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Abstract. We re-examine some topics in representation theory of Lie algebras and Springer

theory in a more general context, viewing the universal enveloping algebra as an example

of the section ring of a quantization of a conical symplectic resolution. While some

modification from this classical context is necessary, many familiar features survive. These

include a version of the Beilinson-Bernstein localization theorem, a theory of Harish-

Chandra bimodules and their relationship to convolution operators on cohomology, and a

discrete group action on the derived category of representations, generalizing the braid

group action on category O via twisting functors.

Our primary goal is to apply these results to other quantized symplectic resolutions,

including quiver varieties and hypertoric varieties. This provides a new context for

known results about Lie algebras, Cherednik algebras, finite W-algebras, and hypertoric

enveloping algebras, while also pointing to the study of new algebras arising from more

general resolutions.

1 Introduction

The dazzling success of algebraic geometry. . . has so much reorientated the field

that one particular protagonist has suggested, no doubt with much justification,

that enveloping algebras should now be relegated to a subdivision of the theory of

rings of differential operators.

–Anthony Joseph, On the classification of primitive ideals in the enveloping algebra

of a semisimple Lie algebra [Jos83]

In this paper, we argue against the relegation suggested above, in favor of a different

geometric context. While viewing universal enveloping algebras as differential operators is
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unquestionably a powerful technique, the differential operators on flag varieties are odd men

out in the world of differential operators as a whole. For example, the only known examples

of projective varieties that are D-affine are homogeneous spaces for semi-simple complex Lie

groups, and it is conjectured that no other examples exist. On the other hand, in this paper

we consider a world where this special case is very much at home: quantizations of symplectic

resolutions of affine singularities.

Differential operators on a smooth projective variety X form a deformation quantization

of the cotangent bundle T ∗X. If X is a homogeneous space for a semi-simple complex Lie

group G, its cotangent bundle is a resolution of the closure of a nilpotent orbit in g∗ (or an

affine variety finite over this one). If X is the flag variety, this is known as the Springer

resolution. This is yet another sense in which these spaces are misfits; homogeneous spaces

for semi-simple complex Lie groups are conjecturally the only examples of projective varieties

whose cotangent bundles resolve affine singularities. For most projective varieties X, T ∗X

does not have enough global functions.

There are, however, many other examples of symplectic algebraic varieties that resolve

affine cones. While the Springer resolution is the most famous, other examples include the

minimal resolution of a Kleinian singularity, the Hilbert scheme of points on such a resolution,

Nakajima quiver varieties, and hypertoric varieties. One can study deformation quantizations

of these varieties, and many of them have the same affinity property enjoyed by the Springer

resolution. This paper is a study of these deformation quantizations and their representation

theory.

Several examples have been studied extensively by other authors. Universal enveloping

algebras have been considered from an enormous number of angles for decades, and other

examples such as spherical Cherednik algebras and finite W-algebras have been active fields

of research for many years. The hypertoric case has recently been studied by Bellamy and

Kuwabara [BK12] and by the authors of this paper, jointly with Licata [BLPW12]. On the

other hand, very few works attempt to view all these examples in a single coherent theory.

Kashiwara and Rouquier began to develop such a theory [KR08], and our paper might be

regarded as a continuation of their work. A recent preprint of McGerty and Nevins [MN14]

addresses similar issues, with results that are complementary to ours.

In Section 2, we discuss the algebraic geometry of conical symplectic resolutions; this is

essentially all material already in the literature, but we collect it here for the convenience

of the reader. Particularly important for us are deformations which appear in the work of

Kaledin and Verbitsky; these show that any symplectic resolution flatly deforms to a smooth

affine variety, which is key to many properties of its quantization. One ingredient we will use

systematically is the conical structure: a choice of C∗-action which makes the base into a cone

and acts with positive weight on the symplectic form.

In Section 3, we discuss equivariant quantizations of a conical symplectic resolution M,
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which are classified by H2(M;C) [BK04, Los12]. We prove some basic results about the ring

A of S-invariant global sections, a filtered algebra whose associated graded is isomorphic to

C[M]. We also study the behavior of quantizations under (quantum) Hamiltonian reduction,

proving a quantum version of the Duistermaat-Heckman theorem (Proposition 3.16).

In Section 4 we introduce the appropriate category D -mod of modules over a quantization

D, which one may regard as the quantum analogue of the category of coherent sheaves (in

particular, there is a finiteness assumption built into the definition). In the case where M

is a cotangent bundle, we show that this category is equivalent to the category of finitely

generated twisted D-modules on the base, where the twist is determined by the period of the

quantization. The rest of the section is dedicated to the study of the sections and localization

functors that relate the category of modules over a quantization to the category of modules

over the section ring A. We establish in Theorem 4.17 that these functors induce derived

equivalences for generic periods.

Theorem A Let M be a conical symplectic resolution, and fix two classes η, λ ∈ H2(M;C)

such that η is the Chern class of an ample line bundle, or the strict transform of an ample line

bundle on any other conical symplectic resolution of M0. For all but finitely many complex

numbers k, the quantization of M with period λ + kη is derived affine; that is, the derived

functors of global sections and localization are inverse equivalences.

In order to obtain an equivalence of abelian (rather than derived) categories that works for

all (rather than only generic) periods, we replace the section ring A with a Z-algebra, which

mimics in a non-commutative setting the homogeneous coordinate ring of a projective variety.

Given a quantized symplectic resolution along with a very ample line bundle, we construct a

Z-algebra Z and prove the following result (Theorem 5.8).

Theorem B Let M be a conical symplectic resolution, let L be a very ample line bundle on M,

and let Z be the associated Z-algebra. Then the category D -mod is equivalent to the category

of finitely generated modules over Z modulo the subcategory of bounded modules.

Theorem B has three nice consequences. First, we use it to prove the following abelian

analogue of Theorem A (Corollary 5.17).

Corollary B.1 Let M be a conical symplectic resolution, and fix two classes η, λ ∈ H2(M;C)

such that η is the Chern class of an ample line bundle. For all but finitely many positive

integers k, the quantization of M with period λ+ kη is affine; that is, the (abelian) functors of

global sections and localization are inverse equivalences.

Next, we prove a version of Serre’s GAGA theorem [Ser56]. More precisely, we consider the

analytic quantization Dan with the same period as D, define the appropriate module category

Dan -mod, and prove that it is equivalent to D -mod (Theorem 5.22). The existing literature
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is fairly evenly divided between working in the algebraic and analytic categories, and this

corollary is an indispensable tool that allows us to import previous results from both sides.

Corollary B.2 If M is a conical symplectic resolution, then the analytification functor from

D -mod to Dan -mod is an equivalence of categories.

Finally, we use Theorem B to prove a categorical version of Kirwan surjectivity, relating

the category of equivariant modules on a quantization to the category of modules on the

Hamiltonian reduction. We consider a restriction functor defined by Kashiwara and Rouquier,

and we use our Z-algebra formalism to construct left and right adjoints, thus proving that the

restriction functor is essentially surjective (Theorem 5.31). In particular, this result establishes

that our category D -mod is the same as the analogous category considered by McGerty and

Nevins (Remark 5.32). For a precise statement of the hypotheses of the following result, see

the beginning of Section 5.5.

Corollary B.3 If M is obtained via symplectic reduction from an action of a reductive group G

on X, then every object of D -mod extends to a twisted G-equivariant module over a quantization

of X.

Let M0 := SpecC[M] be the cone resolved by M, and consider the Steinberg variety

Z := M×M0 M. The cohomology H2 dimM
Z (M×M) with supports in Z, which by Poincaré

duality can be identified with the Borel-Moore homology group HBM
2 dimM(Z), has a natural

algebra structure via convolution [CG97, §2.7]. Furthermore, if L ⊂ M is a Lagrangian

subscheme that is equal to the preimage of its image in L0 ⊂M0, then the convolution algebra

acts on HdimM
L (M). In the special case where M = T ∗(G/B) and L is the conormal variety to

the Schubert stratification of G/B, the convolution algebra is isomorphic to the group algebra

of the Weyl group, and HdimM
L (M) is isomorphic to the regular representation. More generally,

there is a natural algebra homomorphism from the group algebra C[W ] of the Namikawa Weyl

group of M to the convolution algebra H2 dimM
Z (M×M).

Section 6 is devoted to categorifying the picture described in the paragraph above. The

convolution algebra is replaced by the monoidal category of Harish-Chandra bimodules, which

comes in both an algebraic and a geometric version. The module HdimM
L (M) is replaced by

a subcategory CL ⊂ D -mod (respectively CL0 ⊂ A -mod) which is a module category for the

category of geometric (respectively algebraic) Harish-Chandra bimodules. Following Kashiwara

and Schapira [KS12], we define the characteristic cycle of a geometric Harish-Chandra bimodule,

which lies in Z, and the characteristic cycle of an object of CL, which lies in L. Using the

machinery developed in [KS12], we prove that these cycles are compatible with convolution.

Theorem C The characteristic cycle map intertwines convolution of geometric Harish-Chandra

bimodules with convolution in the Borel-Moore homology of the Steinberg variety (Proposition

4



6.15); it also intertwines the action of Harish-Chandra bimodules on CL with the action of

H2 dimM
Z (M×M) on HdimM

L (M) (Proposition 6.16).

There is particularly nice collection of algebraic Harish-Chandra bimodules which appear

naturally from changing the period of the quantization. Let Aλ be the section ring of the

quantization with period λ ∈ H2(M;C). Derived tensor products with these special bimodules

give derived equivalences between the derived categories of modules over Aλ for various

different λ. These equivalences are far from being unique; instead, they induce a large group

of autoequivalences of D(Aλ -mod) for each fixed λ, called twisting functors. There is

a hyperplane arrangement in H2(M;R) whose chambers are the Mori chambers of M; let

E ⊂ H2(M;C) be the complement of the complexification of this arrangement. The Namikawa

Weyl group W acts on H2(M;C) preserving E.

Theorem D There is a weak action of π1(E/W, [λ]) on D(Aλ -mod) by twisting functors

(Theorem 6.35); this action preserves the subcategory D(CL0) (Remark 6.37). The subgroup

π1(E, λ) preserves the characteristic cycle of a module, thus W ∼= π1(E/W, [λ])/π1(E, λ) acts

on HdimM
L (M) (Proposition 6.39). This action agrees with the action induced by the natural

map from C[W ] to the convolution algebra (Remark 6.40).

In the case where M is the Springer resolution for G, the space E is the complement

of the complexified Coxeter arrangement, W is the classical Weyl group, and π1(E/W ) is

the generalized braid group. If L ⊂M is taken to be the conormal variety to the Schubert

stratification and the period of the quantization is regular, then CL0 is equivalent to a regular

block of category O (Example 6.12). In this case, the action of the generalized braid group

coincides with Arkhipov’s twisting action (Proposition 6.38), which categorifies the regular

representation of W .

Acknowledgments: The authors would like to thank Roman Bezrukavnikov, Dmitry Kaledin,

Ivan Losev, and especially Anthony Licata for useful conversations. Additional thanks are

due to Kevin McGerty and Thomas Nevins for bringing their work to the authors’ attention.

We are very grateful to the anonymous referee for many insightful comments and suggestions.

Finally, the authors are grateful to the Mathematisches Forschungsinstitut Oberwolfach for its

hospitality and excellent working conditions during the initial stages of work on this paper.

2 Conical symplectic resolutions

Let M be a smooth, symplectic, complex algebraic variety. By this we mean that M is equipped

with a closed, nondegenerate, algebraic 2-form ω. Suppose further that M is equipped with

an action of the multiplicative group S := C× such that s∗ω = snω for some integer n ≥ 1.

We also assume that S acts on the coordinate ring C[M] with only non-negative weights,
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and that the trivial weight space C[M]S is 1-dimensional, consisting only of the constant

functions. Geometrically, this means that the affinization M0 := SpecC[M] is a cone, and the

S-action contracts M0 to the cone point o ∈M0. Finally, we assume that the canonical map

ν : M → M0 is a projective resolution of singularities. (That is, it must be projective and

an isomorphism over the smooth locus of M0.) We will refer to this collection of data as a

conical symplectic resolution of weight n.

Examples of conical symplectic resolutions include the following:

• M is a crepant resolution of M0 = C2/Γ, where Γ is a finite subgroup of SL(2;C). The

action of S is induced by the inverse of the diagonal action on C2, and n = 2.

• M is the Hilbert scheme of a fixed number of points on the crepant resolution of C2/Γ,

and M0 is the symmetric variety of unordered collections of points on the singular space.

Once again, S acts by the inverse diagonal action on C2, and n = 2.

• M = T ∗(G/P ) for a reductive algebraic group G and a parabolic subgroup P , and M0

is the affinization of this variety. (If G = SL(r;C), then M0 is isomorphic to the closure

of a nilpotent orbit in the Lie algebra of G.) The action of S is the inverse scaling action

on the cotangent fibers, and n = 1.

• M is a hypertoric variety associated to a simple, unimodular, hyperplane arrangement

in a rational vector space [BD00, Pro08], and M0 is the hypertoric variety associated to

the centralization of this arrangement. If the arrangement is coloop-free, then it possible

to define an S-action with n = 1 [HP04]; it is always possible to define an action with

n = 2 [BK12, BLPW12].

• M and M0 are Nakajima quiver varieties [Nak94, Nak98]. If the quiver is acyclic, then

there is a natural action with n = 1 [Nak94, §5]; it is always possible to define an action

with n = 2 [Nak01, §2.7].

• M0 is a transverse slice to one Schubert variety Grµ in an affine Grassmannian inside

another Grλ. When λ is a sum of minuscule coweights, this variety has a natural conical

symplectic resolution constructed from a convolution variety; in most other cases, it

seems to possess no such resolution. This example is discussed in greater generality in

[KWWY14].

Remark 2.1 The fifth class of examples overlaps significantly with each of the first four. The

first two examples are special cases of quiver varieties, where the underlying graph of the

quiver is the extended Dynkin diagram corresponding to Γ. When the group G of the third

example is SL(r;C), then T ∗(G/P ) is a quiver variety. Finally, a hypertoric variety associated

to a cographical arrangement is a quiver variety.
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Example 2.2 Almost all of the examples above arise as symplectic quotients of vector spaces.

This applies to the first, second, fourth, and fifth classes of examples, as well as the third class

when G = SL(r;C). More precisely, let G be a reductive algebraic group and V a faithful

linear representation of G. Then G acts on the cotangent bundle T ∗V ∼= V × V ∗ with moment

map

µ : V × V ∗ → g∗

given by the formula µ(z, w)(x) := w(x · z) for all x ∈ g, z ∈ V , and w ∈ V ∗. Choose a

character θ of G, and let M be the associated GIT quotient of µ−1(0). If G acts freely on

the semistable locus of T ∗V , then M is symplectic and smooth. Its affinization M0 is a

normal affine variety, and the map ν : M→M0 is automatically projective; if it is furthermore

birational, then it is a symplectic resolution of singularities. We also have a natural map from

M0 to the the categorical quotient of µ−1(0) with no stability condition imposed, which is not

always an isomorphism, but will be in many interesting cases. The variety M inherits a conical

action of S of weight 2 from the inverse scaling action on V × V ∗. If V has no G-invariant

functions, then we may take S to act only on V ∗ and obtain a conical action of weight 1.

Remark 2.3 All of these examples admit complete hyperkähler metrics, and in fact we know

of no examples that do not admit complete hyperkähler metrics. (Such examples do exist if we

drop the hypothesis that M is projective over M0; these examples will appear in subsequent

work by the second author and Arbo.) The unit circle in S acts by hyperkähler isometries,

but is Hamiltonian only with respect to the real symplectic form. Our assumptions about the

S-weights of C[M] translate to the statement that the real moment map for the circle action is

proper and bounded below.

Proposition 2.4 For all i > 0, H i(M;SM) = 0, where S is the structure sheaf4 of M.

Proof: This follows from the Grauert-Riemenschneider theorem; see, for example, [Kal, 2.1]. 2

Proposition 2.5 All odd cohomology groups of M vanish, and for all non-negative integers p

we have H2p(M;C) = Hp,p(M;C). In particular, the class of the symplectic form, which lies

in H2,0(M;C), is trivial.

Proof: The analogous result with M replaced by a fiber of ν is proven in [Kal09, 1.9], thus it

suffices to prove that ν−1(0) is homotopy equivalent to M. To see this, let Φ: M0 → R be

a real algebraic function which takes non-negative values and which is S-equivariant for an

action of the form z · t = |z|k · t of S on R, where k is some positive integer. Such a function can

4Throughout this paper we will use the symbol S for the structure sheaf of a variety. We avoid the usual
symbol O because this symbol will needed for the analogue of BGG category O in the sequel to this paper
[BLPW16].
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be found of the form Φ =
∑r

i=1 |fi|di , where fi are homogeneous generators of C[M], with the

grading induced by the action of S. The argument from [Dur83, 1.6] shows that the inclusions

ν−1(0) ↪→ (Φ ◦ ν)−1[0, t] ↪→M induce isomorphisms of homotopy groups, and so are homotopy

equivalences. 2

Remark 2.6 The subvariety ν−1(0) ⊂M is often called the core or compact core, see for

example [AB02, §4] or [Pro04, §2.2]. If M is the cotangent bundle of a projective variety X,

then the core of M is simply the zero section. If M is a crepant resolution of C2/Γ, then the

core of M is a union of projective lines in the shape of the Dynkin diagram for Γ. If M is the

Hilbert scheme of points on such a resolution, then the core of M consists of configurations

supported on the core of the resolution. If M is the hypertoric variety associated to a real

hyperplane arrangement, then the core of M is a union of toric varieties corresponding to the

bounded chambers of the arrangement [BD00, 6.5].

2.1 Deformations

We next collect some results of Namikawa and Kaledin on deformations of conical symplectic

resolutions. The following proposition is due to Namikawa (see Lemma 12, Proposition 13,

and Lemma 22 of [Nam08]).

Proposition 2.7 (Namikawa) The variety M has a universal Poisson deformation π : M →
H2(M;C) which is flat. The variety M admits an action of S extending the action on

M ∼= π−1(0), and π is S-equivariant with respect to the weight −n action on H2(M;C).

Remark 2.8 A formal version of this result appears in the work of Kaledin and Verbitsky

[KV02]; the work of Kaledin on twistor families contains a very similar result, but not quite in

the form we need.

Example 2.9 Suppose that M arises from the quotient construction of Example 2.2. Let

χ(g) denote the vector space of characters g→ C, and consider the Kirwan map K : χ(g)→
H2(M;C) that takes an integral character to the Euler class of the induced line bundle on

M. If the Kirwan map is an isomorphism (this is known when M is a hypertoric variety, and

conjectured in all cases), then M is isomorphic to the GIT quotient of µ−1((g∗)G), with the

map to H2(M;C) ∼= χ(g) ∼= (g∗)G given by µ.

Given any class η ∈ H2(M;C), let Mη := M ×H2(M;C)A1, where A1 maps to H2(M;C) via

the linear map that takes 1 to η. Of particular interest is the case where η is the Euler class

of a line bundle L on M. In this case, the following result follows from the work of Kaledin

[Kal06, 1.4-1.6].
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Proposition 2.10 (Kaledin) There exists a unique S-equivariant Poisson line bundle L

on Mη extending the bundle L on M such that the Poisson action of the coordinate function

t ∈ C[A1] on the space of sections of L is the identity.

Remark 2.11 Kaledin refers to the pair (Mη,L ) as a twistor family. The second half

of the proposition can be stated more geometrically as the condition that the complement

L × of the zero section in the total space of L (the relative spectrum of the algebra sheaf⊕
m∈Z L m) carries a symplectic structure coinducing the Poisson structure on Mη such that

the Hamiltonian vector field {t,−} is the infinitesimal rotation of the fibers. In particular, M

is the symplectic reduction of L × by this Hamiltonian vector field.

Kaledin also tells us that Mη is symplectic over A1, and he computes the class of the

relative symplectic form as follows [Kal06, 1.7].

Proposition 2.12 (Kaledin) The Poisson structure on Mη is nondegenerate over A1, and

the relative symplectic form ωMη ∈ Ω2(Mη/A1) satisfies

[ωMη ] = tη ∈ H2
DR(Mη/A1) ∼= H2(M;C)[t].

Remark 2.13 Proposition 2.12 may be easily extended to say that M has a nondegenerate

Poisson structure over H2(M;C) with relative symplectic form

[ωM ] = I ∈ H2
DR(M /H2(M;C)),

where we identify the latter cohomology group with the space of polynomial maps from

H2(M;C) to itself, and I is the identity map.

Note that the S-action may be used to identify all of the nonzero fibers of Mη with a single

symplectic variety Mη(∞) := (Mη ∖M) / S. The following result of Kaledin [Kal08, 2.5] will

be crucial to our proof of Proposition 5.16.

Proposition 2.14 (Kaledin) If L is ample, then Mη(∞) is affine.

2.2 The Weyl group

Next, we put some results of Namikawa [Nam10] into a form which is convenient for our purposes.

Let {Σj} be the codimension 2 connected components of the smooth part of the singular locus

of M0. At any point σj ∈ Σj , there exists a normal slice to Σj at σj which is isomorphic to

a Kleinian singularity, thus the preimage ν−1(σj) ⊂ M is a union of projective lines in the

shape of a simply-laced finite-type Dynkin diagram Dj . The monodromy representation of the

fundamental group π1(Σj) defines an action on Dj by diagram automorphisms. Let Wj be the

centralizer of π1(Σj) in the Coxeter group associated to Dj , and let W :=
∏
Wj . We will call
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W the Weyl group of M (see Remark 2.15 for motivation). Namikawa constructs an action

of W on H2(M;R); he proves that the natural restriction map

H2(M;R)→
⊕
j

H2
(
ν−1(σj);R

)π1(Σj) (1)

is W -equivariant and that W acts trivially on the kernel [Nam10, 1.1].5

Remark 2.15 Let G be the reductive algebraic group associated to a simply-laced finite-type

Dynkin diagram D, and let B be a Borel subgroup. If M = T ∗(G/B), then M0 is isomorphic

to the nilpotent cone in g := Lie(G). The singular locus of M0 is irreducible, and its smooth

locus is called the subregular nilpotent orbit. The normal slice to the subregular orbit is

isomorphic to the Kleinian singularity associated to D and W is isomorphic to the Weyl group

of G. The action of W on H2(M;C) is isomorphic to the action on the dual of a Cartan

subalgebra of g and the restriction map (1) is an isomorphism.

Let N := SpecC[M ].6 Then the map π : M → H2(M;C) factors canonically through

N . Namikawa [Nam11, Nam10, Nam] proves that the action of W on H2(M;C) lifts to a

symplectic action on N , and that the quotient map N /W → H2(M;C)/W is the universal

Poisson deformation of the central fiber M0.

Remark 2.16 The quotient H2(M;C)/W is itself a vector space, which may be identified

by a theorem of Namikawa [Nam10, 1.1] with the Poisson cohomology group HP 2(M0;C) as

defined in [Nam08, §2].

2.3 Birational geometry

Let P := Pic(M) be the Picard group of M. Proposition 2.5 tells us that

PR := P ⊗Z R ∼= H2(M;R);

in particular, P has finite rank. A class η ∈ P is called movable if the associated line bundle

is globally generated away from a codimension 2 subvariety of M. Let Mov ⊂ PR be the

movable cone (the convex hull of the images of movable classes), and let Mov be its closure.

Proposition 2.17 The cone Mov ⊂ PR is a fundamental domain for W .

Proof: Consider the restriction map (1). Since W acts trivially on the kernel, any fundamental

domain for the action on the target pulls back to a fundamental domain for the action on the

5This statement is equivalent to Namikawa’s statement that the map ι, which he defines in the proof of his
theorem, is an isomorphism.

6It would be natural to use the notation M0 rather than N , but unfortunately that notation has already
been used in the previous section to mean something else.
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source. The space H2
(
ν−1(σj);R

)π1(Σj) may be identified Wj-equivariantly with the real part

of the dual of the Cartan subalgebra of the Lie algebra determined by the Dynkin diagram Dj .

The standard fundamental domain is the positive Weyl chamber, which may be characterized

as the set of classes that are non-negative on the fundamental classes of the components of

ν−1(σi).

We have thus reduced the proposition to showing that a class η ∈ P is movable if and

only if η · E ≥ 0 for every curve E ⊂M such that E is a component of ν−1(σj) for some j.

Suppose first that η · E < 0 for some such curve E. Since E ∼= P1, this implies that every

section of the line bundle associated to η vanishes on E, and therefore on the component of

ν−1(Σj) containing E. Since this component has codimension 1 in M, η cannot be movable.

On the other hand, suppose that η · E ≥ 0 for every such curve. This implies that the

associated line bundle is globally generated over ν−1(Σj) for every j. It is obviously globally

generated over the preimage of the smooth locus of M0, since M0 is affine. It is therefore

globally generated over an open set whose complement has codimension 2, thus η is movable. 2

We will wish to consider not just a single conical symplectic resolution, but rather a

collection of varieties M1, . . . ,Mℓ, all conical symplectic resolution of the same cone M0; for

any two of these, there is a birational map fij : Mi 99K Mj , given by composing the resolution

of M0 by Mi with the inverse of the resolution by Mj .

