a form on each \( H^i, i \geq 0 \), called the \textit{Lefschetz form} \( \langle v, w \rangle_L = \langle v, L^i w \rangle \).
```

```
\textbf{Example:} \( L = 0 \).
```

```
\textbf{Definition:} \( L \) satisfies \textbf{hard Lefschetz} (HL) if \( \forall i \geq 0, L : H^i \rightarrow H^{i+1} \) is injective.
```

```
\Rightarrow \text{isom} \Rightarrow (\_)^{\ast} \text{ is non-degenerate}.
```

\text{(vacuous for} \(i = 0 \))
Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?

Exercise: L_f on \mathbb{R}^3 never has (HL). When do $L_f + M_g$ have HL?
Claim: L a cont. family of operators $\omega(hL) \rightarrow f$ so L_0 has HR, then L_1 has HR. Lecture 3.3

Hint:
Signature constant in family of moduli forms.

Fix μ, $\omega(h\mu) > 0$ vs ω. You may need to extend μ a bit to ensure one exists.

Draw an analogy \mathcal{W}: $\mathcal{O} \mathcal{B} \mathcal{U} + \text{geometry}$, try expand better tomorrow.

Geometry (only when \mathcal{W} is Wayl/syst.)

$H^\ast(\mathcal{B} \mathcal{S}(\mathcal{U})) \rightarrow \mathcal{B} \mathcal{S}(\mathcal{U}) \rightarrow \mathcal{G} \mathcal{B} = F\ell$

$\mathcal{B} \mathcal{S}(\mathcal{U})$ a specific ample bundle

\mathcal{L} relatively ample form

(Not ample.)

$\mathcal{B} \mathcal{S}(\mathcal{U}) \rightarrow \mathcal{P} \mathcal{N}$

$\mathcal{L} \rightarrow \mathcal{O}(1)$

Then: (hard leftshakes thin) χ smp proj \mathcal{O} alg why, \mathcal{L} ample

Then $H^\ast(X) \otimes \mathcal{O} \mathcal{L}$ was $\omega L_1 \mathcal{H} \mathcal{R}$.

Then: (Improved $h\mathcal{L}$) X not nes. smooth $\text{IH}^\ast(X)$ intersection cohomology

Then $\text{IH}^\ast(X), \mathcal{O}(1)$ was $\omega L_1 \mathcal{H} \mathcal{R}$ when \mathcal{L} ample.

Invented for this purpose, to fix PD etc. when X not smooth.

$\mathcal{B} \mathcal{U}$

Expect $(\mathcal{B} \mathcal{U}, L_\mathcal{B})$ to have $\omega L_1 \mathcal{H} \mathcal{R}$. Also, direct sum

$(\mathcal{B} \mathcal{U} \mathcal{B} \mathcal{B} \mathcal{U}, L_\mathcal{B})$ since $\mathcal{B} \mathcal{U} \mathcal{B} \mathcal{B} \mathcal{U} \cong \mathcal{B} \mathcal{U} \otimes \mathcal{B} \mathcal{U}$, $m \geq 3$

but not $\mathcal{B} \mathcal{B} \mathcal{U} \cong \mathcal{B}(0) \oplus \mathcal{B}(1)$, shifted $h\mathcal{L}$ does not have $h\mathcal{L}$.

\mathcal{L} has $h\mathcal{L}$ for $L_\mathcal{B} + \mathcal{M}_\mathcal{B}$, but that doesn't repeat \otimes decompose.
Theorem: Space $X \xrightarrow{\pi} Y$ is proper + seminormal. The $H^s(X)$ has HL for L only relatively ample, i.e. $L = \pi^*L'$ ample.

BS(w) seminormal, i.e.
no LL of negative degree.

This is core, but same principle should apply
to other seminormal things.

Expect $(\overline{\text{Bun}_S, L^s})$ has HL, HR.

Why is all this useful? We've seen: LITF on $Hom(B_S, \overline{\text{Bun}_S})$ nondegenerate.
Embedding Theorem (next time): LITF \hookrightarrow GIT on $\overline{\text{Bun}_S}$, living inside primitives in degree $-L(y)$.

Restriction of GIT to primitive subspace is \pm definite \Rightarrow nondegenerate!