Proposition 2.18 Each Mi contains an open subvariety Ui with codim(Mi \ Ui) ≥ 2 such

that fij induces an isomorphism Ui
∼= Uj for all j, and thus a canonical isomorphism between

Picard groups of the different resolutions.

Proof: Since the spaces in question are symplectic and therefore Calabi-Yau, there exist open

subsets U j
i ⊂Mi and U i

j ⊂Mj with complements of codimension ≥ 2 such that fij induces an

isomorphism from U j
i to U i

j ; see, for example [Kaw02, 4.2]. Briefly, one can take any resolution

Q→M0 (no longer symplectic!) which factors through Mi and Mj and pull out all irreducible

components of the canonical divisor of Q; the remainder of Q maps isomorphically to subsets

of Mi and Mj with complements of codimension ≥ 2; there is a canonical largest such set, so

we can take U j
i to be that one. We then let Ui :=

⋂ℓ
j=1 U

j
i . 2

Note that any class η ∈ P which is movable for Mi is also movable for Mj , thus we have a

well-defined movable cone Mov ⊂ PR. The following result of Namikawa [Nam] can be roughly

summarized by the statement that M is a relative Mori dream space over M0 [AW, 2.4].

Theorem 2.19 (Namikawa) There are finitely many isomorphism classes of conical sym-

plectic resolutions of M0. Furthermore, there exists a finite collection H of hyperplanes in PR,

preserved by the action of W , with the following properties:
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• For each conical symplectic resolution M, the ample cone of M is a chamber of H (and

different resolutions have different ample cones).

• The union of the closures of these ample cones is equal to Mov.

• The union
⋃

H∈HHC ⊂ PC ∼= H2(M;C) is precisely equal to the locus over which the

map M → N fails to be an isomorphism. Equivalently, it is the locus over which the

fibers are not affine.

Remark 2.20 Note that, by Proposition 2.17 and Theorem 2.19, the chambers of H are in

bijection with the set of pairs (M, w), where M is a conical symplectic resolution of M0 and

w is an element of W . This bijection sends the pair (M, w) to the w translate of the ample

cone of M.

Remark 2.21 If M is a quotient as in Example 2.2 and the Kirwan map of Example 2.9 is

an isomorphism in degree 2, then the chambers of H are exactly the top dimensional cones in

the GIT fan in χ(G)R ∼= PR.

3 Quantizations

Throughout the remainder of the paper, we will always use S to denote a scheme of finite

type over C and X to denote a smooth finite type S-scheme, projective over an affine scheme7

X0, equipped with a symplectic form ωX ∈ Ω2(X/S). After Section 3.1, we will also assume

throughout that X and S carry compatible actions of S such that:

• The function algebra C[X] has no elements of negative S-weight.

• The symplectic form satisfies s∗ωX = snωX for some positive integer n. Equivalently, the

induced Poisson bracket {−,−} on SX is homogeneous of weight −n.

• We have H1(X;SX)S ∼= H2(X;SX)S = 0.

The cases that will be of primary interest to us arise in connection with a conical symplectic

resolution M:

• X = M and S is a point

• X = Mη and S = A1

• X = M and S = H2(M;C).

7In [Kal06], Kaledin uses the terminology “algebraically convex”, but in other papers this term allows the
map to only be proper; we emphasize that projectivity is essential.
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Here Mη is the twistor deformation and M is the universal deformation, as in Section 2.1. We’ll

use these notations consistently throughout the paper. Each of these examples satisfies our

assumptions for X; the only assumption which needs explanation is the cohomology vanishing,

which holds for all three as a consequence of Grauert-Riemenschneider.

3.1 The period map

A quantization of X consists of

• sheaf Q of flat π−1SS [[h]]-algebras on X, complete in the h-adic topology

• an isomorphism from Q/hQ to the structure sheaf SX of X

satisfying the condition that, if f and g are functions over some open set and f̃ and g̃ are lifts

to Q, the image in SX
∼= Q/hQ ∼= hQ/h2Q of the element [f̃ , g̃] ∈ hQ is equal to the Poisson

bracket {f, g}. Note that while we have assumed that X is smooth over S and that the base

field is C, the notion of a quantization makes sense for any Poisson variety.

If H1(X;SX) ∼= H2(X;SX) = 0 then, Bezrukavnikov and Kaledin [BK04, 1.8] show that

the set of quantizations of X is in natural bijection via the period map with the vector space8

[ωX] + h ·H2
DR(X/S;C)[[h]].

More concretely, by Propositions 2.5 and 2.12 and Remark 2.13,

• the period map for M takes values in h ·H2(M;C)[[h]]

• the period map for Mη takes values in tη + h ·H2(M;C)[t][[h]]

• the period map for M takes values in I + h ·
(
H2(M;C)⊗ C[H2(M;C)]

)
[[h]].

The (unique) quantization with period [ωX] is called the canonical quantization of X.

Let Q be a quantization of Mη. There is an obvious way to recover a quantization of M

from Q: if we divide by the ideal sheaf of π−1(0), we obtain a sheaf supported on π−1(0) ∼= M,

and this sheaf is clearly a quantization. However, this is not the only quotient of Q which is

supported on π−1(0). Fix an element P (h) ∈ h · C[[h]]. The map from C[t] to C[[h]] taking

t to P (h) induces a map from ∆ := SpecC[[h]] to A1 sending the closed point to 0, and

therefore a section σP of the projection A1 ×∆→ ∆ which sends the closed point of ∆ to 0.

Dividing Q by the ideal sheaf in SA1 [[h]] of the image of σP also gives a quantization of M.

Following Bezrukavnikov and Kaledin, we denote this quantization by σ∗PQ. Note that the

first construction in this paragraph corresponds to the choice P = 0.

8Following the conventions of [BK04], we will mean here the h-adic completion of H2
DR(X/S;C) ⊗ C[[h]].

This applies whenever we use the notation V [[h]] for some vector space V .
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More generally, for any quantization Q of X/S, let σ : ∆→ ∆× S be any section of the

projection ∆× S → ∆. If ∗ is the unique closed point of ∆ and σ(∗) = (∗, s), then we may

define σ∗Q to be the quotient of Q by the ideal sheaf of this section, thought of as a sheaf on

π−1(s).

Let QR be the quantization of X with period given by R(h) ∈ H2
DR(X/S;C)[[h]]. If

X = Mη, we can think of this as a two variable function R(t, h) ∈ tη + h ·H2(M;C)[t][[h]].

The following proposition is an easy modification of [BK04, 6.4]; it follows immediately from

the naturality of periods under pullback.

Proposition 3.1 (Bezrukavnikov and Kaledin) The period of the quantization σ∗QR is

σ∗R(h) ∈ H2(π−1(s);C)[[h]]. In particular, if X = Mη and S = A1, then σ∗PQR has period

R(P (h), h) ∈ h ·H2(M;C)[[h]].

Let us collect one more fact about quantizations which will be important for us. If Q is a

quantization of X/S, we let Qop be the opposite algebra of Q, thought of as a C[[h]]-algebra

with the action twisted by the automorphism h 7→ −h; this convention is necessary to assure

that Qop again quantizes the same Poisson structure.

Proposition 3.2 If P (h) ∈ [ωX] + h ·H2
DR(X/S;C)[[h]] is the period of Q, then the period of

Qop is P (−h).

Proof: A proof of this fact is given in the proof of [Los12, 2.3.2], but the result is not stated

as a theorem. As defined in [BK04, 4.1], the period map is the localization of a universal class

c ∈ H2((AutD,DerD), hC[[h]]) in the cohomology of the Harish-Chandra pair (AutD,DerD),

where D is the Weyl algebra. The existence of a particular anti-automorphism sending h 7→ −h
and c(h) 7→ c(−h) given in [Los12] shows that the period transforms the same way. 2

Remark 3.3 In this Remark, contrary to our usage elsewhere, we will not assume a priori

that the symbols M and X denote smooth varieties. Not every symplectic variety (in the sense

of Beauville [Bea00]) admits a symplectic resolution; for example, closures of non-Richardson

nilpotent orbits do not [Fu03]. On the other hand, every symplectic variety has a crepant

partial resolution M which is terminal and Q-factorial; this is again a symplectic variety, since

it is dominated by some resolution of M0. The fact that this variety is Q-factorial means that

it cannot be resolved further without introducing discrepancy: a crepant partial resolution of

M would have to be isomorphic to M in codimension 1 so their group of Weil divisors would

be the same; thus an ample line bundle on the resolution would have to correspond to a Weil

divisor on M, some power of which is a Cartier divisor, showing that the resolution is in fact

M.
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While the theory of periods we have discussed thus far cannot be directly applied to M, it

can be applied to the smooth locus M̊. More generally, let X/S be a convex symplectic (not

necessarily smooth) variety with terminal singularities [Nam08, §1], and X̊ its smooth locus.

As noted by Namikawa in the proof of [Nam08, Lemma 12], H1(X̊;SX̊) = H2(X̊;SX̊) = 0, so

X̊ satisfies our running assumptions. By [BK04, 1.8], the quantizations of X̊ are in bijection

with [ωX] + h ·H2
DR(X̊/S;C)[[h]]. Let i : X̊→ X be the inclusion map.

Proposition 3.4 If Q̊ is a quantization of X̊, then i∗Q̊ is a quantization of X. If Q is a

quantization of X, then i−1Q is a quantization of X̊. These two operations induce inverse

bijections between isomorphism classes of quantizations of X̊ and X.

Proof: The fact that i∗Q̊ is a quantization follows from normality of symplectic varieties; the

fact that i−1Q is a quantization is trivial, as is the isomorphism i−1i∗Q̊ ∼= Q̊. In the other

direction, the natural map i∗i
−1Q → Q is an isomorphism mod h, and thus is an isomorphism

by Nakayama’s lemma. 2

In most sections of this paper (with the exception of Section 6.2), we could allow our

conical symplectic resolutions to be terminal and Q-factorial rather than smooth. For ease of

exposition, however, we will continue to assume smoothness.

3.2 S-structures

From this point forward, we will assume that X and S carry compatible actions of S such that:

• The function algebra C[X] has no elements of negative S-weight.

• The symplectic form satisfies s∗ωX = snωX for some positive integer n. Equivalently, the

induced Poisson bracket {−,−} on SX is homogeneous of weight −n.

• We have H1(X;SX)S ∼= H2(X;SX)S = 0.

In this section we define the notion of an S-structure on a quantization of X/S, and we consider

the question of which quantizations carry S-structures.

Let a : S × X → X be the action map, let p : S × X → X be the projection onto X, and

let e : S× X→ S be the projection onto S. If Q is a quantization of (X, ωX), then the naive

pullback a∗Q := a−1Q ⊗C[[h]] e
−1SS[[h]] is a quantization of X × S over S with the relative

symplectic form a∗ωX = znp∗ωX, where z is the coordinate function on S. Since forms are

contravariant and bivectors covariant, the corresponding Poisson brackets are related by

{−,−}a = z−n{−,−}p. As long as the Poisson bracket on X is nontrivial, the sheaves a∗Q and

p∗Q are quantizations of different Poisson brackets on X× S, thus they are never isomorphic.

This difference between the two Poisson brackets can be resolved by twisting the action

of h. More precisely, let a∗twQ := a−1Q⊗C[[h]] e
−1SS[[h]], where this time the action of C[[h]]
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on e−1SS[[h]] is given by sending h to znh. Put differently, a∗twQ and a∗Q are isomorphic

as sheaves of vector spaces, but the endomorphism given by multiplication by h in a∗twQ
corresponds to the endomorphism given by multiplication by z−nh in a∗Q. Then a∗twQ is

a quantization of the Poisson bracket zn{−,−}a = {−,−}p, that is, corresponding to the

relative symplectic form p∗ωX.

An S-structure on Q is an isomorphism a∗twQ ∼= p∗Q as (idS×π)−1SS×S [[h]]-algebras, sat-

isfying the natural cocycle condition. That is, the above isomorphism induces an isomorphism

s∗Q ∼= Q for every s ∈ S, and we require that for any three elements of S with s · s′ · s′′ = 1,

the composition of the three isomorphisms is the identity. In [Los12], this is called a “grading”

on the quantization. We will often refer to a quantization endowed with an S-structure as an

S-equivariant quantization.

As a general principle, quantizations have S-structures whenever their period does not

obstruct this possibility. More precisely, Losev [Los12, 2.3.3] proves the following result.9

Proposition 3.5 (Losev) A quantization of X admits an S-structure if and only if its period

lies in the vector space [ωX] + h ·H2
DR(X/S;C) ⊂ [ωX] + h ·H2

DR(X/S;C)[[h]], in which case

its S-structure is unique.

As noted in [BK04, §6.1], as long as we have the assumptions H1(X;SX)S = H2(X;SX)S = 0,

the variety X is S-equivariantly admissible. Even if there are vectors of non-zero weight in

H1(X;SX) or H2(X;SX), we can still apply the theory of [BK04] to S-equivariant quantizations;

in particular, every period in [ωX] +h ·H2
DR(X/S;C) has a corresponding unique S-equivariant

quantization.

3.3 The section ring

Let Q be an S-equivariant quantization of X. Define

D(0) := Q[h
1/n], D := Q[h

−1/n], and D(m) := h
−m/nD(0) ⊂ D for all m ∈ Z.

We will frequently abuse notation by referring to D as a quantization of X.

Let A := ΓS(D) be the ring of S-invariant sections of D. This ring inherits a Z-filtration

. . . ⊂ A(−1) ⊂ A(0) ⊂ A(1) ⊂ . . . ⊂ A

given by putting

A(m) := ΓS
(
D(m)

)
.

The associated graded of A may be canonically identified with C[X] as a Z-graded ring via the

9Losev assumes that n = 2, but his proof works for arbitrary n.

16



maps

A(m) = ΓS
(
D(m)

) ·hm/n

−→ Γ
(
D(0)

)
↠ Γ

(
D(0)/D(−1)

) ∼= Γ(SX) = C[X].

Many of the examples of conical symplectic resolutions we gave at the beginning of Section

2 admit quantizations for which the ring A is of independent interest. (In all of these examples

S is a point.)

• Let Γ ⊂ SL2(C) be a finite subgroup. Any quantization of the Hilbert scheme of m

points on a crepant resolution of C2/Γ has its invariant section ring A isomorphic to a

spherical symplectic reflection algebra for the wreath product Sm ≀ Γ, with parameters

corresponding to the period of the quantization [EGGO07, 1.4.4], [Gor06, 1.4].

• Let G be a reductive Lie group and B ⊂ G a Borel subgroup. Then each quantization of

T ∗(G/B) has its invariant section ring A isomorphic to a central quotient of the universal

enveloping algebra U(g). All central quotients arise this way, and two quantizations give

the same central quotient if their periods are related by the action of the Weyl group

[BB81, Lemma 3].

• Many quantizations of a resolution of a Slodowy slice to a nilpotent orbit in g have

invariant section ring A isomorphic to a central quotient of a finite W-algebra; the

cases where every quantization has this property (which includes all slices in type A)

are classified by Ambrosio, Carnovale, Esposito and Topley [ACET]. Again, all central

quotients of the W-algebra arise this way, and two quantizations give the same central

quotient if their periods are related by the action of the Weyl group [Pre02, 6.4].

• Any quantization of a hypertoric variety has its invariant section ring A isomorphic to a

central quotient of the hypertoric enveloping algebra. Once more, all central quotients

arise this way, and two quantizations give isomorphic central quotients if their periods

are related by the action of the Weyl group [BK12, §5], [BLPW12, 5.9].

• In [KWWY14], it is conjectured that the algebra arising from the slices in the affine

Grassmannian can be described as a quotient of a shifted Yangian, a variant of the

usual Yangian of Drinfeld.

Consider the universal Poisson deformation π : M → H2(M;C) of M. Let D be the

canonical quantization of M , and let A := ΓS(D) be its invariant section algebra. The

π−1SH2(M;C)-structure on D induces a map

c : C[H2(M;C)]→ Γ(M ; D)

which is S-equivariant for the weight n action on C[H2(M;C)]. In particular, if x ∈ H2(M;C)∗

is a linear function on H2(M;C), we have that h−1c(x) ∈ A .

17



Let λ ∈ H2(M;C) be the period of D. By Proposition 3.1, D = σ∗hλD , and this induces a

restriction map from A to A.

Proposition 3.6 The map from A to A is surjective with kernel generated by h−1c(x)−λ(x)

for all x ∈ H2(M;C)∗.

Proof: Let Cλ be the evaluation module at λ of C[H2(M;C)]. The sheaf D can be rewritten

as the cohomology of the tensor product of D with the Koszul resolution of Cλ. Thus, the

sheaf cohomology of D is the hypercohomology of this complex. Filtering this complex by

degrees in the Koszul resolution, we obtain the spectral sequence

ToriC[H2(M;C)](H
j(D)S,Cλ)⇒ Hj−i(D)S

converging to the cohomology of D. Since D has trivial higher cohomology, this spectral

sequence collapses immediately, and we obtain the desired isomorphism. 2

Lemma 3.7 Let X be a smooth symplectic variety over a smooth base S. Let i : U ↪→ X be an

open inclusion, and let d be the codimension of the complement of U .

• If d ≥ 2, then for any quantization Q of X, the restriction i∗Q to U is a quantization of

U with Γ(U ; i∗Q) ∼= Γ(X;Q).

• If d ≥ 3, then for any quantization Q′ of U , the pushforward i∗Q′ is a quantization of X

with Γ(U ;Q′) ∼= Γ(X; i∗Q′).

Proof: Let j : X \ U → X be the inclusion. As usual for complementary closed and open

embeddings, we have an exact triangle j∗j
!SX → SX → i∗i

∗SX → j∗j
!SX[1]. The induced

long exact sequence takes the form of a short exact sequence

0→ SX → i∗SU → j∗R1j!SX → 0

along with isomorphisms Rki∗SU
∼= j∗Rk+1j!(SX) for all k > 0. The local cohomology sheaf

Rkj!SX vanishes for all k < d, so we may conclude that i∗SU
∼= SX if d ≥ 2, and R1i∗SU = 0

if d ≥ 3.

Assume that d ≥ 2, and consider a quantization Q on X. It is clear that i∗Q is a

quantization of U , so we need only show that the sections are unchanged. For each m ≥ 0, the

natural map Q/hmQ → i∗i
∗(Q/hmQ) is an isomorphism; this follows from induction and the
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five-lemma applied to the diagram:

hQ/hmQ Q/hmQ SX

i∗i
∗(hQ/hmQ) i∗i

∗(Q/hmQ) i∗i
∗(SX)

Since U is open, i∗i
∗ commutes with projective limits, so we have an isomorphism i∗i

∗Q ∼= Q.

The isomorphism of sections of Q and i∗Q now follows by the functoriality of push-forward.

Now assume that d ≥ 3, and let Q′ be a quantization on U . The flatness of i∗Q′ is

automatic, so we need only show that i∗Q′/i∗(hQ′) ∼= SX. The short exact sequence

hQ′/hmQ′ → Q′/hmQ′ → SU

similarly shows inductively that R1i∗(Q′/hmQ′) = 0 for all m. An argument as in [KR08,

2.12], using the Mittag-Leffler condition, shows that thus R1i∗Q′ = 0.

Consider the long exact sequence

0→ i∗(hQ′)→ i∗Q′ → SX → R1i∗(hQ′)→ · · · .

Since R1i∗(hQ′) ∼= R1i∗Q′ = 0, we get an isomorphism i∗Q′/i∗(hQ′) ∼= SX, and so the C[[h]]-

module i∗Q′ is a quantization. 2

Now we turn to the case of a conical symplectic resolution M. In this case, the ring A

depends only on the cone M0, and not on the choice of resolution.

More precisely, let M and M′ be two conical symplectic resolutions of the same affine cone.

By Proposition 2.18, the groups H2(M;C) and H2(M′;C) are canonically isomorphic. Let D
and D′ be quantizations of M and M′ with the same period, and D and D ′ the corresponding

quantizations of the universal quantizations M and M ′.

Proposition 3.8 There is a canonical isomorphism between the section rings A := ΓS(M ; D)

and A ′ := ΓS(M ′; D ′).

Proof: We have a canonical rational map M 99K M ′. This induces an isomorphism between

the fiber over a generic point in H2(M;C) ∼= H2(M′;C), and gives a pair of crepant resolutions

of each fiber. Thus, applying Proposition 2.18 to each fiber, we find that the exceptional locus

of this map is codimension 2 in each fiber. Combining this with the fact that the generic fiber

avoids the exceptional locus, we see that it has codimension 3. Let U ⊂M , U ′ ⊂M ′ be the

complements to the exceptional loci, so that M 99K M ′ induces an isomorphism U ∼= U ′.
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Let i : U →M and i′ : U ′ →M ′ be the inclusions of these sets. By Lemma 3.7, D ′′ := i′∗i
∗D

is a quantization of M ′ with section ring

ΓS(M ′; D ′′) ∼= ΓS(U ; D) ∼= ΓS(M ; i∗D) ∼= A .

Since (i′)∗D ′′ ∼= i∗D and (i′)∗D ′ have the same period (by definition), the quantizations

D ′ and D ′′ must also have the same period and thus are isomorphic. Thus, we have that

A ∼= ΓS(M ′; D ′′) ∼= ΓS(M ′; D ′) ∼= A ′. 2

Propositions 3.6 and 3.8 have the following corollary.

Corollary 3.9 There is a canonical isomorphism between the section rings A := ΓS(M;D)

and A′ := ΓS(M′;D′).

We may now use Proposition 3.6 to show that the ring A does not change when the period

of D changes by an element of the Weyl group; this unifies the isomorphisms mentioned in

three of the four examples above. For any λ ∈ H2(M;C), let Aλ be the invariant section

algebra of the quantization with period λ.

Proposition 3.10 For any λ ∈ H2(M;C) and w ∈W , we have an isomorphism Aλ
∼= Aw·λ.

Furthermore, these isomorphisms may be chosen to be compatible with multiplication in the

Weyl group.

Proof: As in Section 2.1, let N := SpecC[M ] be the affinization of the universal deformation

of M, and let M̊ ⊂M be the locus on which the map to N is a local isomorphism. Since this

map is a crepant resolution of singularities, it induces an isomorphism from M̊ to the smooth

locus of N . Thus, M̊ inherits a W -action from N and the canonical quantization D of M

restricted to M̊ is also W -equivariant. Note that A := ΓS(M ; D) is isomorphic to ΓS(M̊ ; D)

by Lemma 3.7, since the codimension of the complement of M̊ is at least 2. Thus A carries a

natural W -action. The proposition now follows from Proposition 3.6 and the W -equivariance

of h−1c. 2

3.4 Quantum Hamiltonian reduction

Let Q be an S-equivariant quantization of X. Let G be a connected reductive algebraic group

over C, and assume that X is equipped with a G-action commuting with the action of S. We

will assume that the action of G is Hamiltonian with moment map µ : X→ g∗, and that µ is

S-equivariant with respect to the weight n scalar action on g∗. A Hamiltonian G-action on

the pair (X,Q) consists of
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1. an action of G on X as above

2. a G-equivariant structure on Q so that the algebra map Q → SX is equivariant

3. a G-equivariant filtered10 C[S]-algebra homomorphism η : U(g)→ ΓS(Q[h−1]) ⊂ A

such that for all x ∈ g, the adjoint action of η(x) on Q agrees with the action of x induced by

the G-structure on Q. The map η is called a quantized moment map because the associated

graded

gr η : C[g∗] ∼= grU(g) −→ grA ∼= C[X]

induces a G× S-equivariant classical moment map µ : X→ g∗, where S acts on g∗ with weight

−n. We note that for any x ∈ g, we will have

η(x) ∈ ΓS(h−1Q) ⊂ ΓS(D(n)) = A(n) ⊂ A.

The following proposition says that the condition of admitting a quantized moment map is no

stronger than the condition of admitting a classical moment map. Recall that we use χ(g) to

denote the vector space of characters g→ C.

Proposition 3.11 For any S-equivariant quantization Q of X, the pair (X,Q) admits a

Hamiltonian G-action that induces µ in the manner described above and the set of quantized

moment maps compatible with a given G-action on Q is a torsor for χ(g)⊗ C[X]S×G.

Proof: We break this up to into proofs of the different components of this result. First, we

prove that Q has a unique G-equivariant structure. Since G is connected, its action on the de

Rham cohomology H2
DR(X/S;C) is trivial. As noted in the proof of [BK04, Prop. 6.2] and

expanded on in more detail in [Los12, §2.3], this means that the quantization for every class

in H2
DR(X/S;C) has a unique equivariant structure. As discussed in the sources above, this

can be seen by thinking about inserting G-equivariance at each point in the original proof of

[BK04, Thm. 1.8]. Since the discussions in [BK04] and [Los12] are quite brief, we will add

some more details below.

This proof of [BK04, Thm. 1.8] proceeds by interpreting the problem of lifting a given quanti-

zation modulo hn to be a quantization modulo hn+1 as finding an extension of the corresponding

Harish-Chandra torsor over the pair ⟨(AutD)n, (DerD)n⟩ to ⟨(AutD)n+1, (DerD)n+1⟩. The

set of such extensions is a torsor for the sheaf cohomology H1(X;SX/π
−1SS) of the quotient of

functions on X by the pullback of functions on S. This torsor is identified with the de Rham co-

homology H1
DR(X/S;V) of a relative local system V on X/S, and thus can be identified with the

set of extensions of relative local systems V → W → SX. As usual, a V-valued closed 1-form θ

gives a natural relative local system, whose flat sections are identified with the set of sections of

10We filter U(g) so that the associated graded C[g∗] has g sitting in degree n.
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V satisfying df = kθ for k ∈ C. Two such extensionsW,W ′ arising from 1-forms θ, θ′ are isomor-

phic if and only θ− θ′ = dg for some g in the holomorphic sections of V , with the isomorphism

given by f 7→ f + g. We have a short exact sequence 0→ π−1SS → SX → SX/π
−1SS → 0.

The boundary map in the long exact sequence induced on sheaf cohomology gives an isomor-

phism H1(X;SX/π
−1SS) ∼= H2

DR(X/S;C) ∼= H2(X;π−1SS).

In order to pass to the equivariant case, we only need to think about the same lifting

problem equivariantly for G; thus, the lifts are a torsor for the groups of G-equivariant

extensions of local systems V → W → SX. Of course, any such extension corresponds to a

1-form θ whose cohomology class is G-invariant. Since G is reductive, we can assume θ itself

is invariant by projecting it to invariant 1-forms, which doesn’t change its class in cohomology.

The extension of local systems discussed above has an induced G-equivariant structure, and

using reductivity again, this structure is unique, because the projection of a not necessarily

G-equivariant isomorphism of extensions to invariants is a G-equivariant isomorphism. This

completes the proof that Q has a unique G-equivariant structure.

Now, we turn to the question of the existence of a quantized moment map for this G-

equivariant structure. Since h has S-weight n > 0, the lack of functions on X of negative

S-weight shows that ΓS(X;Q) is a commutative algebra, canonically isomorphic to the S-

invariants C[X]S. Furthermore, we have a natural Lie algebra structure on ΓS(X;h−1Q)

induced by the bracket, since sections of Q commute modulo h. We have a short exact

sequence of Lie algebras

0→ ΓS(X;Q)→ ΓS(X;h−1Q)→ C[X]n → 0, (2)

where the Lie bracket on C[X]n is the Poisson bracket. To show a quantized moment map

exists, we wish to show that the moment map µ : g→ C[X]n lifts to a G-equivariant Lie algebra

homomorphism g→ ΓS(X;h−1Q).

Note that the subsheaf hQ satisfies ΓS(hQ) = 0 and H1(X;hQ) = 0, so the exact sequence

(2) is isomorphic to

0→ ΓS(X;Q/hQ) ∼= C[X]0 → ΓS(X;h−1Q/hQ)→ C[X]n → 0.

Thus we aim to show that there is a lift g→ ΓS(X;h−1Q/hQ).

If such a lift exists, then the set of such lifts forms a torsor over χ(g)⊗C[X]S×G, the group

of Lie algebra homomorphisms g→ C[X]S×G. Thus, to prove the result, it only remains that

establish that a lift exists. The obstruction to the existence of a lift is a Lie algebra cohomology

class ν ∈ H1(g;C[X]S×G). Since g ∼= z(g) ⊕ [g, g] and the latter Lie algebra is semi-simple,

Whitehead’s first lemma gives an isomorphism H1(g;C[X]S×G) ∼= H1(z(g);C[X]S×G). So it

suffices to check that a lift exists after replacing G by the connected component of the identity

in its center. That is, we can assume without loss of generality that G is commutative.
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First, we will prove the existence of a quantum moment map in the case where Q is the

canonical quantization. In this case, we have an isomorphism η : Q ∼= Qop as quantizations,

where Qop has its C[[h]]-module structure twisted by h 7→ −h. The isomorphism η induces a

Lie algebra anti-automorphism of the exact sequence

0→ Q/hQ ∼= SX → h−1Q/hQ → h−1Q/Q ∼= SX → 0,

and it induces the identity on Q/hQ, and −1 on h−1Q/Q. Thus, considering the eigenspaces

of η splits this sequence. This induces an isomorphism of sheaves of Lie algebras

h−1Q/hQ ∼= (SX ⊗ h−1C[[h]]/hC[[h]]) (3)

where the RHS has the Lie algebra structure

[f0 + h−1f−1, g0 + h−1g−1] = {f0, g−1}+ {f−1, g0}+ h−1{f−1, g−1}.

We can also deduce this result from [BK04, Lem. 3.6], which has effectively the same proof.

In this case, h−1µ gives us the desired splitting.

Finally, we prove that a quantum moment map exists for a quantization Q with general

period λ. By standard results, we can G-equivariantly embed X as a locally closed subvariety

of the projectivization of a representation of G. Using the usual affine cover of projective space

associated to a basis of weight vectors, we can cover X with G-invariant open affines Ui, and

by taking the cover fine enough, we can trivialize the period λ of the quantization on each Ui.

Thus we have isomorphisms βi : Q|Ui

∼−→ Qop|Ui . We can assume the βi are G-equivariant,

since G acts on the set of ring homomorphisms Q|Ui → Qop|Ui , and the projection to the

invariants of an isomorphism which is the identity modulo h (and thus G-equivariant modulo

h) remains an isomorphism by Nakayama’s lemma. The compositions γij = β−1
j ◦ βi give a

Čech 1-cocycle of automorphisms of Q. We can view Qop as the regluing (as in [Los, §4.1]) of

Q with respect to this cocycle; that is, the sheaf of algebras Qop is isomorphic to the sheaf

Qglue(V ) = {(a1, . . . an) | ai ∈ Q(V ∩ Ui), γij(aj) = ai ∀i, j}

via the map a 7→ (β−1
1 (a), . . . β−1

n (a)).

By [Los, Prop. 4.1], we can assume that γij = exp(ad cij) for cij ∈ Q(Ui ∩ Uj). Again, we

can assume that cij is G-invariant by projection to invariants, since γij is G-invariant. By the

cocycle equation, for any f in Q(Ui ∩ Uj ∩ Uk)/h2 we have

f = γijγjkγki(f) = f + h{c̄ij + c̄jk + c̄ki, f̄}

where we use ḡ to mean the reduction of a section of Q mod h. This shows that αijk =
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c̄ij + c̄jk + c̄ki is constant on Ui ∩ Uj ∩ Uk, and thus defines a class α ∈ H2(X;C) constructed

via Čech cohomology.

Let us now compute the effect this has on the period of the regluing of Q. In the sentences

below we use the notation of [BK04, §4]. It’s enough to calculate the reduced period map Per1

since by S-equivariance, all higher terms in the period vanish. Poisson bracket with the classes

c̄ij defines a Čech 1-cocycle of Hamiltonian vector fields, i.e. a class in H1(X;W), and the

regluing is exactly the torsor structure of this group on the set of quantizations modulo h2

(that is, H1
M(X, ⟨(AutD)2, (DerD)2⟩). The class α is the image of c̄ij under the boundary map,

so it follows from the compatibility of the period map with the H1(X;W)-torsor structure that

the period of the regluing is given by λ+ α. Since the period of Qop is −λ, we have α = −2λ.

Let γ′ij = exp(12 ad cij). Consider the regluing Q′ of Q with respect to γ′ij ; this has period

λ+ 1
2α = 0, and so it is the canonical quantization Qcan. Note that this defines a G-structure

on Qcan by taking the obvious G-structure on the regluing.

We have seen that Qcan admits a quantum moment map µ′ : g→ ΓS(X;h−1Qcan/hQcan).

Viewing Qcan as a regluing, this means we have maps µi : g→ ΓS(Ui;h
−1Q/hQ) that satisfy

µj = γ′ji ◦ µi = exp(12 ad cji)µi on the overlap Ui ∩ Uj . However, since cji is G-invariant,

[cji, µi(X)] = 0 for all X ∈ g. Thus exp(12 ad cji)µi = µi. This shows that µj and µi agree on

Ui ∩ Uj , so they define a Lie algebra map µ : g→ ΓS(X;h−1Q/hQ), which gives the desired

lifting. This completes the proof. 2

Assume that (X,Q) carries a Hamiltonian G-action with quantized moment map η : U(g)→
A and associated classical moment map µ : X→ g∗. Fix a G-equivariant ample line bundle L
on X, and let U ⊂ X be the associated semistable locus. We will assume through the end of

the section that the action of G on U is free; in particular, semistability and stability coincide.

Let Xred := (µ−1(0)∩ U)/G with its induced relative symplectic form and S-action, and let

ψ : µ−1(0) ∩ U→ Xred be the natural projection. We’ll further assume that the natural map

C[µ−1(0)]G → C[Xred] is an isomorphism.

Let DU and QU denote the restrictions of D and Q to U, and for any ξ ∈ χ(g), let

Rξ := QU

/
QU · ⟨hη(x)− hξ(x) | x ∈ g⟩,

Eξ(0) := DU(0)
/
DU(−n) · ⟨η(x)− ξ(x) | x ∈ g⟩,

Eξ := DU

/
DU · ⟨η(x)− ξ(x) | x ∈ g⟩.

These are all sheaves on U with support µ−1(0)∩U, which we use to define sheaves of algebras

on Xred as follows:

Qred := ψ∗EndQU
(Rξ)

op,
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Dred(0) := ψ∗EndD(0)U(Eξ(0))op,

Dred := ψ∗EndDU
(Eξ)op.

Kashiwara and Rouquier [KR08, 2.8(i)] show that the first sheaf is an S-equivariant quantization

of Xred of weight n, and the second and third are related to the first in the usual way. Kashiwara

and Rouquier work in the classical topology, but their argument works equally well in the

Zariski topology.

Remark 3.12 Kashiwara and Rouquier also take the fixed points of G. Since we have assumed

that G is connected, this is redundant; the pushforward is automatically invariant under g. Of

course, a reader interested in quotients by disconnected groups can apply our results to the

connected component of the identity, and then consider the residual action of the component

group.

We observe that this geometric operation of symplectic reduction is closely related to an

algebraic one. Let Yξ := A
/
A · ⟨η(x)− ξ(x) | x ∈ g⟩, where as before we let A = ΓS(D).

Proposition 3.13 If Ared = ΓS(Dred), then Ared
∼= EndA(Yξ) .

Proof: Restriction gives a natural map A→ ΓS(DU), which induces a map

AG → ΓS(U; EndDU
(Eξ)op) ∼= Ared.

This map kills any G-invariant element of the left ideal generated by η(x) − ξ(x) for x ∈ g

and thus induces a map Y G
ξ
∼= EndA(Yξ) → Ared. We wish to show that this map is an

isomorphism.

By Nakayama, it’s enough to check this after passing to associated graded. The associated

graded of AG is C[X]G (since G is reductive), and the map C[X]G → gr(Ared) ⊂ C[Xred] is

the obvious quotient map. The associated graded of Y G
ξ is a quotient of C[X]G/(µ∗(g)) ∼=

C[µ−1(0)]G, so we have maps

C[µ−1(0)]G ↠ gr(Y G
ξ )→ gr(Ared) ↪→ C[Xred].

The composition of these maps is a isomorphism. Since the first map is a surjection and the

last is an injection, each of the intermediate steps is an isomorphism. 2

Next we describe the period of Qred in terms of the parameter ξ; this will prove to be an

important technical tool that is needed for the proofs of Proposition 4.4 and Lemma 4.15.

For simplicity, we assume that X is symplectic over SpecC (rather than over an arbitrary

base) and C[X]S×G = C, that Q is the canonical quantization of X, and that Xred satisfies our

running assumptions on X.
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The following general result about opposites and quantum Hamiltonian reduction will be

used to prove Lemma 3.15, and may also be of independent interest.

Lemma 3.14 Let A be an algebra with an action of a connected reductive affine algebraic

group G with noncommutative moment map η : U(g)→ A. Then we have natural isomorphisms

EndA(A/Aη(g))op ∼= EndAop(A/η(g)A) ∼= EndAop(Aop/Aopη(g)). (4)

That is, the left and right quantum Hamiltonian reductions are opposite to each other.

Proof: We can freely replace G with a finite cover, and thus assume that G is a product of

simple groups. Since reducing by G1 ×G2 can be done in stages as reduction by G1 and then

by G2, we can reduce to the case where G is simple.

Right (resp. left) multiplication define homomorphisms

EndA(A/Aη(g))op ∼= (A/Aη(g))G ←− AG −→ (A/η(g)A)G ∼= EndAop(A/η(g)A).

Since G is reductive, the functor of invariants is exact and these maps are surjective, so we

need only show their kernels agree. The kernel K1 of the left map is AG ∩ Aη(g) and the

kernel K2 of the right map is AG ∩ η(g)A. If G is abelian then

AG ∩ η(g)A = η(g)AG = AGη(g) = AG ∩Aη(g),

so we can assume that G is non-abelian.

Thus, assume that a =
∑

i yiη(xi) is an element of K1, where xi ranges over a basis

of g. We can replace yi with its projection to the isotypic component of A correspond-

ing to the adjoint representation g ∼= g∗ (since any other simple tensored with g has no

invariants). In this case, invariance shows that there is an equivariant map π : g → A

sending π(xi) = yi where xi is the dual basis to xi under the Killing form. Thus we have

a =
∑

i η(xi)yi + xi · yi =
∑

i η(xi)yi + π([xi, x
i]) by the equivariance of π. Since

∑
i[xi, x

i]

is invariant under the adjoint action, it is trivial, and we have that a =
∑

i η(xi)yi ∈ K2.

Applying a symmetric argument, we see that K1 = K2, so the first equality of (4) follows

immediately. The second is just the equivalence of categories between right A-modules and

left Aop-modules. 2

A quantized moment map η : U(g) → A is called balanced if, when ξ = 0, Qred is the

canonical quantization of Xred.

Lemma 3.15 The canonical quantization of the variety X admits a balanced quantized moment

map.
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Proof: By Proposition 3.11, the set of quantized moment maps is a torsor for χ(g). Since Q
is the canonical quantization, we know that Q ∼= Qop, and any choice of such an isomorphism

(that is, any algebra anti-automorphism ϕ of Q) sends a quantized moment map to minus a

quantized moment map. Thus, −ϕ preserves the set of quantized moment maps, and is an

anti-automorphism of χ(g)-torsors, so it fixes a unique point.

Recall that

Qred = ψ∗EndQU

(
QU

/
QU · ⟨hη(x)− hξ(x) | x ∈ g⟩

)op
.

By Lemma 3.14, the opposite ring of Qred is obtained as the analogous reduction of the

opposite ring of Q:

Qop
red
∼= ψ∗EndQU

(
Qop

U

/
Qop

U · ⟨−hη(x) + hξ(x) | x ∈ g⟩
)op

.

Twisting the action of Q by the action of ϕ, this sheaf is also isomorphic to

ψ∗EndQU

(
QU

/
QU · ⟨−hϕ(η(x)) + hξ(x) | x ∈ g⟩

)op
.

Thus, if we choose η to be the fixed point of −ϕ and take ξ = 0, the quantization Qred is

isomorphic to its own opposite, and therefore to the canonical quantization. 2

The following proposition is implicit in the principal results of [Los12], but does not seem

to be explicitly stated in the generality that we need. Our proof is similar to the proof of

[Los12, 5.3.1].

Proposition 3.16 If X is canonically quantized, η is a balanced quantized moment map, and

ξ ∈ χ(g) is arbitrary, then the period of Qred is equal to [ωred] + hK(ξ), where K : χ(g) →
H2(Xred;C) is the Kirwan map.

Proof: Consider the inclusion χ(g) ∼= (g∗)G ⊂ g∗, and let P :=
(
U ∩ µ−1(χ(g))

)
/G, which is

equipped with a natural map γ : P→ χ(g). Since G acts freely on U, γ is a submersion and P

is a flat deformation of Xred = γ−1(0), symplectic over the base χ(g). The quantization

Q̂red
∼= γ∗End

(
QU

/
QU · ⟨hη(x) | x ∈ [g, g]⟩

)G

of P is self opposite, and thus canonical, so its period is equal to the class of the relative

symplectic form ωP ∈ Ω2(P/χ(g)). The quotient

Qred = Q̂red/Q̂red · ⟨hη(x)− hξ(x) | x ∈ g/[g, g]⟩,

which is supported on Xred, can be thought of as the pullback of Q̂red by the map s : ∆ →
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∆× χ(g) which is the identity on ∆ and has the property that s∗x = h · ξ(x) for any element

x ∈ g/[g, g] ∼= χ(g)∗. By Proposition 3.1, this quantization of Xred has period s∗[ωP]. The

usual Duistermaat-Heckman theorem implies that s∗[ωP] = [ωred] + hK(ξ). 2

4 Modules over quantizations

Let Q be an S-equivariant quantization of X, and consider the sheaves D and D(m) defined in

the beginning of Section 3.3. An h-adically complete module over Q (respectively D(0)) is

called coherent if it is locally a quotient of a sheaf which is free of finite rank. By Nakayama’s

lemma, this is equivalent to the property that one obtains a coherent sheaf by setting h

(respectively h1/n) to zero.

Remark 4.1 Some other sources on modules over deformation quantizations contain an a

priori stronger notion of “coherent” as in defined in [KS12, §1.1]. However, since X (and thus

D) is Noetherian, [KS12, 1.2.5] shows that this notion coincides with the one we have given

above. In general, we simplify many issues around finiteness by assuming that the modules we

consider are coherent. Removing this condition would complicate matters substantially.

A S-equivariant D-module is a D-module equipped with an S-structure in the sense of

Section 3.2, compatible with the S-structure on D. More precisely, it is a D-module N along

with an isomorphism a∗twN ∼= p∗N satisfying the natural cocycle condition, such that the

following diagram commutes.

a∗twD ⊗ a∗twN a∗twN

p∗D ⊗ p∗N p∗N

∼= ∼=

An S-equivariant D-module N is called good if it admits a coherent S-equivariant D(0)-

lattice N (0). Let D -Mod be the category of arbitrary S-equivariant modules over D, and let

D -mod ⊂ D -Mod be the full subcategory consisting of good modules. Note that the choice of

lattice is not part of the data of an object of D -mod. The reason for this is that we want an

abelian category, which would fail if we worked with lattices: the quotient of a lattice by a

sublattice is only a lattice after killing torsion.

Many of our important results require considering derived categories; unfortunately, there

seems to be no single choice of finiteness condition on derived categories which will suit us once

and for all. In order to define the cohomology of sheaves of D-modules, it is most convenient

to work in unbounded derived category D(D -Mod) of arbitrary D-modules (in order to use
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Čech resolutions), but in most cases of interest to us, we can restrict to the bounded derived

category Db(D -mod) of good D-modules.

Remark 4.2 Note that if C is an abelian category and C0 an abelian subcategory closed

under taking subobjects, we can consider both the derived category Db(C0) and the category

Db
C0(C) of bounded complexes in C with cohomology in C0. There is an obvious functor

Db(C0) → Db
C0(C) which is sometimes an equivalence and sometimes not. If C0 has enough

projectives which remain projective in C, then every complex in Db
C0(C) can be replaced by a

quasi-isomorphic projective resolution in C0, which shows that this functor is an equivalence.

In particular, this argument carries through when C is the category of all modules over some

ring, and C0 is the subcategory of finitely generated modules.

If C is the category of quasi-coherent sheaves on a projective (over affine) scheme and

C0 is the subcategory of coherent sheaves, then this functor is still an equivalence, even

though coherent sheaves do not have enough projectives; this follows from considering the

corresponding modules over the projective coordinate ring. Similarly, we will show that D -mod

admits an analogous description (Theorem 5.8), which implies that Db(D -mod) is equivalent

to Db
D -mod(D -Mod) (Corollary 5.11).

Remark 4.3 If X = M is a conical symplectic resolution, there are heuristic reasons to treat

D -mod as an algebraic version of the Fukaya category of M twisted by the B-field defined

by e2πiλ ∈ H2(M;C×), where hλ is the period of D. The firmest justification at moment lies

in the physical theory of A-branes, which the Fukaya category is an attempt to formalize.

Kapustin and Witten [KW07] suggest that on a hyperkähler manifold, there are objects in an

enlargement of the Fukaya category which correspond not just to Lagrangian submanifolds, but

higher dimensional coisotropic submanifolds. In particular, there is an object in this category

supported on all of M called the canonical coisotropic brane. Following the prescription of

Kapustin and Witten further shows that D is isomorphic to the sheaf of endomorphisms of

this object. Nadler and Zaslow [NZ09] prove a related result in which M is replaced by the

cotangent bundle of an arbitrary real analytic manifold.

4.1 Cotangent bundles

Let us consider the special case of quantizations of X = T ∗X for some smooth projective

variety X, where S acts by inverse scaling of the cotangent fibers11. Quantizations of cotangent

bundles have been considered many times before in different contexts, but for the sake of

completeness, we wish to show in detail how it fits in our schema. We will assume that

11This variety may not satisfy the property of being projective over an affine variety X0, but we will not use
that assumption in this section.
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H1(X) = 0 and H2(X) ∼= H1,1(X); in particular

H i(X;SX)S ∼= H i(X;SX) ∼= H i,0(X) = 0 for i = 1, 2

and H2(X) ∼= Pic(X)⊗ C.

A Picard Lie algebroid P on X is an extension in the abelian category of Lie algebroids

of the tangent sheaf TX , with its tautological Lie algebroid structure, by the structure sheaf

SX , with the trivial Lie algebroid structure. Such an extension in the category of coherent

sheaves is classified by

Ext1(TX ,SX) ∼= H1(X; T ∗
X) ∼= H1,1(X;C) ∼= H2(X;C).

Since we have that H0(X;∧2 T ∗
X) = 0, there is a unique Picard Lie algebroid Pλ on X for each

λ ∈ H2(X;C).

Let Uλ be the universal enveloping algebra of Pλ modulo the ideal that identifies the

constant function 1 ∈ SX with the unit of the algebra. If λ is the image of the Euler class

of a line bundle L on X, then Uλ is isomorphic to the sheaf of differential operators on L.

More generally, Uλ is referred to as the sheaf of λ-twisted differential operators on X. A

coherent sheaf of Uλ-modules is called a λ-twisted D-module on X. The sheaf Uλ has an

order filtration, and any coherent sheaf of Uλ-modules admits a compatible filtration.

However, Uλ is a sheaf on X, and we wish to find one on T ∗X. This requires the technique

of microlocalization (see, for example, [Kas03, AVdBVO89] for more detailed discussion of

this technique). The associated graded of Uλ with respect to the order filtration is isomorphic

to SymSX
TX ; put differently, if

Rλ :=
{∑

uih
i ∈ Uλ[h]

∣∣∣ ui has order ≤ i
}

is the Rees algebra of the order filtration on λ, then Rλ/hRλ
∼= SymSX

TX . Given an open

subset U ⊂ T ∗X, we obtain a multiplicative subset SU ⊂ SymSX
TX(π(U)) consisting of

functions on π−1(π(U)) which are invertible on U .

We can give a non-commutative version of this construction using an associated multiplica-

tive system in Rλ(π(U)). Let

S′
U =

{
r ∈ Rλ(π(U))

∣∣ ∃m such that r ∈ hmRλ with h−mr ∈ SU
}
.

This is a multiplicative system because SymSX
TX is a sheaf of domains. Furthermore, since

[r,Rλ] ⊂ hRλ, the operation of bracket with any algebra element is topologically nilpotent

(the successive powers converge to 0 in the h-adic topology). Thus, in any quotient Rλ/h
mRλ,

the reduction of this set S′
U satisfies the Ore condition, and we can define the localization

of Rλ by S′
U as the inverse limit Rλ(U) := lim←−(Rλ/h

mRλ)S′
U

. This defines an S-equivariant
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sheaf of rings Rλ on Spec
(

SymSX
TX

) ∼= T ∗X = X, which is free over C[[h]] and satisfies

R/hR ∼= ST ∗X , and is therefore a quantization of X.

Proposition 4.4 The period of Rλ is h(λ−ϖ/2), where ϖ = c1(T ∗X) ∈ H2(X;C) ∼= H2(X;C)

is the canonical class.

Proof: We begin by choosing line bundles L1, . . . ,Lk on X and complex numbers ζ1, . . . , ζk

such that λ =
∑k

i=1 ζic1(Li). Let Y be the total space of ⊕Li and let T := (C×)k act on Y by

scaling the fibers of the individual lines. Let S act on T ∗Y via the inverse scaling action on the

fibers, and let R̃ be the T × S-equivariant quantization of T ∗Y obtained by microlocalizing

the sheaf of (untwisted) differential operators on Y . The action of T on (T ∗Y, R̃) admits a

quantized moment map

φ : U(t)→ ΓS(R̃) ∼= Γ(Y,DY )

given on t by the equation

φ(a1, . . . , ak) =

k∑
i=1

aiti
∂

∂ti
, (5)

where ti is any coordinate on the fiber of Li (the operator ti
∂
∂ti

is independent of this choice). If

we take ζ := (ζ1, . . . , ζk) ∈ Ck ∼= χ(t), then symplectic reduction of (T ∗Y, R̃) at the parameter

ζ yields the pair (X,Rλ), as noted by Beilinson and Bernstein in [BB93, §2.5].

First, consider the special case where k = 1 and L1 = ω−1
X , the anti-canonical bundle of X.

Then Y is Calabi-Yau and R̃ is the canonical quantization, and so we can apply Proposition

3.16. In order to do this, we must find a quantized moment map with self-opposite reduction.

By [BB93, §2.5], the reduction by φ at the parameter ξ ∈ C ∼= χ(t) is isomorphic to the sheaf

of differential operators on X twisted by −ξϖ ∈ H2(X;C), and this sheaf is self-opposite

when ξ = −1/2. This implies that

η(a) := a
(
t1
∂

∂t1
+

1

2

)
is a canonical quantized moment map. By Proposition 3.16, the reduction by η at the parameter

ξ has period equal to −hξϖ, and is isomorphic to the sheaf of differential operators twisted by

(−ξ + 1/2)ϖ, confirming the result for multiples of the canonical class.

Now, assume that L1 = ω−1
X , which we can always arrange. If σ : T ∗Y → T ∗Y/G is

the projection, then σ∗R̃T is an S-equivariant quantization of the relative Poisson scheme

T ∗Y/G → t∗, and thus has period [ωT ∗Y/G] + hϵ for some ϵ ∈ H2(X;C). If s : ∆ → ∆ × t∗

is the section corresponding to ζ1 = −1/2 and ζi = 0 for i > 1, then we arrive at the

conclusion that s∗σ∗R̃T ∼= R−ϖ/2, which already know has period 0. Thus, we must have

s∗([ωT ∗Y/G] + hϵ) = h(ϖ/2 + ϵ) = 0, so ϵ = −ϖ/2.
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For arbitrary ζi, we have a section sζ : ∆→ ∆× t∗, and

s∗ζ([ωT ∗Y/G]− hϖ/2) = h
( n∑

i=1

ζic1(Li)− ϖ/2
)

= h(λ− ϖ/2).

Thus Rλ has the desired period. 2

There is a natural S-equivariant map p−1Uλ → Rλ[h−1], where p : X→ X is the projection

and S acts trivially on p−1Uλ. For any λ-twisted D-module N on X, the microlocalization of

N is defined to be the Rλ[h−1]-module Rλ[h−1]⊗p−1Uλ
N . Proposition 4.5, which is well-known

to the experts, may be regarded as a non-commutative version of the equivalence between

coherent sheaves on X and sheaves of coherent SymSX
TX -modules on X.

Proposition 4.5 Microlocalization defines an equivalence of categories from the category of

finitely generated λ-twisted D-modules on X to Rλ[h−1] -mod.

Proof: The adjoint equivalence is J 7→ (p∗J )S; we need only check this on the algebras

themselves. It is clear that the microlocalization of Uλ is Rλ[h−1]. On the other hand, we

have a map Uλ → (p∗Rλ[h−1])S which is injective, and whose surjectivity is easily verified by

passing to the associated graded. 2

Remark 4.6 While the cotangent bundles of smooth projective varieties provide a large supply

of conical symplectic varieties, these varieties very rarely are conical symplectic resolutions. In

general they do not have enough global functions to be resolutions of their affinizations. For

example, consider the case of a curve:

• If X = P1, T ∗X is a resolution of a singular quadric.

• If X is elliptic, T ∗X ∼= X × A1, so the affinization of T ∗X is isomorphic to A1.

• If X has genus greater than 1, then T ∗X is a line bundle of positive degree, and thus

has no nonconstant global functions.

Example 4.7 One class of projective varieties whose cotangent bundles are conical symplectic

resolutions are varieties of the form X = G/P , where G is a reductive algebraic group and

P ⊂ G is a parabolic subgroup. Philosophically, the reason is that X has a lot of vector

fields (induced by the action of g), therefore its cotangent bundle has a lot of functions. It is

conjectured (see for example [Kal09, 1.3]) that these are the only such projective varieties.

If P is a Borel subgroup, then T ∗X is the Springer resolution of the nilpotent cone in g.

More generally, the moment map µ : T ∗X → g∗ ∼= g is always generically finite, and its image
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is the closure ŌP = G · p⊥ of the Richardson orbit OP associated with P . If G = SL(r;C), or

if OP is simply-connected, then µ is generically one to one, and T ∗X is a symplectic resolution

of ŌP [Hes78, 1.3]. In other cases, it is still a symplectic resolution of its affinization, but this

affinization may be a finite cover of ŌP .

4.2 Localization

We return to considering a general X/S satisfying the assumptions of Section 3. We fix

a quantization D of X, and we let A := ΓS(D) be its section algebra. Let A -Mod be the

category of arbitrary A-modules, and let A -mod be the full subcategory of finitely generated

modules. As in the case of D-modules, we will be interested in the unbounded derived category

D(A -Mod) and the bounded derived category Db(A -mod); by Remark 4.2, Db(A -mod) is

equivalent to the full subcategory of D(A -Mod) consisting of objects whose cohomology is

both bounded and finitely generated.

We have a functor

ΓS : D -mod→ A -mod

given by taking S-invariant global sections. The left adjoint functor

Loc: A -mod→ D -mod

is defined by putting Loc(N) := D ⊗A N, with the S-action induced from the action on D. To

see that Loc(N) is indeed an object of D -mod, let Q ⊂ N be a finite generating set and define

a filtration of N by putting N(m) := A(m) ·Q. We define the Rees algebra R(A) to be the

h-adic completion of

A(0)[[h
1/n]] + h

1/nA(1)[[h
1/n]] + h

2/nA(2)[[h
1/n]] + . . . ⊂ A[[h

1/n]]

and the Rees module R(N) to be the h-adic completion of

N(0)[[h
1/n]] + h

1/nN(1)[[h
1/n]] + h

2/nN(2)[[h
1/n]] + . . . ⊂ N [[h

1/n]].

Note that R(N) is a module over R(A) ∼= Γ(D(0)), and D(0)⊗R(A) R(N) is a coherent lattice

in Loc(N).

Remark 4.8 If N is an object of A -mod, we have shown that Loc(N) always admits a

coherent lattice, but the construction of that lattice depends on a choice of filtration of

N . Conversely, any coherent lattice N (0) for an object N of D -mod induces a filtration of

N := ΓS(N ) by putting N(m) := ΓS
(
h−m/nN (0)[h1/n]

)
.

If ΓS and Loc are biadjoint equivalences of categories, we will say that localization holds
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for D or that localization holds at λ, where [ωX] + hλ is the period of D. Localization

is known to hold for certain parameters in many special cases, including quantizations of

the Hilbert scheme of points in the plane [KR08, 4.9], the cotangent bundle of G/P [BB81],

resolutions of Slodowy slices [Gin09, 3.3.6] & [DK, 7.4], and hypertoric varieties [BK12, 5.8].

We conjecture that any conical symplectic resolution M admits many quantizations for which

localization holds.

Conjecture 4.9 Let Λ ⊂ H2(M;C) be the set of periods of quantizations for which localization

holds. There exists

• a finite list of effective classes x1, . . . , xr ∈ H2(M;Z)

• a finite list of rational numbers ai ∈ Q

such that Λ = H2(M;C) ∖
r⋃

i=1

Di, where

Di :=
{
λ ∈ H2(M;C)

∣∣ ⟨xi, λ⟩ − ai ∈ Z≤0}.

Remark 4.10 The classes x1, . . . , xr should exactly correspond to the effective curve classes

in “generic non-affine deformations” of M in the sense of [BMO, 1.15]. These classes play an

important role in the formula for quantum cohomology of the Springer resolution [BMO, 1.1],

and conjecturally of any conical symplectic resolution.

Though we cannot prove Conjecture 4.9, we will establish asymptotic results both in the

derived (Theorem 4.17) and abelian (Corollary 5.17) settings.

4.3 Derived localization

In this section, we continue the assumptions of Section 4.2. We next wish to consider the

derived functors RΓS and LLoc relating the triangulated categories D(A -Mod) and D(D -Mod).

Note that these derived functors are well-defined by [Spa88, Th. A]. First, let us establish

certain homological properties of these functors.

Lemma 4.11 For any good S-equivariant module N , the module RkΓ(X;N (0)) is finitely

generated over R(A) and the map

RkΓ(X;N (0))→ lim←−RkΓ(X;N (0)/N (−nm))

is an isomorphism for all k.

Proof: Let

Gk(m) := RkΓ(X;N (−nm)) and Gk(m|p) := RkΓ(X;N (−nm)/N (−np))
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for p ≥ m. We claim that the cohomology Gk(0) is a finitely generated S-equivariant R(A)-

module. To see this, note that the cohomology long exact sequence of

0→ N (−n)→ N (0)→ N (0)/N (−n)→ 0

gives an injective map Gk(0)/hGk(0) ↪→ Gk(0|1) = RkΓ(X;N (0)/N (−n)). The latter is the

cohomology of a coherent sheaf, and thus finitely generated over C[X]. Let P be a submodule

of Gk(0) generated by representatives of a finite generating set of Gk(0)/hGk(0), so we have

Gk(0) = P +hGk(0). Then given any x ∈ Gk(0), we can inductively find pi ∈ P , i = 0, 1, 2, . . . ,

so that x−
∑N

j=0 h
jpj lies in hN+1Gk(0). Since R(A) is complete in the h-adic topology, we

can take the limit to obtain p ∈ P such that x− p lies in
⋂∞

i=0 h
iGk(m). But this intersection

is zero, since
⋂∞

i=0 h
iN (−nm) = 0, and so Gk(0) = P . Thus Gk(0) is finitely generated as

desired.

Thus, Gk(0) is a quotient of a finite rank free module R(A)⊕n by a submodule K. Consider

the short exact sequence of projective systems

0→ K/(K ∩ hmR(A)⊕n)→ (R(A)/hmR(A))⊕n → Gk(0)/hmGk(0)→ 0.

Since the kernel satisfies Mittag-Leffler, we obtain an isomorphism

Gk(0) ∼= R(A)⊕n/K ∼=
(

lim←−(R(A)/hmR(A))⊕n
)
/
(

lim←−K/(K∩h
mR(A)⊕n)

)
∼= lim←−G

k(0)/hmGk(0).

Note that the long exact sequence associated to the short exact sequence of projective systems

hmGk(0) → Gk(0) → Gk(0)/hmGk(0) further shows that the first derived functor of lim←−
vanishes on the left hand system:

lim←−
1 hmGk(0) ∼=

(
lim←−G

k(0)/hmGk(0)
)
/Gk(0) = 0.

All higher derived functors vanish, since this holds for any projective system over Z≥0 in the

category of modules over a ring. Now, we consider the long exact sequence

· · · → Gk−1(0|m)→ Gk(m)→ Gk(0)→ Gk(0|m)→ Gk+1(m)→ · · · . (6)

This breaks into a series of short exact sequences

0→ Tor1(C[h]/(hm), Gk(m))→ Gk(m)→ Gk(0)→ Gk(0)/hmGk(0)→ 0.

The submodule of all h-torsion elements in Gk(0) is finitely generated, so it is killed by hM

for some M . For m > M , the group Tor1(C[h]/(hm), Gk(m)) stabilizes, and the induced map

in the projective system is multiplication by h. This projective system satisfies the property
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that the image of Tor1(C[h]/(hm+M ), Gk(M + m)) in Tor1(C[h]/(hm), Gk(m)) is trivial, so

the projective system has lim←−Tor1(C[h]/(hm), Gk(m)) ∼= lim←−
1 Tor1(C[h]/(hm), Gk(m)) = 0 by

Mittag-Leffler again. The short exact sequence

0→ Tor1(C[h]/(hm), Gk(m))→ Gk(m)→ hmGk(0)→ 0

shows that lim←−G
k(m) = lim←−

1Gk(m) = 0 as well.

Since Gk(0|m) is the extension of two projective systems with higher derived limits vanish-

ing, the higher projective limits of Gk(0|m) vanish as well. The long exact sequence (6) thus

remains exact when we take the projective limit, since the higher derived functors of all its

terms vanish. Therefore, we obtain the desired isomorphism Gk(0) ∼= lim←−G
k(0|m). 2

Proposition 4.12 The functor RΓS induces a functor Db(D -mod)→ Db(A -mod).

Proof: Since any complex of A-modules with cohomology that is finitely generated and

bounded is quasi-isomorphic to a bounded complex, we need only prove that RΓS applied to

any good D-module N has finitely generated cohomology in finitely many degrees. By Lemma

4.11, the cohomology is finitely generated, and we need only check that Gk(0|m) (using the

notation of the lemma) is only non-zero in finitely many degrees. Since N (0)/N (−nm) is just

an iterated extension of N (0)/N (−1) it suffices to show the same for H i(X;N (0)/N (−1)).

Since X is projective over X0, this group is finitely generated over C[X] and can only be

non-zero if 0 ≤ i ≤ dimX. 2

If the functors RΓS and LLoc induce biadjoint equivalences Db(D -mod) ∼= Db(A -mod), we

say that derived localization holds for D or that derived localization holds at λ, where

[ωX] + hλ is the period of D. The following result of Kaledin [Kal08, §3.1] gives a sufficient

condition for derived localization to hold. Let Dop be the opposite ring of D, and let Aop be

its section algebra. Consider the sheaf of algebras D⊠̂C((h))Dop on X× X, which has section

algebra A⊗Aop. Let Ddiag be the D⊠̂C((h))Dop-module obtained by pushing D forward along

the diagonal inclusion from X to X× X, and let Adiag be the algebra A, regarded as a module

over A⊗Aop.

Theorem 4.13 (Kaledin) Suppose that the higher cohomology groups of D vanish.12 Then

derived localization holds if and only if the natural map LLoc(Adiag) → Ddiag is a quasi-

isomorphism.

12By Proposition 2.4, this condition is satisfied by any conical symplectic resolution.
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Remark 4.14 Kaledin uses the bounded above derived categoriesD−(D -mod) andD−(A -mod);

however, this equivalent to the claim that the equivalence holds on bounded derived categories,

by the argument of [Kal08, 1.2].

We will use Kaledin’s result to prove Theorem A from the introduction. To do this, we

first need to establish a technical result. As usual, we let M be a conical symplectic resolution.

Let D be any S-equivariant quantization of its twistor deformation Mη, and let t be the

coordinate on A1. Let N be a D-module supported on a Lagrangian subvariety of M ⊂Mη

for η ∈ H2(M;Z) (in the sense that its pullback to the complement of this Lagrangian is zero).

Lemma 4.15 There exists a nonzero polynomial q(x) ∈ C[x] such that q(h−1t) ∈ Aη acts by

zero on N .

Proof: Let L be the twistor line bundle on Mη, i.e. the line bundle satisfying the statement of

Proposition 2.10, and let u : Tot(L ×)→Mη be the projection. Then the total space Tot(L ×)

is symplectic, and the fiberwise C∗-action is Hamiltonian with moment map t, where t is the

coordinate on A1, and the map u coinduces the Poisson structure on Mη.

Since the quantization D is S-equivariant, its period will be of the form [ωMη ]+hλ = tη+hλ

for some λ ∈ H2(Mη;C). Let U be the quantization of Tot(L ×) with period u∗λ. As noted

by Bezrukavnikov and Kaledin [BK04, 6.2], the algebra U carries a C∗-equivariant structure

for the fiberwise action, commuting with the S-equivariant structure. By Proposition 3.11,

U has a quantized moment map for the C∗-action; choose one, and let τ ∈ ΓS(U [h−1/n]) be

the image of the generator y of Lie(C∗). By the definition of a non-commutative moment

map, y − τ commutes with the action of any C∗-invariant section of U on any C∗-equivariant

module over this algebra.

As noted in the proof of Proposition 3.16, the invariant pushforward (u∗U [h−1/n])C
∗

is the

quantization of Mη with period hλ+tη, and is therefore isomorphic to our given quantization D .

Thus, we have an equivalence between good S-equivariant D-modules and S× C∗-equivariant

U [h−1/n]-modules, induced by the adjoint functors u∗ and uC
∗

∗ .

Recall that we are given a D-module N on Mη supported on a Lagrangian subvariety of

M. Thus, u∗N is supported on the preimage of Supp(N ) which is Lagrangian. By a finiteness

theorem of Kashiwara and Schapira [KS12, 7.1.10], the self Ext-sheaf of (u∗N )an is perverse,

and in particular, its endomorphism algebra commuting with S is finite dimensional over C.

By Theorem 5.22, the same holds for u∗N .13 As with any element of any finite dimensional

algebra over C, the endomorphism y− τ has a minimal polynomial q(x) such that q(y− τ) = 0.

Since the structure map π−1S1
A → D is given by t 7→ hτ , we thus have that the action of

τ = h−1t on the reduction N = (u∗u
∗N )C

∗
satisfies the same polynomial equation. 2

13One can also use the theory of Euler classes from [KS12], which we will discuss later in Section 6.2, to show
that such a module has finite length, imitating the usual proof for D-modules [HTT08, 3.1.2(ii)]. We thank the
referee for this observation.
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Remark 4.16 Lemma 4.15 almost certainly holds for general η ∈ H2(M;C) rather than just

classes in the image of integral cohomology; however the proof uses the line bundle L in a

very strong way. Proving the general case will require understanding the theory of twistor

deformations of line bundles over gerbes.

Theorem 4.17 Fix a class η ∈ H2(M;Z) such that Mη(∞) is affine.14 Derived localization

holds at λ+ kη for all but finitely many k ∈ C.

Proof: Let Dk be the quantization with period h(λ+ kη). By Theorem 4.13, we need to show

that the map LLoc((Ak)diag)→ (Dk)diag is an isomorphism for all but finitely many k; let Pk
denote the cone of this map. Let D be the quantization of Mη with period tη + hλ, and let

σk : ∆→ A1 ×∆ be the map associated to the polynomial hk as in Section 3.1. Proposition

3.1 tells us that σ∗kD
∼= Dk, which implies that the morphism LLoc((Ak)diag)→ (Dk)diag on

M×M is the pullback of the morphism ϕ : LLoc(Adiag)→ Ddiag on Mη ×A1 Mη. It follows

that Pk ∼= σ∗kP where P is the cone of ϕ.

We now apply Lemma 4.15 to the symplectic resolution M×M, with sheaf N = P and

cohomology class (η, η). The associated twistor deformation is Mη ×A1 Mη. The sheaf we will

apply it to is Hj(P). This is supported on the preimage of 0 ∈ A1, since all fibers over non-zero

points of A1 are affine varieties, where obviously the map of interest is an isomorphism. If we

localize R(Adiag) to a sheaf on M0 ×M0, the result is supported on the diagonal. In fact, its

classical limit is the structure sheaf of the diagonal ∆M0 . Thus, its localization is supported the

preimage of the diagonal, that is, on the Steinberg variety M×M0 M ⊂M×M. Since (Dk)diag

is also supported on diagonal ∆M, the sheaf P is also supported on the Steinberg. Since any

symplectic resolution is semi-small, the Steinberg variety is isotropic. That means that either

the Steinberg is Lagrangian or P = 0, so the hypotheses of Lemma 4.15 are satisfied.

If k is not a root of the polynomial p provided by the Lemma, then h−1t− k acts invertibly

on Hj(P), so the specialization of this sheaf at k is trivial, and so we have σ∗kHj(P) = 0.

Thus, for any integer m, we can find a polynomial (the product of those for each individual

homological degree) where Hj(Pk) is trivial for j ≥ −m.

By [Kal08, 3.3], Pk is trivial if and only if it it has trivial homology in degrees above −ℓ
where ℓ is the global dimension of Dk⊠̂C((h))D

op
k -mod (which is finite since the same is true for

SM×M). By the argument above, this happens at all k other than the roots of a polynomial

with complex coefficients, and thus for all but finitely many k. 2

14See Proposition 2.14 and the preceding paragraph for a discussion of Mη(∞).
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5 Z-algebras

A Z-algebra is an algebraic structure that mimics the homogeneous coordinate ring of a

projective variety in a noncommutative setting. More precisely, it is an N× N-graded vector

space

Z =
⊕

k≥m≥0

kZm

with a product that satisfies the condition kZℓ · ℓZm ⊂ kZm for all k ≥ ℓ ≥ m and kZℓ · ℓ′Zm = 0

if ℓ ̸= ℓ′. While Z itself will usually not have a unit, each algebra kZk is required to be unital;

we will also always assume that kZk is Noetherian, that kZm is finitely generated as a left

kZk-module and as a right mZm-module, and that there exists a natural number r such that

Z is generated as an algebra by those kZm with k −m ≤ r. A left module over the Z-algebra

Z is an N-graded vector space

N =
⊕
m≥0

mN

with an action of Z such that kZm · mN ⊂ kN for all k ≥ m and kZm · m′N = 0 if m ̸= m′. It

is called bounded if mN = 0 for m≫ 0.

Remark 5.1 Some authors also discuss torsion modules, which are those isomorphic to a

direct limit of bounded modules. We will only be interested in finitely generated Z-modules,

and in this setting the conditions of being bounded and being torsion are equivalent.

We also assume that S is affine. Our goal is to define a Z-algebra whose localized module

category is equivalent to D -mod.

5.1 Quantizations of line bundles

In this section, we continue the assumptions given above, though projectivity of X and the

affinity of S are not needed in this subsection. In addition to modules over quantizations, we

will also need to consider bimodules over pairs of quantizations. Let Q and Q′ be S-equivariant

quantizations. A Q′−Q bimodule is a sheaf of modules over the sheaf Q′⊗C[[h]]Qop of algebras

on X. Such a bimodule is called coherent if it is a quotient of a bimodule which is locally

free of finite rank. The most important examples will be quantizations of line bundles.

Let L be an S-equivariant line bundle on X and let η ∈ H2
DR(X/S;C) be the image of the

Euler class of L. Fix an S-equivariant quantization Q0 with period [ωX] + hλ, and for any

integer k, let Qk be the quantization with period [ωX] + h(λ+ kη).

Proposition 5.2 For every pair of integers k and m, there exists a coherent S-equivariant
Qk−Qm bimodule kTm with an isomorphism15

kTm/(h · kTm) ∼= Lk−m. This bimodule is unique

15This is an isomorphism of SX −SX bimodules, where the two actions of SX on Lk−m are the same.
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up to canonical isomorphism, and tensor product with kTm defines an equivalence of categories

from Qm -mod to Qk -mod.

Proof: By the usual sheaf theory, the locally free S-equivariant modules of rank 1 over Qk are

in bijection with H1
S(X;Q×

k ). We have a surjective map of sheaves of groups Q×
k −→ S×

X . The

kernel of this map is 1 +hQk. As a sheaf of groups, this possesses a filtration by the subgroups

1 +hnQk, with successive quotients isomorphic to the structure sheaf SX considered as a sheaf

of abelian groups, since

(1 + hna)(1 + hnb) ≡ 1 + hn(a+ b) (mod hn+1).

Since SX has vanishing higher cohomology, an argument as in [KR08, 2.12] shows the inverse

limit 1 + hQk has vanishing higher cohomology as well. By the Hochschild-Serre spectral

sequence, its higher equivariant cohomology also vanishes. In particular, we have an induced

isomorphism

H1
S(X;Q×

k ) ∼= H1
S(X;S×

X ).

The line bundle Lk−m is classified by an element [Lk−m] of H1
S(X;S×

X ), and we define kTm to be

the locally free rank 1 left Qk-module given by the corresponding element [kTm] of H1
S(X;Q×

k ).

The structure maps of kTm/(h · kTm) as a SX-module are just the reduction mod h of the

structure maps of kTm, which tells us that kTm/(h · kTm) ∼= Lk−m.

Now consider the sheaf of π−1SS [[h]]-algebras Q′ = EndQk

(
kTm

)op
. This sheaf is an S-

equivariant quantization of X, and it is obtained from Qk by twisting the transition functions

by the 1-cocycle representing kTm. We want to show that this quantization is isomorphic to

Qm. In order to show this, it suffices to calculate the period of Q′ and see that it agrees with

that of Qm.

If we can show this in the case where S is a point, then it will imply that these periods

agree after pullback to every single point in S. Any two sections of H2
DR(X/S;C) that agree

after pullback to every point in S are the same. Thus we can assume that S = SpecC. Since

Q′ is S-equivariant, its period must be of the form [ωX] +hλ′ by Proposition 3.5. By definition,

the period is the obstruction to lifting the torsor corresponding to Q′ to G in the notation

of Bezrukavnikov and Kaledin [BK04, (3.2)]. The class λ′ is determined by the reduction

Q′/h3Q′, since the obstruction to lifting this to G3 is [ωX] + hλ′ ∈ H2
DR(X/S;C)⊗ C[h]/(h3).

As shown in the proof of [BK04, 1.8], the set of quantizations of a given symplectic structure

up to second order is a torsor over H1
DR(X;H) where H is, in the language of [BK04], the

localization Loc(Ms,H) of the module H of Hamiltonian vector fields on the formal disk for

the Harish-Chandra torsor.

It is helpful to think about the classical rather than Zariski topology in order to understand

this action. As we discuss in Section 5.4, associated to Q, there is a quantization of the

structure sheaf of the complex manifold Man, which we denote Qan, and analytic versions
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of all the sheaves we have considered. Since the higher pushforwards Rnπ∗SX or Rnπ∗S
an
Xan

vanish, we have an isomorphisms of groups

H1
DR(X;H) ∼= H2

DR(X;C) H1
DR(X;Han) ∼= H2

DR(Xan;C)

via the boundary map δ for the short exact sequence of sheaves

0→ SX −→ J∞SX
H−→ H→ 0,

(or its counterpart in the classical topology). By a classical result of Grothendieck, algebraic and

analytic de Rham cohomology of the structure sheaf agree, so the same holds for H1
DR(X;H) ∼=

H1
DR(Xan;Han).

The classical topology has the advantage that the de Rham cohomology of San
X and

Han agree with the usual sheaf cohomology of their flat sections, which are locally constant

functions and Hamiltonian vector fields Han respectively; thus we can think of an element of

H1
DR(Xan;Han) ∼= H1(Han) as a 1-cocycle in Hamiltonian vector fields. In the torsor action, a

1-cocycle acts on a first order quantization Qan/h3Qan by twisting it via the action of Han on

Qan/h3Qan by X · a = a+ h2X(ā) where X(ā) denotes the usual action of a vector field on

the function ā, which is the image of a in Qan/hQan ∼= San
X . Note that this does not change

the underlying Poisson bracket. The period mod h2 changes by the image under the boundary

map hδ. Note that the period map is normalized so that the nth order describes the (n+ 1)st

order of the quantization; for example, the 0th order part, the symplectic form, describes the

1st order part of the quantization.

Now, we have a map of abelian groups β : (Qan
k )× → Han uniquely determined by a−1qa =

q+ h2β(a)(q̄), which thus matches actions on Qan
k /h

3Qan
k . Thus, when we twist by a 1-cocycle

in (Qan
k )×, this is the same as twisting by its image under β. That is, the period mod

h2 of EndQan
k

(
kTman

)op
is [ωX] + h(λ + kη + δ ◦ β∗([Lk−m])) where β∗ is the induced map

H1(Q×
k )→ H1((Qan

k )×)→ H1(Han) ∼= H1
DR(H) induced by the map β : (Qan

k )× → Han.

Now, we calculate that

aqa−1 = q − a−1[a, q] ≡ q − h2{log ā, q} (mod h3)

so β(a) = −H(log ā) = −H(ā)/a. Thus, we wish to understand the map induced on the

composition δ ◦β in first cohomology. Consider the diagram of sheaves in the analytic topology

(we leave off superscripts to avoid clutter) with short exact rows, along with the relevant piece
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of the associated long exact sequences:

Q×
k

ZX SX S×
X

π−1SS SX H

exp

H

−1 −1 −H ◦ log

H1(X;Q×
k )

H1(X;S×
X ) H2(X;Z)

H1(X;H) H2(X;π−1SS)

c1

δ

−1−H ◦ log

This shows that

δ ◦ β([Lk−m]) = −c1(Lk−m) = (m− k)η,

so by our previous calculation EndQk

(
kTm

)op
and Qm have identical periods and thus are

isomorphic as π−1SS [[h]]-algebras.

Also, we wish to show that on kTm/(h · kTm), the quotient Qm/hQm
∼= SX acts by the

usual module structure on Lk−m. This is a local question, so we may assume that the line

bundle L is trivial, in which case, Qk
∼= kTm ∼= Qm with the left and right actions just being

left and right multiplication, which both coincide with the usual SX-action after killing h.

Of course, kTm ⊗Qm mTk is a quantization of Lk−m ⊗SM
Lm−k ∼= SM, so by uniqueness,

kTm ⊗Qm mTk ∼= Qk, and tensor product is indeed an equivalence. 2

Remark 5.3 In the next proposition and later in Section 6 we will want to vary the periods

of the quantizations in more than one-dimensional families, so we will use an alternate notation

and label the quantizations and bimodules by elements of H2
DR(X/S;C) instead of integers.

In other words, the quantization Qk will be written Qλ+kη and the bimodule denoted 1T0 in

the notation of Proposition 5.2 will be written λ+ηTλ.

We conclude this section by studying quantizations of line bundles in the context of

Hamiltonian reduction. Let (X,Q) be a quantization with a Hamiltonian action of a complex

algebraic group G. For any ξ ∈ χ(G), let Lξ be the line bundle on Xred descending from the

trivial bundle on X with G-structure given by ξ. Fix a quantized moment map η for the action

of G on and a pair of elements ξ, ξ′ ∈ χ(g), and let Qred = QK(ξ) and Q′
red = QK(ξ′) be the

corresponding reductions. Consider the Q′
red −Qred bimodule

ξ′Sξ := ψ∗(HomQU
(Rξ′ ,Rξ)).
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Proposition 5.4 If ξ′ − ξ does not integrate to a character of G, then ξ′Sξ is trivial. If it

does, then it is isomorphic to the quantization K(ξ′)TK(ξ) of Lξ′−ξ.

Proof: First, note that the sheaf Rξ inherits a left g-module structure via the action of left

multiplication by η(x)− ξ(x); furthermore Rξ/hRξ
∼= SU∩µ−1(χ(g)), with the induced g-action

coinciding with the natural one on SU∩µ−1(χ(g)). In particular, it integrates to the group G.

The sheaf End(Rξ)
op is naturally isomorphic to the g-invariant subsheaf of Rξ via the map

that takes an endomorphism over any open set to the image of 1̄ ∈ Rξ(U) . Similarly, a map

Rξ′ → Rξ must take 1̄ ∈ Rξ′(U) to a section r killed by η(x)− ξ′(x), that is, one on which the

g-action is of the form

x · r = (η(x)− ξ(x))r = (ξ′(x)− ξ(x))r.

Since this action must integrate to an action of the group G, there can be no such maps if

ξ′ − ξ does not integrate. If it does, then the pushforward ξ′Sξ is a quantization of the line

bundle Lξ′−ξ and thus isomorphic to K(ξ′)TK(ξ). 2

5.2 The quantum homogeneous coordinate ring of X

Fix an S-equivariant quantization Q of X with period [ωX] + hλ ∈ H2
DR(X/S;C)[[h]] and an

S-equivariant line bundle L on X that is very ample relative to the affinization of X. To

these data we will associate a Z-algebra Z = Z(X,Q,L). Let η ∈ H2
DR(X/S;C) be the Euler

class of L, let Qk be the quantization with period [ωX] + h(λ + kη), let D := Q[h−1/n] and

Dk := Qk[h−1/n], and let kTm be the Qk −Qm bimodule that quantizes the line bundle Lk−m.

Definition 5.5 Let kT ′
m := kTm[h−1/n] be the Dk −Dm bimodule associated to the Qk −Qm

bimodule kTm.

Definition 5.6 Let kZm := ΓS(kT ′
m) with products induced by the canonical isomorphisms

kT ′
ℓ ⊗Dℓ ℓT ′

m
∼= kT ′

m. We call Z the quantum homogeneous coordinate ring of X.

We filter the sheaf kT ′
m by setting kT ′

m(0) = kTm[h1/n] and kT ′
m(ℓ) = hℓ/n

kT ′
m(0), and give

kZm the induced filtration; it is compatible with the multiplication, so it makes Z into a

filtered Z-algebra.

Note that the associated graded of kZm is isomorphic to Γ(X;Lk−m), and for any Z-module

N with a compatible filtration, the associated graded of N is a module over the Z-algebra⊕
k≥m≥0

Γ(X;Lk−m).
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We will use without comment the obvious equivalence between modules over this Z-algebra

and graded modules over the section ring R(L) :=
⊕

k≥0 Γ(X;Lk). A filtration of N is called

good if its associated graded is a finitely generated module over R(L). Then N has a good

filtration if and only if it is finitely generated over Z.

Let Z-mod be the category of finitely generated modules over Z, and letZ-modbd be the

full subcategory of Z-mod consisting of bounded modules. We define the functors

ΓZ
S : D -mod→ Z-mod and LocZ : Z-mod→ D -mod

by putting

ΓZ
S (N ) :=

⊕
k≥0

ΓS
(
kT ′

0 ⊗D N
)

and LocZ(N) :=

⊕
k≥0

0T ′
k

⊗Z N.

Lemma 5.7 If N is finitely generated over Z, then LocZ(N) is finitely generated over D.

Proof: There is some integerK such that
⊕K

k=0Nk generates N . Thus LocZ(N) is a quotient of⊕K
k=0 0T ′

k⊗kZk
Nk. Since the latter module is clearly finitely generated, the former is as well. 2

A coherent lattice N (0) in N induces a filtration on ΓZ
S (N ), which is good because we

have an injection

gr ΓZ
S (N ) ↪→

⊕
m≥0

Γ(X; N ⊗L⊗m),

where we put N := N (0)/N (−1). The cokernel of this map is bounded, since if m≫ 0, then

H1(X;N ⊗L⊗m) = 0, and consequently, gr ΓS
(
mT ′

0 ⊗D N
) ∼= Γ(X;N ⊗L⊗m). This shows, in

particular, that

Loc(gr ΓZ
S (N )) ∼= N , (7)

where Loc is the usual functor sending a graded module over R(L) to a coherent sheaf on X by

the localization theorem for sheaves on a projective (over affine) variety. Conversely, a good

filtration on a Z-module N induces a lattice in LocZ(N), which is coherent because we have

Loc
(

grN
) ∼= LocZ(N). (8)

The functor LocZ is left-adjoint to ΓZ
S ; let ιN : N → ΓZ

S
(
LocZ(N)

)
and ϵN : LocZ

(
ΓZ
S (N )

)
→ N

be the unit and co-unit of the adjunction. The following theorem justifies our name for Z.

Theorem 5.8 The co-unit ϵN is always an isomorphism and the unit ιN is an isomorphism

in sufficiently high degree. Furthermore, LocZ kills all bounded modules, thus ΓZ
S and LocZ are

biadjoint equivalences between D -mod and the quotient of Z-mod byZ-modbd.
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Remark 5.9 We note that this theorem is quite close in flavor to several others in the theory

of Z-algebras, such as [SvdB01, 11.1.1], but these typically assume finiteness hypotheses that

are too strong for our situation.

Remark 5.10 If we dropped the assumption that S is affine, we would expect to be able

to prove a Theorem similar to Theorem 5.8 in which the Z-algebra is replaced by a sheaf of

Z-algebras over S.

Proof of Theorem 5.8: Combining Equations (7) and (8), we have that the induced map

ϵN : LocZ(ΓZ
S (N ))→ Loc(gr ΓZ

S (N )) ∼= N

is an isomorphism. By Nakayama’s lemma, ϵN is an isomorphism as well. Similarly, the map

gr(ιN ) : N → LocZ(ΓZ
S (N ))

is an isomorphism in high degree, thus the same is true for ιN . If N is bounded, then

LocZ(N) ∼= Loc
(

grN
)

is the zero sheaf, thus LocZ(N) = 0, as well. 2

Corollary 5.11 The functor Db(D -mod)→ Db
D -mod(D -Mod) is fully faithful.

Proof: Let N be a good D-module, and let N := ΓZ
S (N ). Since N is finitely generated,

there is some m such that the evaluation map pZm ⊗C mN → pN is surjective for all p ≥ m.

Localizing, this shows we have a surjective map 0Tm ⊗C mN → N . Taking a classical limit

(possibly after increasing m), we obtain a surjection L−m ⊗C mN → N/hN ; thus we have

described the quantization of the familiar construction of such a map in algebraic geometry.

Applying this inductively, we can resolve N as a complex of locally free sheaves over D, each

step given by sums of 0Tmi with m0 < m1 < m2 < · · · .
By taking m0 sufficiently large, we can assure that for any fixed good M, we have

H i(M;Lmj ⊗SM
M/hM) = 0 for all i > 0, j ≥ 0. Thus, we also have ExtiD(0Tmj ,M) = 0

for all i > 0, j ≥ 0. It follows that we can use this resolution to compute Ext(N ,M) in ei-

ther Db(D -mod) or Db
D -mod(D -Mod) and we see that the results are canonically isomorphic. 2

5.3 Z-algebras and abelian localization

First, we discuss some basic results that hold whenever X/S satisfies our running assumptions

for this section. We call a bimodule between two rings Morita if it induces a Morita

equivalence between the two rings. We call a Z-algebra Z Morita if for all k ≥ m ≥ 0 the
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kZk − mZm-bimodule kZm is Morita and the natural map

kZk−1 ⊗ k−1Zk−2 ⊗ · · · ⊗ m+1Zm → kZm (9)

is an isomorphism. In the terminology of [GS05, §5.4], this means that Z is isomorphic to the

Morita Z-algebra attached to the bimodules m+1Zm.

Definition 5.12 For any natural number p, let Z[p] be the Z-algebra defined by putting

kZ[p]m := k+pZm+p. For any Z-module N , we define a Z[p]-module N [p] by N [p]k = Np+k.

It is clear that Z[p] is isomorphic to the Z-algebra Z(X,Qp,L).

Proposition 5.13 The Z-algebra Z constructed in Section 5 is Morita if and only if, for all

k ≥ 0, localization holds for Dk.

Proof: Consider the functor γ(M) =
⊕

k kZ0 ⊗A M from finitely generated modules over

A = 0Z0 to Z-mod /Z-modbd. Let β denote the adjoint to this functor; one description of β is

that β({jN}) = 0Zj⊗Aj jN for j ≫ 0. There is a natural transformation β(ΓZ
S (M))→ ΓS(M),

induced by the natural transformation Loc(M) → LocZ({kZ0 ⊗A M}). The latter natural

transformation has inverse given by the multiplication map of sections 0T ′
k ⊗Ak kZ0 → D0,

tensored with M over A. Thus the former natural transformation is an isomorphism as well.

In particular, if we assume that Z is Morita then Gordon and Stafford [GS05, §5.5]

show that γ and β are equivalences. Thus combining this result with Theorem 5.8, we see

that ΓS = β ◦ ΓZ
S is the composition of two equivalences, and thus an equivalence itself and

localization holds for D. Furthermore, if Z is Morita, then Z[k] is Morita for all k ≥ 0, so

localization holds for Dk for all k ≥ 0.

Conversely, suppose that localization holds for Dk for all k ≥ 0. We have a natural

isomorphism of functors

k+1Zk ⊗− ∼= ΓS(k+1T ′
k ⊗ Loc(−))

from Ak -mod to Ak+1 -mod. Since the right hand side is an equivalence, so is the left hand

side; this proves that the bimodule k+1Zk is Morita for all k ≥ 0. Similarly, this implies that

k+1Zk ⊗ kZm
∼= ΓS

(
k+1T ′

k ⊗ Loc(kZm)
)
∼= ΓS(k+1T ′

m) ∼= k+1Zm.

By induction, this implies that the map (9) is an isomorphism. Thus, Z is Morita. 2

For the remainder of the subsection, we consider the case of a conical symplectic resolution

M. As in Proposition 2.10, let π : Mη → A1 be the twistor family of M with Nη the affinization

of Mη, and let L be the line bundle on Mη extending L. Let Qk be the S-equivariant

quantization of Mη with period [ωMη ] + h(λ+ kη).
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Lemma 4.15 has an algebraic counterpart. Assume N is a A -module such that:

1. N ∼= H i(Mη;N )S for any sheaf N satisfying the hypotheses of Lemma 4.15.

2. The preimage π−1(S) of the support S of the coherent sheaf grN on Nη is contained in

a Lagrangian subvariety of M.

Lemma 5.14 There exists a nonzero polynomial q(x) ∈ C[x] such that q(h−1t) ∈ A acts by

zero on N .

Proof: If N ∼= H i(Mη;N )S, then the minimal polynomial q of N provides the desired polyno-

mial. If hypothesis (2) holds, then Loc(N) is supported on π−1(S), so Lemma 4.15 applies

to Loc(N). Since the map N ↪→ ΓS(Loc(N)) is injective, the polynomial q such that q(h−1t)

kills Loc(N) applies equally to N . 2

One particularly important application is to the product M×M, and its twistor deformation

Mη×A1Mη. The completed outer tensor product Qk⊠̂S[A1]Q
op
ℓ is a quantization of this product,

with S-invariant section algebra Ak ⊗C[h−1t] A
op
ℓ . Modules over this section algebra are just

Ak - Aℓ-bimodules with the left and right actions of h−1t coinciding. An important example of

such a bimodule is kZℓ := ΓS(kTℓ[h
−1/n]) or a tensor product of such bimodules. These have

the further special property that gr(kZℓ) is supported on the diagonal in Nη ×A1 Nη; the same

is thus true of any tensor product of these modules.

The preimage of the diagonal under π × π is just Mη ×Nη Mη, so its intersection with the

preimage of any a ∈ A1 is Lagrangian (by the semi-small property). Thus, we have that:

Lemma 5.15 Let B be a filtered Ak - Am-bimodule which is a subquotient of a tensor product

of filtered bimodules of the form k′Zm′ , and whose support lies in M×M (i.e. whose classical

limit grB is killed by t). Then there exists a nonzero polynomial qB(x) ∈ C[x] such that

qB(h−1t) acts by zero on B.

Proposition 5.16 There is a positive integer p such that Z[p] is Morita.

Proof: The statement that Z[p] is Morita can be broken down into 3 smaller statements:

(a) There exists p such that the bimodule kZk−1 is Morita for all k ≥ p.

(b) There exists p such that the map (9) is surjective for all k > m ≥ p.

(c) There exists p such that the map (9) is injective for all k > m ≥ p.

We first prove (a). The bimodule kZk−1 is Morita if and only if the maps

kZk−1 ⊗Ak−1 k−1Zk → Ak (10)
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and

k−1Zk ⊗Ak kZk−1 → Ak−1 (11)

are both isomorphisms. Let 0T−1 be the Q0 −Q−1 bimodule quantizing L , and let −1T0 be

the Q−1 −Q0 bimodule quantizing L −1. Using notation similar to that of Proposition 3.1,

we have

kTk−1
∼= σ∗k

(
0T−1

)
:= 0T−1

/
(t− kh) · 0T−1|M

k−1Tk ∼= σ∗k
(
−1T0

)
:= −1T0

/
(t− hk) · −1T0|M,

which induces maps

σ∗k
(
0Z−1

)
:= 0Z−1

/
(t− kh) · 0Z−1 → kZk−1 (12)

σ∗k
(
−1Z0

)
:= −1Z0

/
(t− kh) · −1Z0 → k−1Zk. (13)

Consider the short exact sequence

0 −→ 0T−1
t−kh−→ 0T−1 −→ kTk−1 −→ 0.

Adjoining h−1/n and taking sections, we obtain a long exact sequence

0 −→ 0Z−1
t−kh−→ 0Z−1 −→ kZk−1 −→ H1(Mη; kTk−1[h

−1/n]) −→ · · · .

This tells us that the map (12) is injective, with cokernel equal to the submodule of

H1(Mη; kTk−1[h
−1/n]) annihilated by t − kh. Note that the associated graded of the bi-

module H1(Mη; kTk−1[h
−1/n]) is supported over 0 ∈ A1, since all other fibers of π are affine

(Proposition 2.14). By Lemma 5.14, there exists a nonzero polynomial f(x) such that f(h−1t)

acts by zero on H1(Mη; kTk−1[h−1/n]). If t−kh fails to act injectively on H1(Mη; kTk−1[h−1/n]),

then so does h−1t − k, which implies that k is a root of f(x). Since there are only finitely

many roots, there exists a p such that t− kh acts injectively for all k ≥ p, and therefore the

map (12) is an isomorphism. The same argument with k and k − 1 reversed applies to the

map (13).

Now, consider the tensor product map

0Z−1 ⊗A−1 −1Z0 → A0. (14)

Let K be the kernel and E be the cokernel of this map, which are bimodules over A0. Over

non-zero elements of A1, the fibers are affine, so this map is an isomorphism. Thus grK and

grE are killed by t, and Lemma 5.15 applies. Thus, there are minimal polynomials for h−1t

acting on these modules given by qK and qE .

The usual spectral sequence for tensor product shows that the cokernel of the map (10) is
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σ∗kE = E
/

(h− tk) · E, and the kernel of this map is an extension of R1σ∗k(E) ∼= Tor1k(C, E)

and σ∗k(K). Possibly increasing the p introduced earlier, we can assume that for k ≥ p, the

element h−1t− k acts invertibly on E and K. Thus, we have

σ∗k(E) = σ∗k(K) = R1σ∗k(E) = 0.

This shows that (10) is an isomorphism. A completely symmetric argument shows that after

increasing p again, we may also conclude that the map (11) is an isomorphism, and so (a) is

established.

We next prove (b). Fix an integer r such that R(L) is generated in degrees less than or

equal to r; it follows that Z is generated by kZm for k − m ≤ r. For k and m such that

k−m ≤ r, we can proceed exactly as in the proof of (a) to find a p such that the map (9) is a

surjection whenever m ≥ p. For the rest of the cases, we can induct on the quantity k−m− r.
Our inductive hypothesis tells us that the image of the map (9) contains the image of the

multiplication map kZq ⊗Aq qZm for all k > q > m. Thus, the associated graded of the image

of (9) contains all elements of R(L) of degree k−m which can be written as a sum of products

of lower degree elements. Since elements of degree r ≤ k −m generate R(L), this implies that

the map (9) is indeed surjective, and (b) is proved.

Finally, we use (a) to prove (c). Choose p such that the map j+1Zj ⊗ jZj+1 → j+1Zj+1 is

an isomorphism for all j ≥ p. Now let k > m ≥ p be given, and consider the maps

kZk−1 ⊗ k−1Zk−2 ⊗ · · · ⊗ m+1Zm ⊗ mZm+1 ⊗ · · · ⊗ k−2Zk−1 ⊗ k−1Zk

↓ (15)

kZm ⊗ mZm+1 ⊗ · · · ⊗ k−2Zk−1 ⊗ k−1Zk

↓ (16)

kZk = Ak.

By our choice of p, the composition of the maps (15) and (16) is an isomorphism. It follows

that (15) is injective. Since the map (15) is the tensor product of the map (9) with the Morita

bimodule mZm+1 ⊗ · · · ⊗ k−2Zk−1 ⊗ k−1Zk, the map (9) must also be injective. 2

Propositions 5.13 and 5.16 immediately yield the following corollary.

Corollary 5.17 There is an integer p such that localization holds for Dk for all k ≥ p.

Remark 5.18 Corollary 5.17 is precisely the first statement of Corollary B.1 from the intro-

duction for very ample line bundles. If η is only ample, then there exists a positive integer

49



r such that rη is very ample, and we obtain Corollary B.1 by applying Corollary 5.17 with

λ′ = λ+ jη and η′ = rη for j = 0, 1, . . . , r − 1.

It is still desirable to have a non-asymptotic result; that is, a necessary and sufficient

condition for localization to hold for D itself in terms of Z-algebras. Let Z(p) be the Z-algebra

defined by kZ
(p)
m
∼= kpZmp with the obvious product structure. It is clear that Z(p) is isomorphic

to the Z-algebra Z(M,Q,Lp).

Lemma 5.19 For all p, the restriction functor Z-mod /Z-modbd → Z(p)-mod /Z(p)-modbd is

an equivalence of categories.

Proof: By Theorem 5.8, both the source and the target are equivalent to D -mod, and it is

easy to check that these equivalences are compatible with the restriction functor. 2

Proposition 5.20 Localization holds for D if and only if Z(p) is Morita for some p.

Proof: If Z(p) is Morita, then the functor ΓS : D -mod→ A -mod factors as

D -mod→ Z-mod /Z-modbd → Z(p)-mod /Z(p)-modbd → A -mod,

where the first functor is the equivalence of Theorem 5.8, the second is the equivalence of

Lemma 5.19, and the last is the equivalence of [GS05, §5.5]. Thus localization holds for D.

Conversely, assume that localization holds for D. By Theorem 5.16, there is an integer p

such that Z[p] is Morita, which easily implies that Z(p)[1] is Morita. We need to extend this

to show that Z(p) is Morita, which involves showing that the bimodule pZ0 is Morita and the

multiplication map 2pZp ⊗ pZ0 → 2pZ0 is an isomorphism. The fact that pZ0 is Morita follows

from the natural isomorphism of functors

pZ0 ⊗− ∼= ΓS
(
pT ′

0 ⊗ Loc(−)
)

along with the fact that localization holds for both D and Dp. Similarly, the fact that the

multiplication map is an isomorphism follows from the natural isomorphism of functors

2pZp ⊗− ∼= ΓS
(
2pT ′

p ⊗ Loc(−)
)

applied to the module pZ0. 2

Remark 5.21 The “if” direction of Proposition 5.20 is very close in content to [KR08, 2.10]

(though they do not use the language of Z-algebras) and our proof draws heavily on theirs.

We note, however, that Proposition 5.16 and Corollary 5.17 have no analogues in [KR08].
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5.4 Comparison of the analytic and algebraic categories

We keep our running assumptions from the start of Section 5, and assume for simplicity that

S is smooth and that C[X]S = C. Up until this point we have worked exclusively in the

algebraic category, quantizing the sheaf of regular functions in the Zariski topology. On the

other hand, some other important papers have considered quantizations of the functions on an

analytic variety, for example [KR08, KS12]. We will need to apply some results from these

papers below, so we must prove a comparison theorem relating quantizations and their module

categories for the nondegenerate Poisson scheme X and its analytification Xan.

First, we note that every quantization Q in the Zariski topology introduces a corresponding

quantization Qan of the structure sheaf in the analytic category. To see this, we can consider

the jet bundle J∞Q, which is a pro-vector bundle on X with flat connection whose sheaf of

flat sections is Q, as explained in [BK04, 1.4]. The corresponding sheaf of analytic sections

(J∞Q)an again has a flat connection, and we let Qan be its sheaf of flat sections. We have a

map α−1Q → Qan where α : Xan → X is the identity on points. If Q is S-equivariant, so is

Qan.

As in the Zariski topology, we let Dan := Qan[h−1/n]. Similarly, for any D-module M , we

let Man := α−1M ⊗α−1D Dan. As in [KR08], we call an S-equivariant Dan-module good if it

admits a coherent S-equivariant Qan|U -lattice on every relatively compact open subset of X. If

M is a good D-module, Man is a good Dan-module.

Theorem 5.22 The functor (−)an : D -mod→ Dan -mod is an equivalence of categories.

Proof: In essence, the proof is simply to observe that a version Theorem 5.8 holds in the

analytic topology. More precisely, we define the quantum homogeneous coordinate ring Zan

exactly as we defined Z. There is a canonical map from Z to Zan, and we claim that it is an

isomorphism.

In bidegree (0, 0), this map is the map from ΓS(D) to ΓS(Dan). To see that this is an

isomorphism, it is enough to show that the associated graded map Γ(SM) → Γ(San
M)fin is

an isomorphism, where (−)fin denotes the subalgebra of S-locally finite vectors. Since all

S-weights on C[M] are positive, any S-weight vector in Γ(San
M) can be interpreted as a section

of a line bundle on the projectivization of X0 for the S action; by the classic GAGA theorem

of Serre [Ser56], this is in fact algebraic, and thus arises from an algebraic function on X0.

The argument in arbitrary bidegree follows from a similar analysis of sections of line bundles.

Now that we know that Z and Zan are isomorphic, we have a functor from Dan -mod to

D -mod given by the composition

Dan -mod
(ΓZ

S)
an

−→ Zan -mod ∼= Z-mod
LocZ−→ D -mod .

This functor splits (−)an and is exact (since the cohomology of a sufficiently high twist with L

51



vanishes), so to check that it gives an equivalence, we need only check that it kills no module

K. Thus, we need only show that for any good S-equivariant D-module, we must have that ΓZ
S

is not 0. Since L is ample, K/hK⊗Lk has non-zero sections for k ≫ 0 unless K/hK = 0; then

Nakayama’s lemma tells us that kT ′
0
an ⊗D0 K has non-zero sections as well unless K = 0. This

completes the proof. 2

Remark 5.23 Hou-Yi Chen [Che10] proves a version of Theorem 5.22 in the more general

context of DQ-algebroids, but subject to the hypothesis that X is projective over a point

(which is never the case for a conical symplectic resolution of positive dimension). Chen uses

a more direct reduction to Serre’s classic GAGA theorem than we do; it is possible that his

techniques could be adapted to our setting, as well.

Remark 5.24 It might worry the reader that we used some analytic techniques in the proof

of Proposition 5.2, used that result in the proof of Theorem 5.8, and then used that in the

proof of Theorem 5.22; at first glance, this looks as though it may be circular. In fact, in the

proof of Proposition 5.2, we use only the comparison theorem between algebraic and analytic

de Rham cohomology; nothing in the vein of GAGA.

Similarly, it might worry the reader that we use Theorem 5.22 in the proof of Lemma

4.15 earlier in the paper, but Lemma 4.15 is only used in the proof of the localization results,

Theorem 4.17 and Proposition 5.16, which are not used in this section.

5.5 Twisted modules and the Kirwan functor

In this section, we return to the assumptions of Section 3.4, while keeping those introduced

at the start of 5. That is we additionally assume that we have a Hamiltonian action of a

connected reductive algebraic group G on (X,Q) such that C[X]G×S with quantized moment

map η : U(g) → A, which induces a flat commutative moment map X → g∗. We fix a G-

equivariant ample line bundle L on X and we let U be its semistable locus. We assume that

the G action on U is free and, and if Xred is the reduced space (with Lred its induced ample

line bundle), that we have an induced isomorphism C[µ−1(0)]G = C[Xred], and more generally

an isomorphism Γ(µ−1(0);Lk)G = Γ(Xred,Lk).

Fix an element ξ ∈ χ(g). We’ll let Dred be the quantization of Xred defined by reduction

by η − ξ (as defined in Section 3.4). We call a G-equivariant object N of D -mod (respectively

DU -mod) ξ-twisted if, for all x ∈ g, the action of x on N induced by the G-structure coincides

with left multiplication by the element η(x)− ξ(x) ∈ A. Let D -modξ (respectively DU -modξ)

denote the full subcategory of ξ-twisted objects of D -mod (respectively DU -mod). Kashiwara

and Rouquier [KR08, 2.8(ii)] prove that DU -modξ is equivalent to Dred -mod via the functor

that takes N to ψ∗Hom(Eξ,N ), where Eξ is the sheaf defined in Section 3.4.
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Define the functor κ : D -mod→ Dred -mod by putting

κ(N ) := ψ∗Hom(Eξ,NU)

for all N in D -mod. We call κ the Kirwan functor in analogy with the Kirwan map in

(equivariant) cohomology. Our main result in this section will be Theorem 5.31, which says

that the Kirwan functor is essentially surjective. To prove this theorem, we introduce all of

the analogous constructions in the context of Z-algebras.

In Section 5, we defined a Z-algebra Z = Z(X,D,L) and functor ΓZ
S : D -mod→ Z -mod.

We may also define the Z-algebra Zred = Z(Xred,Dred,Lred), with its own sections functor

ΓZ
S,red : Dred -mod→ Zred -mod.

By assumption, we have a ring homomorphism

η : U(g) −→ A = ΓS(D) ∼= 0Z0.

Moreover, for all m ≥ 0, there is a unique homomorphism

ηm : U(g) −→ ΓS(Dm) ∼= mZm

such that η0 = η and for all x ∈ g, the action of x on L induced by the G-structure coincides

with that induced by the adjoint action, via ηm+1 and ηm, on the Dm+1−Dm bimodule m+1Tm
that quantizes L. By Proposition 3.13, we can describe Ared as an algebraic reduction of A,

and similarly, we have a map jZk → Γ(U; jTk), which induces a map

iYj := iZj

/
iZj · ⟨ηj(x)− ξ(x) | x ∈ g⟩ → Γ(U; jTk ⊗ Eξ).

Lemma 5.25 The induced map iYj
G → i(Zred)j is an isomorphism.

Proof: The proof is essentially the same as Proposition 3.13. The associated graded map

Γ(µ−1(0);Li−j)G → Γ(Xred,Li−j
red ) is an isomorphism by assumption, so this implies the same

for the map under consideration. 2

We say that a G-equivariant Z-module N =
⊕

m mN is ξ-twisted if, for all x ∈ g, the

action of x on mN induced by the G-structure coincides with left multiplication by the element

ηm(x)− ξ(x) ∈ mZm. We denote the category of such modules Z-modξ.

Lemma 5.25 tells us that Y is a naturally a Z − Zred bimodule. We define the Z-Kirwan

functor

κZ := HomZ(Y,−) : Z-mod→ Zred -mod
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along with its left adjoint

κZ! := Y ⊗Zred
− : Zred -mod→ Z-mod .

Remark 5.26 Every Z-module N has a largest submodule Nξ on which ηj(x) − ξ(x) acts

locally finitely and on which the g-action integrates to a G-action. The G-action makes Nξ

a ξ-twisted equivariant module in a canonical way. Because of the ξ-twisted condition, the

G-invariant part of Nξ is already a module over Zred in the obvious way, and we have a

canonical isomorphism κZ(N) ∼= NG
ξ .

Proposition 5.27 The functors κZ and κZ! both preserve boundedness and thus induce functors

κZ : Z-mod /Z-modbd → Zred -mod /Zred -modbd

and

κZ! : Zred -mod /Zred -modbd → Z-mod /Z-modbd .

Proof: The functor κZ obviously sends bounded modules to bounded modules. To see that κZ!
preserves boundedness, find integers N and M such that all of the higher cohomology groups

of LN and LMred vanish. Then for any non-negative integers i, j, k with i ≥ j +N ≥ k+N +M

the associated graded of the multiplication map iYj ⊗ j(Zred)k → iYk. is

Γ(µ−1(0);Li−j)G ⊗ Γ(Xred;Lj−k
red )→ Γ(µ−1(0);Li−k)G.

Since ⊕nΓ(µ−1(0);Ln)G is a finitely generated module over ⊕nΓ(Xred;Lnred), there is some N ′

such that ⊕N≤n≤N ′Γ(µ−1(0);Ln)G generates ⊕N≤nΓ(µ−1(0);Ln)G. That is, if we fix i and k

such that i− k ≥ N , then Γ(X;Li−k)G is spanned by the images of the maps

Γ(µ−1(0);Li−j)G ⊗ Γ(Xred;Lj−k
red )→ Γ(µ−1(0);Li−k)G for all j such that N ≤ i− j ≤ N ′.

We may as well assume that N ′ ≥M +N . Thus, since a map whose associated graded is

surjective is itself surjective, we see that the map⊕
j≥i−N ′

iYj ⊗ j(Zred)k → iYk

is surjective for all k ≤ i−N ′. If M is a Zred-module, it follows that if i ≥ N ′ then κZ! (M)i

is spanned by the images of iYj ⊗Mj for j ≥ i − N ′. Then if Mp = 0 for p ≥ P , we have

κZ! (M)i = 0 whenever i > P +N ′.

This shows that both κZ and κZ! preserve bounded modules and thus induce functors on

the quotient categories. 2
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Proposition 5.28 The following diagram commutes.

D -mod Z-mod /Z-modbd

Dred -mod Zred -mod /Zred -modbd

ΓZ
S

κ
ΓZ
S,red

κZ

(Note that the horizontal arrows are equivalences by Theorem 5.8.)

Proof: Fix an object N of D -mod. First, note that we can assume that N = Nξ, that is,

that N has an G-equivariant structure agreeing with that induced by η − ξ. This is because

passing to the largest submodule that has such a structure doesn’t change κ or κZ.

With this assumption, we have a restriction map

κZ
(

ΓZ
S (N )

)
=

(
ΓZ
S (X;N )

)G
−→

(
ΓZ
S (U;N )

)G ∼= ΓZ
S,red

(
κ(N )

)
where ΓZ

S (X;−) = ΓZ
S , and ΓZ

S (U;−) denotes the same functor defined using the set U of stable

points. As in the proof of Theorem 5.8, let N̄ := N (0)/N (−1).

For each m ∈ Z, the restriction from X to U gives the following long exact sequence in

local cohomology.

H0
X\U

(
N̄ ⊗ Lm

)G −→ Γ
(
X; N̄ ⊗ Lm

)G −→ Γ
(
U; N̄ ⊗ Lm

)G −→ H1
X\U

(
N̄ ⊗ Lm

)G −→ · · ·
The space ⊕

m≥0

H0
X\U

(
N̄ ⊗ Lm

)
(17)

of sections of twists of N̄ which are supported on X \ U is finitely generated over the ring⊕
m≥0

Γ (X \ U;Lm) (18)

of sections of powers of the restriction of L to X \ U. Since G is reductive, the invariant part

of (17) is finitely generated over the invariant part of (18). The invariant part of (18) is a

single copy of C, since any invariant section of Lm for m > 0 vanishes on all unstable points.

Thus H0
X\U

(
N̄ ⊗ Lm

)G
vanishes for m≫ 0.

The module H1
X\U

(
N̄ ⊗ Lm

)
is not in general finitely generated as a module over the

invariant section ring. On the other hand, the module
⊕

m≥0 Γ
(
U; N̄ ⊗ Lm

)G
is the sections
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of the twists of a coherent sheaf on the quotient U/G, which is projective over an affine variety,

and thus finitely generated over the invariant section ring
⊕

m≥0 Γ (U;Lm)G . In particular, its

image in
⊕

m≥0H
1
X\U

(
N̄ ⊗ Lm

)G
under the boundary map is finitely generated over the same

ring.

Since any positive degree invariant section of L vanishes on X \ U, its action on local

cohomology is locally nilpotent; this implies that there is some integer k such that all invariants

of degree ≥ k act trivially on the image of
⊕

m≥0 Γ
(
U; N̄ ⊗ Lm

)G
under the boundary map.

This in turn implies that the image is trivial for m sufficiently large. Note that we used the

fact that the image is finitely generated in both of these steps.

It follows that the restriction map

(
Γ(X; N̄ ⊗ Lm)

)G −→ (
Γ(U; N̄ ⊗ Lm)

)G
is an isomorphism for m≫ 0. We next observe that

(
Γ(X; N̄ ⊗ Lm)

)G ∼= gr
(

ΓZ
S (X; mT ′

0 ⊗D N )
)G ∼= gr

(
ΓZ
S (X;N )[m]

)G

and similarly (
Γ(U; N̄ ⊗ Lm)

)G ∼= gr
(

ΓZ
S (U;N )[m]

)G
,

where [m] denotes a shift as in Definition 5.12. Since maps that induce isomorphism on

associated graded are isomorphisms, we may conclude that the restriction map(
ΓZ
S (X;N )[m]

)G
−→

(
ΓZ
S (U;N )[m]

)G

is an isomorphism for m≫ 0. This is equivalent to the statement that the kernel and cokernel

of the map (
ΓZ
S (X;N )

)G
−→

(
ΓZ
S (U;N )

)G

are bounded, as desired. 2

Lemma 5.29 The Kirwan functor κ has a left adjoint κ! such that κ ◦ κ! is isomorphic to

the identity functor on Dred -mod.

Proof: By Theorem 5.28, we may work instead with the Z-Kirwan functor κZ and its left

adjoint κZ! . Let iY
′
j ⊂ iYj be the sum of all non-trivial G-isotypic components. Since G is

reductive, iYj is isomorphic to iY
′
j ⊕ iY

G
j . There is a natural map from iY

G
j to i(Zred)j whose

associated graded is the map Γ(µ−1(0);Li−j)G → Γ(Xred;Li−j
red ). This map is an isomorphism

when i− j is sufficiently large, which implies that the same is true of the map iY
G
j to i(Zred)j .
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Thus, modulo bounded modules, we have Y ∼= Y ′ ⊕ Zred as a right module over Zred. Then

for any Zred-module N , we have

κZ ◦ κZ! (N) = κZ(Y ⊗Zred
N) ∼= (Y ⊗Zred

N)G ∼= Zred ⊗Zred
N ∼= N,

modulo bounded modules. 2

Remark 5.30 One can use similar principles to construct a right adjoint as well as a left to

κ. One considers the Zred − Z bimodule

iWj := iZj

/
⟨ηj(x)− ξ(x) | x ∈ g⟩ · iZj .

The obvious guess for the right adjoint based on general nonsense is HomZred
(W,−); however,

we need to exercise care here since W is not finitely generated as a left module. On the other

hand, it is (as a left module) the direct sum W =
⊕

χ∈ĜW
χ of its isotypic components Wχ

according to the natural G action, and each isotypic component is finitely generated even after

taking the associated graded by a classical theorem of Hilbert. We should emphasize that here

Ĝ is the set of all finite dimensional representations, not just 1-dimensional ones.

A replacement for HomZred
(W,−) =

∏
χ∈Ĝ HomZred

(Wχ,−) with better finiteness proper-

ties is the direct sum κ∗(−) =
⊕

χ∈Ĝ HomZred
(Wχ,−) which we can consider as the subspace

of HomZred
(W,−) which kills all but finitely many isotypic components. This is closed under

the action of Z acting on the right since the G-action on Z is locally finite.

It is still not obvious that κ∗ takes finitely generated modules to finitely generated modules.

When X is the cotangent bundle to a smooth affine G-variety, this is proved in a recent

preprint by McGerty and Nevins [MN, 6.1(3)].

The following theorem, which is an immediate consequence of Lemma 5.29, may be regarded

as a categorical, quantum version of Kirwan surjectivity.

Theorem 5.31 The Kirwan functor κ is essentially surjective.

Proof: For any object of Dred -mod, we can apply the left adjoint from Lemma 5.29 to obtain

a witness to essential surjectivity. 2

Remark 5.32 McGerty and Nevins [MN14] always work with symplectic quotients of affine

schemes, and the category of quantizations that they consider is by definition the essential

image of the Kirwan functor. Thus Theorem 5.31 establishes that their module category is the

same as ours.
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6 Convolution and twisting

Throughout Section 6, we’ll only consider conical symplectic resolutions M. Let ν : M→M0

be the resolution map with Steinberg variety Z := M ×M0 M. Consider the three different

projections pij : M×M×M→M×M as well as the two projections pi : M×M→M. The

cohomology H2 dimM
Z (M×M;C) with supports in Z has a convolution product given by the

formula

α ⋆ β := (p13)∗(p
∗
12α · p∗23β),

making it into a semisimple algebra [CG97, 8.9.8]. For any closed subvariety L ⊂ M with

the property that L = ν−1(ν(L)), there is a degree-preserving action of this algebra on the

cohomology H∗
L(M;C) given by the formula

α ⋆ γ := (p2)∗(α · p∗1γ).

Example 6.1 When M is the cotangent bundle of the flag variety, H2 dimM
Z (M ×M;C) is

isomorphic to the group ring of the Weyl group [CG97, 3.4.1], and H∗(M;C) is isomorphic to

the regular representation.

In this section, we explain how to categorify this action. In Section 6.1, we define the

category of Harish-Chandra bimodules over a pair of quantizations. There is both an algebraic

and a geometric version of this definition, and they are related by the localization and invariant

section functors. In Section 6.2, we show that a (geometric) Harish-Chandra bimodule has

a characteristic cycle in H2 dimM
Z (M ×M;C), and tensor products of bimodules categorify

convolution product of cycles. Furthermore, an object N of Db(D -mod) has a characteristic

cycle in HdimM
L (M;C) for any L ⊂M containing SuppN , and we show that the tensor product

action of bimodules on modules categorifies the convolution action. In Section 6.3 we define a

particularly nice collection of (algebraic) Harish-Chandra bimodules, which we use in Section

6.4 to study a certain collection of auto-equivalences of Db(A -mod) related to twisting functors

on BGG category O.

6.1 Harish-Chandra bimodules

Recall that, for any λ ∈ H2(M;C), we let Aλ := ΓS(Dλ) be the section ring of the quantization

of M with period λ. Recall from Proposition 3.6 that we can write this ring for each λ as

a quotient of the sections A of a canonical quantization of the universal deformation M .

Let H be a finitely generated Aλ′-Aλ bimodule. Recall that grAλ
∼= grAλ′ ∼= C[M], thus

for any filtration H(0) ⊂ H(1) ⊂ . . . ⊂ H which is compatible with the filtrations on Aλ

and Aλ′ , the C[M] ⊗ C[M]-module grH may be interpreted as an S-equivariant sheaf on

M0 ×M0
∼= Spec

(
C[M]⊗ C[M]

)
.
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When n is greater than 1, we will be interested in a thickened associated graded grnH :=

R(H)/hR(H). This is a module over R(Aλ⊗Aop
λ′ )/hR(Aλ⊗Aop

λ′ ) ∼= C[M0]⊗C[M0]⊗C[h1/n]/(h),

and thus over C[M0]⊗ C[M0]. The module grnH is an n-fold self-extension of grH, but this

can be a non-split extension, so grnH contains more information.

Definition 6.2 We say that H is Harish-Chandra if it is finitely generated and it admits a

filtration such that grnH is scheme-theoretically supported on the diagonal. Equivalently, we

require that if aλ ∈ Aλ(k) and aλ′ ∈ Aλ′(k) are specializations of the same element a ∈ A ,

then for all h ∈ H(m), we have aλ · h− h · aλ′ ∈ H(k +m− n).

Let λ′HCa
λ be the category of Harish-Chandra bimodules, and let Db

HC(Aλ′ -mod-Aλ) be

the full subcategory of Db(Aλ′ -mod-Aλ) consisting of objects H whose cohomology Hi(H) is

Harish-Chandra.

Proposition 6.3 If Aλ′ has finite global dimension, H1 ∈ Db
HC(Aλ′ -mod-Aλ), and H2 ∈

Db
HC(Aλ′′ -mod-Aλ′), then H2

L
⊗H1 ∈ Db

HC(Aλ′′ -mod-Aλ).

Proof: Consider the Rees modules R(H1), R(H2) associated to some good filtration. These

modules have locally free resolutions over R(Aλ′ ⊗ Aop
λ ) and R(Aλ′′ ⊗ Aop

λ′ ) such that, if f

is congruent to f ′ modulo h, then f ′ ⊗ 1− 1⊗ f acts trivially on the cohomology of R(Hi)

modulo h. By a standard result of homological algebra, there exists a homotopy pi on the

resolution of R(Hi) such that f ′⊗ 1− 1⊗ f + ∂pi + pi∂ acts trivially modulo h on the complex

itself. Then p2 ⊗ 1 + 1⊗ p1 is a homotopy that plays the same role for f ′′ ⊗ 1− 1⊗ f acting

on the tensor product of these complexes. This shows that f ′′ ⊗ 1− 1⊗ f acts by 0 modulo h

on the cohomology of R(H2)
L
⊗R(H1), so H2

L
⊗H1 ∈ Db

HC(Aλ′′ -mod-Aλ). 2

We can view Aλ′⊗Aop
λ as the ring of S-invariant sections of a sheaf Dλ′⊠̂Dop

λ on M×M; we

must complete the naive tensor product in the h-adic topology in order to satisfy the hypotheses

of a quantization. As a quantization, Dλ′⊠̂Dop
λ has period (λ′,−λ). By a Dλ′ −Dλ bimodule,

we mean an S-equivariant sheaf of Dλ′⊠̂Dop
λ -modules on M×M. We let Db(Dλ′ -mod-Dλ) be

the bounded derived category of good Dλ′⊠̂Dop
λ -modules.

Definition 6.4 For any λ, λ′ ∈ H2(M;C), let λ′HCg
λ be the category of good Dλ′ − Dλ

bimodules H with “thick classical limits” that are scheme-theoretically supported on the

Steinberg Z ⊂M×M. More precisely, if Q is the canonical quantization of M , we require H to

admit a latticeH(0) such that for all sections f̃ of Q, H(0) is invariant under h−1(f̃λ′⊗1−1⊗f̃λ),

where f̃λ′ and f̃λ are the specializations of f̃ at λ′ and λ, respectively. As in the algebraic setting,

we define Db
HC(Dλ′ -mod-Dλ) to be the full subcategory of Db(Dλ′ -mod-Dλ) consisting of

objects H whose cohomology H(H) lies in λ′HCg
λ.
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Considering these bimodules as modules over the quantization Dλ′,−λ of M×M, we can apply

the (derived) localization and sections functors as in previous sections.

Theorem 6.5 For every λ, λ′, we have RΓS(Db
HC(Dλ′ -mod-Dλ)) ⊂ Db

HC(Aλ′ -mod-Aλ). If

Aλ and Aλ′ have finite global dimension16, then LLoc(Db
HC(Aλ′ -mod-Aλ)) ⊂ Db

HC(Dλ′ -mod-Dλ).

Proof: Let H be an object in λ′HCg
λ, and let H(0) ⊂ H be a lattice satisfying the required

condition. For every m, we have a long exact sequence showing that Hp(M;H(0)/H(−mn))

is a extension of a submodule of Hp(M;H(0)/H(−(m− 1)n)) and quotient of

Hp(M;H(−(m− 1)n)/H(−mn)) ∼= Hp(M;H(0)/H(−n)).

Thus, Hp(M;H(0)/H(−mn)) has an m step filtration compatible with H(0) ⊃ H(−n) ⊃ · · ·
such that elements of Aλ′ ⊗ Aop

λ of the form f̃λ′ ⊗ 1− 1⊗ f̃λ act trivially on the associated

graded. Since Hp(M;H(0)) = lim←−H
p(M;H(0)/H(−mn)) by Lemma 4.11, we have an induced

filtration on this group such that f̃λ′ ⊗ 1− 1⊗ f̃λ acts trivially modulo h. This shows that the

cohomology of RΓS(H) is Harish-Chandra as well.

Now let H be an object of λ′HCa
λ and put H := LLoc(H). A filtration of H induces a

lattice in Hp(H). For any f̃ ∈ Γ(M; D(0)), we have that

(f̃λ′ ⊗ 1− 1⊗ f̃λ) ·R(H) ⊂ h ·R(H);

thus, on any projective resolution, the map induced by (f̃λ′ ⊗ 1− 1⊗ f̃λ) is null-homotopic

mod h; this implies that our lattice in Hp(H) has the required property. 2

Corollary 6.6 If derived localization holds at λ′ and −λ, then LLoc and RΓS are inverse

equivalences between Db
HC(Aλ′ -mod-Aλ) and Db

HC(Dλ′ -mod-Dλ). If localization holds at λ′

and −λ, then Loc and ΓS are inverse equivalences between λ′HCa
λ and λ′HCg

λ.

Consider the convolution product defined by the formula

H1 ⋆H2 := (p13)∗(p
−1
12 H1

L
⊗p−1

2 Dλ′
p−1
23 H2), (19)

where pij is one of the three projections from M×M×M to M×M.

Proposition 6.7 If M ∈ Db(Dλ′′⊠̂Dop
λ′ -mod) and N ∈ Db(Dλ′⊠̂Dop

λ -mod), then we have

M⋆N ∈ Db(Dλ′′⊠̂Dop
λ -mod). If furthermoreM∈ Db

HC(Dλ′′ -mod-Dλ′), and N ∈ Db
HC(Dλ′ -mod-Dλ),

thenM ⋆N ∈ Db
HC(Dλ′′ -mod-Dλ).

16The finite global dimension hypothesis is truly necessary. If Aλ does not have finite global dimension, the
derived localization LLoc(Aλ) as a bimodule may not be bounded and thus not in Db

HC(Dλ -mod-Dλ).
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Proof: The modules M(0) and N (0) have finite resolutions

· · · →M
(1)
1 ⊠̂M (2)

1 →M
(1)
0 ⊠̂M (2)

0 →M(0) and · · · → N
(1)
1 ⊠̂N (2)

1 → N
(1)
0 ⊠̂N (2)

0 → N (0)

with M
(1)
j (resp. M

(2)
j , N

(1)
j , N

(2)
j ) locally free over Qλ′′ (resp. Qop

λ′ ,Qλ′ ,Qop
λ ), since the same

is true of coherent sheaves over SM×M. Thus, we can apply convolution to these modules by

taking the naive tensor product over p−1
2 Dλ′ :

M ⋆N (0) := M
(1)
• ⊠̂H•(M;M

(2)
• ⊗Dλ′ N

(1)
•

)
⊠̂N

(2)
• ,

where the middle term is considered as a complex of vector spaces, which is of finite length

since M is finite dimensional. This shows that M ⋆N is a bounded length complex.

The argument that M ⋆N lies in λ′′HCg
λ if M,N are Harish-Chandra is exactly as in

Proposition 6.3. The action of fλ ⊗ 1 − 1 ⊗ fλ′ on any resolution of M(0) is homotopic to

0 modulo h for a global function f , as is the action of fλ′ ⊗ 1− 1⊗ fλ′′ on any resolution of

N (0). Thus, tensoring these homotopies gives one for fλ ⊗ 1− 1⊗ fλ′′ on M ⋆N (0). This

function thus kills the cohomology of the classical limit M ⋆N (0)/h · M ⋆N (0). 2

Proposition 6.8 Suppose that derived localization holds for λ, λ′,−λ′, and −λ′′. The derived

sections functor RΓS intertwines the convolution of bimodules with derived tensor product. That

is, given Harish-Chandra bimodules H1 ∈ Db
HC(Dλ′ -mod-Dλ) and H2 ∈ Db

HC(Dλ′′ -mod-Dλ′),

we have an isomorphism

RΓS(H1 ⋆H2) ∼= RΓS(H1)
L
⊗ RΓS(H2).

In particular, if λ = λ′ = λ′′ and derived localization holds for ±λ, then the derived localization

and sections functors are inverse equivalences of tensor categories.

Proof: The complex of modules RΓS(H1) has a free resolution over

Aλ′′ ⊗ (Aλ′)op = ΓS(Dλ′′⊠̂Dop
λ′ )

of the form

· · · → Aλ′′ ⊗ U1 ⊗Aλ′ → Aλ′′ ⊗ U0 ⊗Aλ′ → · · · , (20)

and similarly RΓS(H2) has a free resolution over Aλ′ ⊗Aop
λ = ΓS(Dλ′⊠̂Dop

λ )

· · · → Aλ′ ⊗ V1 ⊗Aλ → Aλ′ ⊗ V0 ⊗Aλ → · · · . (21)
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Since derived localization holds, the sheaves H1 and H2 have resolutions

· · · → Dλ′′ ⊗ U1 ⊗Dλ′ → Dλ′′ ⊗ U0 ⊗Dλ′ → · · ·

· · · → Dλ′ ⊗ V1 ⊗Dλ → Dλ′ ⊗ V0 ⊗Dλ → · · · .

Thus, the convolution H1 ⋆H2 is given by the complex

· · · →
⊕

i+j=k+1

Dλ′′ ⊗ Ui ⊗Aλ′ ⊗ Vj ⊗Dλ →
⊕

i+j=k

Dλ′′ ⊗ Ui ⊗Aλ′ ⊗ Vj ⊗Dλ → · · · . (22)

The sections of (22) is the complex

· · · →
⊕

i+j=k+1

Aλ′′ ⊗ Ui ⊗Aλ′ ⊗ Vj ⊗Aλ →
⊕

i+j=k

Aλ′′ ⊗ Ui ⊗Aλ′ ⊗ Vj ⊗Aλ → · · · . (23)

This is also the tensor product of the complexes (20) and (21), so this shows that the convolu-

tions and tensor products agree. 2

Following Căldăraru and Willerton [CW10], we define a 2-category Quag where

• objects are elements of H2(M;C),

• 1-morphisms from λ to λ′ are objects of Db
HC(Dλ′ -mod-Dλ) with composition given by

⋆, and

• 2-morphisms are the usual morphisms in Db
HC(Dλ′ -mod-Dλ).

Similarly, we can define a 2-category Quaa whose objects are those λ for which Aλ has

finite global dimension (we should consider only these because of Proposition 6.3) and whose

1-morphisms are objects of Db
HC(Aλ′ -mod-Aλ), with composition given by derived tensor

product.

Let Cat denote the 2-category of all categories, and consider the functors

F g : Quag → Cat and F a : Quaa → Cat

taking λ to Db(Dλ -mod) and Db(Aλ -mod), respectively. On 1-morphisms, F g takes an object

H to the functor given by convolution with H, defined exactly as in Equation (19). Similarly,

F a takes an object H to the functor given by tensor product with H.

Let L0 ⊂M0 be an S-equivariant closed subscheme, and let L ⊂M be its scheme-theoretic

preimage. We would like to use L0 and L to define subcategories of A -mod and D -mod in a

way that is analogous to the definitions of algebraic and geometric Harish-Chandra bimodules
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(Definitions 6.2 and 6.4). In fact, those definitions will specialize to these when M is replaced

by M×M and L0 is the diagonal subscheme of M0 ×M0.

Definition 6.9 Let CL0
λ be the full subcategory of Aλ -mod consisting of modules N admitting

a filtration with thickened associated graded grnN scheme-theoretically supported on L0.

Equivalently, we require that if the symbol of aλ ∈ Aλ(k) vanishes on L0, then aλ ·N(m) ⊂
N(k+m−n). Let Db

L0
(Aλ -mod) be the full subcategory of Db(Aλ -mod) consisting of objects

with cohomology in CL0
λ .

Definition 6.10 Let CLλ be the full subcategory of Dλ -mod consisting of modules N that

have thick classical limits that are scheme-theoretically supported on L. More precisely, we

require a lattice N (0) such that for any section f̃ of Q whose reduction modulo h lies in

the ideal sheaf of L, N (0) is preserved by the action of h−1f̃ . Let Db
L(Dλ -mod) be the full

subcategory of Db(Dλ -mod) consisting of objects with cohomology in CLλ .

Proposition 6.7, along with an easy extension of the proof of Proposition 6.3, show that we

have functors

F g
L : Quag → Cat and F a

L : Quaa → Cat

taking λ to Db
L(Dλ -mod) and Db

L0
(Aλ -mod), respectively.

Example 6.11 Suppose that L0 ⊂ M is the unique S-fixed point; then L = ν−1(0) is the

core of M (Remark 2.6), possibly with a non-reduced scheme structure. If the weight n of

the symplectic form is equal to 1, then L is Lagrangian, and CL0
λ is the category of finite-

dimensional Aλ-modules. When n is greater than 1, the core may be too small, in which case

CL0
λ will be zero. For example, if M is the Hilbert scheme of points on C2 and S acts by scaling

C2 (with n = 2), then the core is the punctual Hilbert scheme, which has dimension one less

than half the dimension of M.

Example 6.12 Suppose that M is equipped with a Hamiltonian action of T := C× that

commutes with the action of S and has finite fixed point set MT, and consider the Lagrangian

subvariety

L0 :=
{
p ∈M0

∣∣∣ lim
t→0

t · p exists
}
.

In this case, CL0
λ is the category of finitely generated Aλ-modules that are locally finite for

the action of A+
λ , where A+

λ is the subring of Aλ consisting of elements with non-negative

T-weight. This is an analogue of a block of BGG category O, and will be the primary object

of study in our forthcoming paper [BLPW16] with Licata.

To explain the connection with BGG category O, take M = T ∗(G/B) and let ρ ∈ H2(M;C)

be half of the Euler class of the canonical bundle. Then the ring Aλ+ρ is a central quotient of

U(g), and CL
λ+ρ is the category of finitely generated, U(b)-locally finite U(g)-modules with
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same central character as the Verma module Vλ with highest weight λ, where H2(M;C) is

identified with the dual Cartan h∗ via the Chern class map. When λ is a regular integral

weight, this category is equivalent in a non-obvious way to the block Oλ of BGG category O
by [Soe86, Th. 1].

6.2 Characteristic cycles

Let D be a quantization of M, and let N ∈ Db(D -mod) be an object of the bounded derived

category. We have isomorphisms

Hom•
D(N ,N ) ∼= Hom•

D(N ,D)
L
⊗D N ∼= D∆

L
⊗D⊠̂Dop

(
N ⊠̂Hom•

D(N ,D)
)
,

and evaluation defines a canonical map to the Hochschild homology

HH(D) := D∆

L
⊗D⊠̂Dop D∆.

All this is completely general, and holds in both the Zariski and the classical topology. In

the classical topology, we also have an isomorphism HH(Dan) ∼= CM∆
[dimM]((h)) by [KS12,

6.3.1]. (This is a local calculation, so it suffices to check for the Weyl algebra, where it follows

from a Koszul resolution.)

We define the characteristic cycle

CC(N ) ∈ H0(HH(Dan)) ∼= HdimM
(
M;C((h))

)
to be the image of id ∈ H0(Hom•

D(N an,N an)) along this map. More generally, if N is

supported on a subvariety j : L ↪→M, then we may consider the identity map of N an to be a

section of j!Hom•
D(N an,N an). Applying our map then gives us a class in

CC(N ) ∈ H0(j!HH(Dan)) ∼= HdimM
L

(
M;C((h))

)
.

Our abuse of notation is justified by the fact that this class is functorial for inclusions of

subvarieties. If we replace the conical symplectic resolution M with the product M×M, then

this construction associates to a Harish-Chandra bimodule H ∈ Db
HC(Dλ′ -mod-Dλ) a class

CC(H) ∈ H2 dimM
Z

(
M×M;C((h))

)
.

Kashiwara and Schapira [KS12, 7.3.5] show that the characteristic cycle of a holonomic

D-module (that is, one with Lagrangian support) may be computed in terms of its classical

limit.

Proposition 6.13 (Kashiwara and Schapira) If N ∈ D -mod is supported on a Lagrangian
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subvariety L with components {Li}, then for any D(0)-lattice N (0) ⊂ N ,

CC(N ) =
∑
i

rkLi

(
N (0)/N (−1)

)
· [Li] ∈ HdimM

L (M;C) ⊂ HdimM
L

(
M;C((h))

)
,

where rkLi denotes the rank at the generic point of Li.

We can also take characteristic cycles in families for modules over quantizations of twistor

deformations. For η ∈ H2(M;C), let Mη → A1 be the twistor deformation defined in Section

2.1 with quantization D extending D. Let N be a good D-module, and consider the image of

the identity via the natural morphisms

Hom•
D(N ,N ) ∼= Hom•

D(N ,D)
L
⊗D N ∼= D∆

L
⊗D⊠̂A1Dop

(
N ⊠̂A1Hom•

D(N ,D)
)

→ Dan
∆ ⊗Dan⊠̂A1Dan,op Dan

∆
∼= π−1SA1 [dimM]((h)). (24)

This defines a class in relative cohomology CC(N ) ∈ HdimM
L (Mη/A1;C((h))) for any La-

grangian L ⊃ Supp(N ). If we let L = M ∩L , then we have a natural restriction map

HdimM
L (Mη/A1;C((h)))→ HdimM

L

(
M;C((h))

)
given by dividing by the coordinate t on A1. We also have a natural functor of restriction

from D -mod → D -mod given by N |M = N
L
⊗C[t] C. The following lemma says that these

operations are compatible.

Lemma 6.14 If N is a good D-module, then CC(N |M) = CC(N )|M.

Proof: Consider the complex (24) of π−1SA1 modules, and take the derived tensor product

with C over C[t]. We claim that we obtain corresponding sequence for N |M. That is, we

obtain

Hom•
D(N |M,N |M) ∼= Hom•

D(N |M,D)
L
⊗D N |M ∼= D∆

L
⊗D⊠̂Dop

(
N |M⊠̂Hom•

D(N |M,D)
)

→ Dan
∆ ⊗Dan⊠̂Dan,op Dan

∆
∼= CM[dimM]((h)). (25)

It suffices to prove this for N locally free. In this case, Hom•(N ,D) is concentrated in degree

0 and is itself locally free, so the statement is clear.

Thus CC(N )|M can be obtained as the image of the identity under the map (25). By

definition CC(N |M) is the image of the identity under (25), so we are done. 2

Consider the category K(Z) with objects H2(M;C) and morphisms H2 dimM
Z

(
M×M;C

)
between any two objects, with composition given by the convolution structure defined at
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the beginning of this section. We also have a category K(HCg) with objects H2(M;C) and

morphisms K(λ′HCg
λ) from λ to λ′, with composition given by convolution; this is simply the

decategorification of the 2-category defined in the previous section.

Proposition 6.15 The characteristic cycle map defines a functor K(HCg)→ K(Z).

Proof: The fact that the characteristic cycle of a morphism in K(HCg) is an element of

H2 dimM
Z (M×M;C) rather than H2 dimM

Z

(
M×M;C((h))

)
follows from Proposition 6.13. Since

the map Z×M Z→ Z is proper, the rest of the proposition follows from [KS12, 6.5.4] and the

fact that the functor (−)an is monoidal and preserves Hom-spaces. 2

Now fix a subvariety L0 ⊂ M0, and let L ⊂ M be its scheme-theoretic preimage as in

Section 6.1. We assume for convenience that L is Lagrangian. Consider the functor

GL : K(HCg)→ Ab

taking:

• The class λ to K(CLλ ), the Grothendieck group of objects in CLλ with finitely generated

cohomology concentrated in finitely many degrees. Note that by its definition, CLλ may

not be a Serre subcategory, in which case we consider the subgroup of the Grothendieck

group of all holonomic D-modules generated by the objects in CLλ .

• The class [H] ∈ K(λ′HCg
λ) to the convolution operator

[H] ⋆− : K(CLλ )→ K(CLλ′)

defined by the formula

[N ] ⋆ α := (p13)∗(p
∗
12[N ] · p∗23α).

We also have a functor

HL : K(HCg)→ Ab

taking every object λ to HdimM
L (M;C), where the map on morphisms is defined by the

convolution action of H2 dimM
Z (M×M;C) on HdimM

L (M;C).

Proposition 6.16 The characteristic cycle map

CC: K(CLλ )→ HdimM
L (M;C)

defines a natural transformation from GL to HL. That is, for all H ∈ Db
HC(Dλ′ -mod-Dλ) and

N ∈ Db(CLλ ),

CC(H) ⋆ CC(N ) = CC(H ⋆N ).
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Proof: Since the map Z×M Z→ L is proper, this follows immediately from [KS12, 6.5.4]. 2

Thus, these bimodules provide a natural categorification of the convolution algebra of a

symplectic singularity, and at least certain of its natural convolution modules. Of course, the

characteristic cycle maps need not be isomorphisms, but in many contexts, they are.

Example 6.17 In the case where M = T ∗(G/B), the category λHCg
λ is equivalent to the

category of regular twisted D-modules on G/B ×G/B for the twist (λ+ ρ,−λ+ ρ) which are

smooth on diagonal G-orbits; as long as λ + ρ is integral, this is the same as the category

of perverse sheaves smooth along the same stratification. The fact that these categorify the

symmetric group (and thus, implicitly, that CC is an isomorphism in this case) goes back at

least as far as [Spr82]. This perspective is Koszul dual to the usual categorification of the

Weyl group by projective functors [BG99, 5.16].

Example 6.18 In the case where M is a hypertoric variety, the map from K(λHCg
λ) to

H2 dimM
Z (M×M;C) is surjective by [BLPW12, 7.11], which allows us to conclude that every

irreducible representation of the convolution algebra remains irreducible over K(HCg). The

dimensions of these representations are computed in [PW07] to be h-numbers of various

matroids.

Example 6.19 In the case of Nakajima quiver varieties, it is more natural to consider all

quiver varieties associated to a highest weight µ jointly, and thus define a 2-subcategory Qua(µ)

of modules over the exterior products of quantizations of quiver varieties associated to λ and

possibly different dimension vectors.

However, even with different dimension vectors, we still have a notion of “diagonal” in

the product of two quiver varieties with the same highest weight. The affinization of a quiver

variety is the moduli space of semi-simple representations of the pre-projective algebra of a

given dimension, and we say a pair of such representations lies in the stable diagonal if they

become isomorphic after the addition of trivial representations. We can define a 2-categories

HCg(µ) by replacing the diagonal and its vanishing ideal with that of the stable diagonal.

The third author [Web, Theorem A] relates this construction to works by Cautis and Lauda

[CL] and Nakajima [Nak98].

Proposition 6.20 (Webster) There is a 2-functor from the version of the 2-quantum group

U defined by Cautis and Lauda to HCg(µ) with the property that the induced map of K-groups

is exactly the geometric construction of U(g) defined by Nakajima.
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6.3 Twisting bimodules

For the rest of this paper, we will assume that the Picard group of M is torsion-free, so that

a line bundle is determined by its Euler class in H2(M;C). This assumption is not strictly

necessary, but it greatly simplifies the notation (see Remark 6.22).

Consider the universal Poisson deformation M of M. Let L be a line bundle on M , let L
be its restriction to M, and let γ ∈ H2(M;Z) ∼= H2(M ;Z) be the Euler class of L or L. Let

γT0 be the quantization of L constructed in Proposition 5.2, and let γT ′
0 := γT0[h−1/n]. This

is a right D-module and a left module over Dγ , the quantization with period I + hγ.17 Then

ΓS(M ; γT ′
0 ) is a family over H2(M;C) via the right action of A = ΓS(M ; D).

Recall the map c : C[H2(M;C)]→ Γ(M ; D) from Section 3.3, and the fact that h−1c(x) ∈
A for all x ∈ H2(M;C)∗. Also recall that, by Proposition 3.6, the specialization of A at

h−1c(x) = λ(x) for all x ∈ H2(M;C)∗ is isomorphic to Aλ.

Definition 6.21 Let λ+γTλ denote the Aλ+γ −Aλ bimodule that we obtain by specializing

ΓS(M ; γT ′
0 ) at h−1c(x) = λ(x) for all x ∈ H2(M;C)∗.

Remark 6.22 The purpose of the assumption at the beginning of this section was to ensure

that the bimodule λ+γTλ is actually determined by λ and γ; without the assumption, the

bimodule would depend on an additional choice of a line bundle with Euler class γ.

Proposition 6.23 The bimodule λ+γTλ is Harish-Chandra.

Proof: By definition, λ+γTλ is a specialization of ΓS(M ; γT ′
0 ). It carries a natural filtration,

where λ+γTλ(m) is the same specialization of ΓS(M ;h−m/n
γT0[h

1/n]). We claim that the

associated graded module with respect to this filtration is scheme-theoretically supported on

the diagonal.

To see this, consider a function f ∈ C[M] of S-weight ℓ. We can choose a lift f̃ ∈ ΓS(D(ℓ))

so that its image in gr ΓS(D) ∼= C[M ] restricts to f on M. Let Dγ be the quantization of M

with period γ; since gr ΓS(Dγ) ∼= gr ΓS(D), we can choose a lift f̃γ ∈ ΓS(Dγ(ℓ)) of f similarly.

To show that f ⊗ 1− 1⊗ f annihilates grn(λ+γTλ), it is sufficient to show that f̃γ ⊗ 1− 1⊗ f̃
takes ΓS(M ;h−m/n

γT0[h1/n]) to ΓS(M ;h1−ℓ+m/n
γT0[h1/n]). This follows from the fact that γT0

is the quantization of a line bundle on M , so the left action of f̃γ and the right action of f̃

agree modulo h. 2

The following two propositions are bimodule analogues of Corollary 3.9 and Proposition

3.10. Since their proofs are essentially identical, we omit them.

17We note that all quantizations of M are isomorphic as sheaves of algebras, but they are not isomorphic as
sheaves of π−1SH2(M;C)-algebras.
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Proposition 6.24 Let M and M′ be two conical symplectic resolutions of the same cone. Fix

elements λ, γ ∈ H2(M;C) ∼= H2(M′;C), where γ is the Euler class of a line bundle on M or

its strict transform on M′. The isomorphism of rings in Corollary 3.9 induces an isomorphism

of bimodules λ+γTλ ∼= λ+γT
′
λ.

Proposition 6.25 For any λ, γ ∈ H2(M;C) ∼= H2(M′;C), where γ is the Euler class of a

line bundle on M, and any w ∈W , the isomorphisms of Proposition 3.10 induce isomorphisms

of bimodules λ+γTλ ∼= w·(λ+γ)Tw·λ.

We would like to have an analogue of Proposition 3.6, as well, though an extra hypothesis

is needed. The following proposition gives a natural map from λ+γTλ to ΓS(M; λ+γT ′
λ), and

gives a sufficient (though not necessary) condition for it to be an isomorphism. (Note that it

is always injective.)

Proposition 6.26 There is a natural map from the bimodule λ+γTλ to ΓS(M; λ+γT ′
λ). If

H1(M; λ+γT ′
λ) = 0, then this map is an isomorphism.

Proof: The pullback of γT ′
0 along the map ∆ → H2(M;C) ×∆ given by h 7→ (hλ, h) is a

quantization of L. By the uniqueness of the quantized line bundles constructed in Proposition

5.2, this pullback is isomorphic to λ+γT ′
λ. Since λ+γTλ is obtained from γT ′

0 by first taking

sections and then specializing, this defines the required map.

Now suppose that H1(M; λ+γT ′
λ) = 0. To prove that our map is surjective, we factor the

pullback into two steps. Choose ν ∈ H2(M;C) with Mν(∞) affine. Let λ+γT
′
λ
(ν) be the

bimodule on Mν obtained by pulling γT ′
0 back along the map A1×∆→ H2(M;C)×∆ taking

(t, h) to (tν + hλ, h). Thus λ+γT ′
λ is obtained from this sheaf by pulling back further by the

map ∆ → A1 ×∆ given by h 7→ (0, h). Let λ+γOλ := ΓS(Mν ; λ+γT
′
λ
(ν)). To show that our

map is surjective, it will suffice to show that

1. the map from ΓS(M ; γT ′
0 ) to λ+γOλ is surjective, and

2. the map from λ+γOλ to ΓS(M; λ+γT ′
λ) is surjective.

Consider the variety N := SpecC[M ] from Section 2.2, along with the related variety

Nν := SpecC[Mν ] ⊂ N . Let N sm and N sm
ν be their smooth loci; since the affinization maps

for M and Mν are isomorphisms over the smooth loci, we may regard N sm as a subvariety of

M and N sm
ν as a subvariety of Mν .

Let γS ′
0 be the sheaf on N obtained from γT ′

0 by first restricting it to N sm and then

pushing it forward to N ; since the complement of N sm in M has codimension at least 2, we

have

ΓS(M ; γT
′
0 ) ∼= ΓS(N ; γS

′
0).

69



Similarly, we define a sheaf λ+γS
′
λ
(ν) on Nν obtained from λ+γT

′
λ
(ν) by first restricting it to

N sm
ν and then pushing it forward to Nν , and we have

λ+γOλ
∼= ΓS(Nν ; λ+γS

′
λ
(ν)

).

To see that the map from ΓS(M ; γT ′
0 ) to λ+γOλ is surjective, it suffices to check that the

associated graded is surjective. When we pass to the associated graded, we obtain a map

between spaces of sections of two coherent sheaves on N , namely the classical limits γS ′
0 and

λ+γS ′
λ
(ν). By definition, the restriction of λ+γS ′

λ
(ν) to N sm

ν is a quotient of the restriction of

γS ′
0 to N sm. Since the singular locus has codimension 3 on both N and Nν , the induced

map between pushforward sheaves is surjective, and since N is affine, the same is true of the

sections.

We now turn to the second surjectivity statement. Consider the exact sequence

0 −→ λ+γT
′
λ
(ν) h−1t−→ λ+γT

′
λ
(ν) −→ λ+γT ′

λ −→ 0

of sheaves on Mν and its associated long exact sequence

0 −→ λ+γOλ
h−1t−→ λ+γOλ −→ ΓS(M; λ+γT ′

λ) −→ H1(Mν ; λ+γT
′
λ
(ν)

)S

h−1t−→ H1(Mν ; λ+γT
′
λ
(ν)

)S −→ H1(M; λ+γT ′
λ)S −→ · · · .

The surjectivity statement that we need is equivalent (by exactness) to injectivity of the action

of h−1t on H1(Mν ; λ+γT
′
λ
(ν))S.

Since the generic fiber of Mν is affine, H1(Mν ; λ+γT
′
λ
(ν))S is supported on the fiber over

0. This bimodule is Harish-Chandra, so its localization has Lagrangian support in M×M.

Applying Lemma 4.15, we see that h−1t satisfies a polynomial equation on H1(Mν ; λ+γT
′
λ
(ν))S,

so the bimodule is the sum of finitely many generalized eigenspaces for h−1t and h−1t acts

with finite length. In particular, if 0 is a root of this minimal polynomial, the map h−1t is

not surjective (since its stable image is a proper summand), and thus H1(M; λ+γTλ) is not 0.

This is impossible by assumption, so 0 cannot be a root. Thus, h−1t does act invertibly, so

the desired map is surjective. 2

The following proposition says that derived tensor product with a twisting bimodule does

not change the characteristic cycle of the localization. Let N be an object of Db(Aλ -mod), so

that LLoc(λ+γTλ
L
⊗N) is an object of Db(Dλ+γ -mod).

Proposition 6.27 Assume derived localization holds at λ and λ+ γ. Then we have that

CC(LLoc(N)) = CC(LLoc(λ+γTλ
L
⊗N)).
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Proof: As in the proof of Proposition 6.26, choose ν ∈ H2(M;C) such that Mν(∞) is affine,

and consider the sheaf λ+γT
′
λ
(ν). At any point p of A1, the derived functor of base change to

the fiber π−1(pν) over p sends λ+γT
′
λ
(ν) to the derived localization LLoc(λ+γOλ/(t− p)) as a

module over a quantization of Mν ×Mν , since the module λ+γOλ is flat over A1.

If p is not 0, then the fiber is affine, and LLoc(λ+γOλ/(t − p)) is a line bundle on the

diagonal in π−1(pν)× π−1(pν). In particular, the class CC(λ+γT
′
λ
(ν)) thus must be the class

of the diagonal over every non-zero point in A1. By Lemma 6.14, we thus have that

CC(LLoc(λ+γTλ)) = CC(λ+γT
′
λ
(ν)|π−1(0)) = [M∆].

By Proposition 6.15, the characteristic cycle map intertwines derived tensor product with

convolution. Since convolution with the diagonal is trivial, this implies the desired equality. 2

We conclude this section by computing these bimodules explicitly in the case where M is

a symplectic quotient of a vector space, as in Example 2.2. Let G be a connected reductive

algebraic group acting on a vector space V with flat moment map µ : T ∗V → g∗; let M be

the symplectic quotient of T ∗V at a generic character θ of G, and suppose that the Kirwan

map K : χ(g) → H2(M;C) is an isomorphism. Let AT ∗V be the section ring of the unique

quantization of T ∗V ; this is isomorphic to the ring of differential operators on V . Fix a

quantized moment map η : U(g) → AT ∗V and an element ξ ∈ χ(g), and let Dξ be the

associated quantization of M (Section 3.4) with section ring A = ΓS(D). By Proposition 3.13,

we have A ∼= EndAT∗V (Yξ).

Fix a second character ξ′ such that ξ′ − ξ integrates to a character of G, and consider the

A′ −A bimodule

Hom(Yξ′ , Yξ) ∼=
(
AT ∗V

/
AT ∗V · ⟨η(x)− ξ(x) | x ∈ g⟩

)ξ′−ξ
. (26)

By Proposition 5.4, we have a natural map from Hom(Yξ′ , Yξ) to K(ξ′)TK(ξ). This map is is

always injective but it need not be an isomorphism; the restriction to the semistable locus can

can cause new sections to appear.

Lemma 6.28 If ξ′ = ξ +mθ for m≫ 0, then the map from Hom(Yξ′ , Yξ) to K(ξ′)TK(ξ) is an

isomorphism.

Proof: The associated graded of this map is the natural map from C[µ−1(0)]mθ to Γ(M,Lmθ),

where the subscript in the source indicated the S-weight space. This map is an isomorphism

for sufficiently large m, thus so is our original map. 2
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Remark 6.29 We note that, by Corollary 3.9 and Proposition 6.24, the source and target of

the map in Lemma 6.28 (along with the map itself) are independent of the choice of conical

symplectic resolution. Thus Lemma 6.28 simply says that our map is an isomorphism when ξ

and ξ′ are sufficiently far apart in any generic direction.

6.4 Twisting functors

By Theorem 2.19, the set I of isomorphism classes of conical symplectic resolutions of M0 is

finite. For each i ∈ I, let Mi be a representative resolution. By Remark 2.20, the chambers of

the hyperplane arrangement H are in canonical bijection with I ×W , where W is the Weyl

group from Section 2.2. For each pair (i, w), let Πi,w ⊂ PR be the set of parameters λ in the

corresponding chamber of H with the additional property that localization holds at wλ on Mi

and derived localization holds at w′λ and −w′λ on Mi′ for all pairs (i′, w′). Let

Π :=
⋃
I×W

Πi,w ⊂ PR.

Lemma 6.30 If wη is an ample class on Mi, then for any λ, the class λ + kη lies in Πi,w

for all but finitely many k ∈ Z≥0.

Proof: Recall from Remark 2.20 that the chamber of H indexed by (i, w) is equal to the

w translate of the ample cone of Mi. Since wη is ample on Mi, so is w(λ + kη) when k is

sufficiently large. The fact that localization holds at w(λ+kη) for large k follows from Corollary

5.17, and Theorem 4.17 shows the required derived localization statements. The fact that

there are only finitely many elements of I shows that only finitely many k need to be removed. 2

Let Aλ be the invariant section ring of the quantization with period λ. (Note that, by

Corollary 3.9, the ring Aλ does not depend on the choice of resolution of M0.) For any pair of

elements λ, λ′ ∈ H2(M;C) that differ by an integral class, let

Φλ′,λ : D(Aλ -Mod)→ D(Aλ′ -Mod) (27)

be the functor obtained by derived tensor product with the bimodule λ′Tλ. For any λ ∈ Π and

w ∈W , let

Φλ
w : D(Awλ -Mod)→ D(Aλ -Mod) (28)

be the equivalence obtained from the isomorphism of Proposition 3.10. Note that the compati-

bility in the statement of Proposition 3.10 implies that the composition Φwλ
w−1 ◦Φλ

w is naturally

isomorphic to the identity functor.
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Proposition 6.31 Suppose that λ′ ∈ Πi,w. Then the functor Φλ′,λ is naturally isomorphic to

the composition

D(Aλ -Mod)
Φλ

w

−−−−→ D(Awλ -Mod)
LLoci
−−−−→ D(Dwλ -Mod)

wλ′T ′
wλ⊗−

−−−−−−−→ D(Dwλ′ -Mod)
RΓS,i
−−−−→ D(Awλ′ -Mod)

Φwλ′
w−1

−−−−→ D(Aλ′ -Mod),

where the subscript i on RΓS and LLoc refers to the fact that we are using the resolution Mi.

Proof: Since λ′ ∈ Πi,w, localization holds at wλ′, which implies that the higher cohomology

of wλ′T ′
wλ is trivial. Then Proposition 6.26 tells us that wλ′Twλ

∼= RΓS,i(wλ′T ′
wλ), and therefore

that wλ′T ′
wλ
∼= LLoci(wλ′Twλ). The proposition follows immediately using Proposition 6.25. 2

Corollary 6.32 For all λ ∈ Π the functor Φλ′,λ induces a functor Db(Aλ -mod)→ Db(Aλ′ -mod).

If λ′ ∈ Π as well, then this functor is an equivalence.

Proof: The functor LLoci induces an equivalenceDb(Awλ -mod)→ Db(Dwλ -mod) as discussed

in Remark 4.14. The functor wλ′T ′
wλ ⊗− is an equivalence of abelian categories with inverse

wλT ′
wλ′ ⊗ − by the uniqueness part of Proposition 5.2. The functor RΓS,i induces a functor

Db(Dwλ′ -mod)→ Db(Awλ′ -mod) by Proposition 4.12, which is also an equivalence if λ′ ∈ Π. 2

Corollary 6.33 If λ and λ′ lie in the same chamber of H, then Φλ,λ′ ◦ Φλ′,λ is naturally

isomorphic to the identity functor.

Proof: This follows similarly from Propositions 5.2 and 6.31. 2

Fixing a particular λ ∈ Π, we define twisting functors to be the group of endofunctors

of D(Aλ -Mod) (or of the full subcategory Db(Aλ -mod)) obtained by composing functors of

the form (27) and (28) and their inverses, and we define pure twisting functors to be the

subgroup obtained using only functors of the form (27) and their inverses. Note that Corollary

6.33 implies that any such composition that never leaves the chamber in which λ lives is trivial.

However, when one crosses a wall and then crosses back, one can and does obtain something

nontrivial (see Proposition 6.38 for the case of the Springer resolution).

For Lemma 6.34 we adopt the notational convention, introduced in Section 4.3, whereby

we fix η ∈ H2(M;Z) and λ ∈ H2(M;C) and use k in a subscript or superscript in place of

λ+ kη.
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Lemma 6.34 Suppose that wη is very ample on Mi. Then for any natural numbers kℓ >

kℓ−1 > · · · > k1 ≥ k0, there is a natural isomorphism of functors

Φkℓ,k0 ≃ Φkℓ,kℓ−1 ◦ · · · ◦ Φk1,k0 .

Proof: Let L be the line bundle on Mi with Euler class η. For any k′ > k, the higher

cohomology of Lk′−k vanishes. Therefore the higher cohomology of k′T ′
k vanishes as well. By

the same argument that we used in the proof of Proposition 6.31, Proposition 6.26 tells us that

kℓTk0
∼= RΓS(kℓTk0) ∼= RΓS(kℓTkℓ−1

⊗Dkℓ−1
· · · ⊗Dk1

k1Tk0)

∼= RΓS(kℓTkℓ−1
)

L
⊗Akℓ−1

· · ·
L
⊗Ak1

RΓS(k1Tk0) ∼= kℓTkℓ−1

L
⊗Akℓ−1

· · ·
L
⊗Ak1

k1Tk0

as desired. Since Φkℓ,k0 = kℓTk0
L
⊗Ak0

−, the isomorphism follows. 2

Let

E := H2(M;C) ∖
⋃

H∈H
HC

be the complement of the complexification of H. The main theorem of this section says that

the fundamental group of E/W acts on our category by twisting functors.

Theorem 6.35 For any λ ∈ Π, there is a natural homomorphism from π1(E/W, [λ]) to the

group of twisting functors on D(Aλ -Mod). The subgroup π1(E, λ) maps to the group of pure

twisting functors.

Proof: For each element (i, w) ∈ I ×W , choose an integral class ηi,w such that wηi,w is ample

on Mi. By Lemma 6.30, we may choose a natural number ki,w such that λi,w := λ+ki,wηi,w lies

in Πi,w. The Deligne groupoid of H is the full sub-groupoid of the fundamental groupoid of

E with objects {λi,w | (i, w) ∈ I ×W}. Note that different choices would lead to a canonically

isomorphic groupoid; the only important thing is that we have chosen one representative of

each chamber.

The Deligne quiver of a real hyperplane arrangement is the quiver with nodes indexed

by chambers and arrows in both directions between any two adjacent chambers. Paris [Par93]

proves that the Deligne groupoid is isomorphic to the quotient of the fundamental groupoid

of the Deligne quiver obtained by identifying any pair of positive paths of minimal length

between the same two nodes.18 Thus, to construct an action of the Deligne groupoid, it is

sufficient to first define an action of the Deligne quiver and then check Paris’s relations.

Recall that the chambers of H are in bijection with I ×W . We begin by associating the

18A path can travel forward or backward along arrows; a positive path is one that always travels forward.
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category D(Aλi,w
-Mod) to the node indexed by (i, w). If the chambers indexed by (i, w) and

(j, v) are adjacent, then we assign the functor Φλj,v ,λi,w to the corresponding arrow in the

Deligne quiver. We now need to check the relations. Salvetti defines a CW complex which

is a W -equivariant homotopy model for the space E. As described in [Sal87, pp. 611-2], the

1-skeleton of this complex is the Deligne quiver, and so the attaching maps of the 2-cells

completely describe the relations in the fundamental groupoid. There is one 2-cell for each

pair of a codimension 2 face F and an adjacent chamber C, and the attaching map identifies

the two minimal positive paths from C to its opposite across F . Thus, we need only check

that composition along these paths gives the same functors.

Suppose we are given two such chambers, labeled by (i, w) and (i′, w′). Let H be a generic

cooriented hyperplane that contains F and bisects both chambers. Figure 1 illustrates a

2-dimensional slice transverse to F , so that F appears as a point and H appears as a line,

which in the picture we draw as dotted.

Choose elements µ and ν of Πi,w that differ from λi,w by an integral class, with µ on

the positive side and ν on the negative side of H. Choose µ′ and ν ′ in Πi′,w′ similarly. Let

µ = µ1, µ2, . . . , µn = µ′ be colinear integral representatives of all the chambers on the positive

side of H, and let ν = ν1, . . . , νℓ = ν ′ be colinear representatives of all the chambers on the

negative side of H. We may arrange these classes such that for all k, µk − µk+1 and νk − νk+1

both lie in the chamber indexed by (i, w). Put differently, we may assume that wµk − wµk+1

and wνk − wνk+1 are both ample on Mi. All of this is illustrated in Figure 1.

µ2

µ

ν

ν2

µ′

ν ′
µℓ−1

νℓ−1

. . .

. . .

Figure 1: A 2-dimensional slice.

By Corollary 6.33, we may reduce the theorem to checking that the functors

Φλi′,w′ , µ′ ◦ Φµ′, µℓ−1 ◦ · · · ◦ Φµ2,µ ◦ Φµ,λi,w and Φλi′,w′ , ν′ ◦ Φν′, νℓ−1 ◦ · · · ◦ Φν2,ν ◦ Φν,λi,w
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from D(Aλi,w
-Mod) to D(Aλi′,w′ -Mod) are naturally isomorphic. By Corollary 6.33 and

Lemma 6.34, both are equivalent to Φλi′,w′ ,λi,w .

We have now established that the Deligne groupoid acts on the derived categories

D(Aλi,w
-Mod) for all (i, w) ∈ I ×W . Specializing to a single parameter, we conclude that

π1(E, λ) acts on D(Aλ -Mod) via pure twisting functors. Furthermore, by Proposition 3.10,

we have an action of W on the categories D(Aλi,w
-Mod) via the functors Φλ

w. The uniqueness

of the quantizations of line bundles (Proposition 5.2) shows that

Φλ
w ◦ Φλ,λ′ ∼= Φwλ,wλ′ ◦ Φλ′

w ,

so this action is compatible with the action of W on the Deligne groupoid D, considered as a

subgroupoid of the fundamental groupoid. This shows that the semi-direct product D ⋊W

acts on the categories D(Aλi,w
-Mod). The automorphisms of a point λ in the semi-direct

product are isomorphic to π1(E/W, [λ]). 2

Remark 6.36 We have already remarked that D -mod (and therefore A -mod, when local-

ization holds) may be thought of as a twisted algebraic version of the Fukaya category of M

(Remark 4.3). In this interpretation, we expect the action in Conjecture 6.35 to be given by

parallel transport in the universal deformation, along the lines of the construction in [SS06]

for Slodowy slices of type A.

Remark 6.37 As in Section 6.1, we may replace D(Aλ -Mod) in the statement of Theorem

6.35 with Db
L0

(Aλ -mod) (see Definition 6.9) for any S-equivariant L0 ⊂ M0, or with the

bounded derived category Db(CL0
λ ). These categories are related by a realization functor

Db(CL0
λ )→ Db

L0
(Aλ -mod), which may or may not be fully faithful.

If M is a hypertoric variety and L is as in Example 6.12, we obtain the twisting functors

studied in [BLPW10, §6] and [BLPW12, 8.4]. To see this, we need to apply Lemma 6.28

and Remark 6.29, because the functors in [BLPW12, 8.4] are defined using the bimodules in

Equation (26).

Recall that BGG category O is the subcategory of finitely generated U(g)-modules on which

b acts locally finitely, and h acts semi-simply. Let Oλ for a weight λ be the Serre subcategory

where the center of U(g) acts with the same generalized character as on the Verma module with

highest weight λ. If M = T ∗(G/B) and L is as in Example 6.12, then for any regular integral

weight λ, the category CL
λ+ρ is equivalent to Oλ by Soergel’s functor. As discussed above,

this means that we have a realization functor Rλ : Db(Oλ) ∼= Db(CL
λ+ρ) → DL(Aλ+ρ -mod),

which is not obviously fully faithful. These functors obviously commute with the translation

equivalences between CL
λ+ρ and CL

λ′+ρ where λ, λ′ are both dominant and integral; thus the
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functor Rλ is either fully faithful for all dominant integral λ or for none. The result [BLPW16,

5.13] shows that it must be fully faithful for all λ in an open subset U ⊂ H2(G/B), so it must

be an fully faithful for all dominant λ. Thus, we can consider Db(CL
λ+ρ) as a subcategory of

DL(Aλ+ρ -mod) ⊂ Db(A -mod) in this case.

The following result says that this equivalence identifies the functors we call twisting

functors with Arkhipov’s twisting functors [Ark04, AS03]. More precisely, Arkhipov defines

a collection of derived auto-equivalences {Tw | w ∈ W} of the category Oλ satisfying the

relation Tw ◦ Tw′ ∼= Tww′ whenever the length of ww′ is equal to the sum of the lengths of w

and w′, which means that these functors generate an action of the generalized braid group. In

this case the discriminantal arrangement is equal to the Coxeter arrangement for W , so the

fundamental group π1(E/W, [λ]) is also isomorphic to the generalized braid group.

Proposition 6.38 Suppose that M = T ∗(G/B) and let L be as in Example 6.12. If λ ∈
H2(M;C) is regular, integral, and dominant, then Soergel’s equivalence from the block Oλ of

BGG category O to the category CL
λ+ρ intertwines Arhkipov’s twisting action on Db(O) with

the twisting action on Db(CL
λ+ρ) ⊂ D(A -Mod) from Theorem 6.35.

Proof: We begin by showing that Arkhipov’s twisting functors are uniquely characterized by

the following two properties:

• Tw strongly commutes with projective functors [AS03, Lemma 2.1]. That is, for any

projective functor F , there is an isomorphism Tw ◦ F ∼= F ◦ Tw, and these isomorphisms

are compatible with natural transformations of projective functors.

• For all w ∈W , TwVλ ∼= Vw·λ, where Vλ is the Verma module with highest weight λ.

Indeed, let {T ′
w | w ∈W} be any other collection of functors satisfying these conditions. By

[BG80, 3.3(iib)], for any irreducible projective object of Oλ, there is a projective functor taking

Vλ to that object. Since Oλ has enough projectives, for any object N of Oλ, there is a complex

FN of projective functors taking Vλ to N . Furthermore, projective functors may be regarded

as modules over g× g [Bac01], and we have Homg(N,N
′) ∼= Homg×g(FN , FN ′). We therefore

have

T ′
wN
∼= T ′

wFNVλ ∼= FNT
′
wVλ
∼= FNVw·λ ∼= FNTwVλ ∼= TwFNVλ ∼= TwN,

and the strong commutativity condition ensures that this induces an isomorphism of functors.

Since λ is dominant, Soergel’s equivalence between Oλ and CL
λ+ρ is given by composing

the functors

1
λH

∞
λOλ CL

λ+ρ

(−)◦ ⊗ Vλ lim←−i
(−⊗ V i

λ)

Homfin
C (Vλ,−)◦ lim−→i

Homfin
C (V i

λ,−)

(29)
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where

• 1
λH

∞
λ denotes the category of Harish-Chandra bimodules (in the usual sense) for U(g)

with generalized central character λ for both the left and right actions, with the center

acting on the left semi-simply,

• Homfin
C (Vλ, N) is the Harish-Chandra bimodule of U(g)∆-locally finite C-linear maps

Vλ → N ,

• (−)◦ denotes the functor on U(g)-U(g) bimodules which switches the left and right

actions, twisting by the antipode of U(g),

• V i
λ denotes the length i thickened Verma module V i

λ := U(g)⊗U(b) (U(h)/mi
λ), where mλ

is the kernel of the action of U(h) on the λ-weight space.

Thus, we need only show that our twisting functors on Db(CL
λ+ρ), transported to Db(Oλ) via

Soergel’s equivalence, satisfy these two conditions.

For any element w ∈W , let Rw
λ := Φλ+ρ

w (w(λ+ρ)Tλ+ρ), where w(λ+ρ)Tλ+ρ is regarded as a

left Aw(λ+ρ)-module. Consider the twisting functor

Sw := Ψλ+ρ
w ◦ Φw(λ+ρ),λ+ρ ∼= Rw

λ

L
⊗−.

Under the bi-adjoint equivalences of CL
λ+ρ with 1

λH
∞
λ described in Equation (29) of Example

6.12, this functor is intertwined with Rw
λ

L
⊗−, now regarded as a functor on Harish-Chandra

bimodules, since tensor product on the left commutes with lim←−(− ⊗ V i
λ). On the other

hand, the equivalence to Oλ, described in the same equation, involves exchanging the left

and right actions. Thus, any projective functor F ∼= F
(
U(g)

)
⊗U(g) − is intertwined with

−⊗U(g) F (U(g))◦ : 1
λH

∞
λ → 1

λH
∞
λ , which obviously commutes with Rw

λ ⊗−.

Checking the second condition is an easy geometric calculation. Since λ is dominant and

regular, localization holds at λ [BB81]. The localization of Vλ is an object of Dλ+ρ -mod, which

we may regard as a twisted D-module by Proposition 4.5. Concretely, it is the restriction of

the line bundle Lλ to the open Bruhat cell, where only the action of g depends on λ. Tensoring

with w(λ+ρ)T ′
λ+ρ takes us to the restriction of Lw·λ to that cell. The sections of that restriction

are exactly the Verma module Vw·λ, since it is generated by a unique U -invariant section of

weight w ·λ (here U is the nilpotent radical of B), and the dimension of weight spaces matches

the character of the Verma module. 2

We end by analyzing the twisting action of Theorem 6.35 on the level of the Grothendieck

group. Assume λ ∈ Π. Every twisting functor Φ: Db(Aλ -mod) → Db(Aλ -mod) is induced

by derived tensor product with an algebraic Harish-Chandra bimodule KΦ; by Proposition
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6.8, this implies that the corresponding functor LLoc ◦Φ ◦RΓS : Db(Dλ -mod)→ Db(Dλ -mod)

is induced by convolution with a geometric Harish-Chandra bimodule FΦ ∈ λHCg
λ. By

Proposition 6.15, the effect of Φ on characteristic cycles is given by convolution with the

characteristic cycle CC(FΦ). Thus we obtain an algebra homomorphism

α : C[π1(E/W, [λ])]→ H2 dimM
Z (M×M;C).

Proposition 6.39 The subalgebra C[π1(E, λ)] ⊂ C[π1(E/W, [λ])] is contained in the kernel

of α, thus we obtain an induced homomorphism

ᾱ : C[W ]→ H2 dimM
Z (M×M;C).

Proof: By Proposition 6.27, pure twisting functors preserve characteristic cycles. Since the

subalgebra C[π1(E, λ)] ⊂ C[π1(E/W, [λ])] acts by pure twisting functors, the result follows. 2

Remark 6.40 The map ᾱ also has a direct geometric construction, which precisely matches

the one given by Chriss and Ginzburg [CG97, 3.4.1] for M = T ∗G/B. Applying the argument of

the proof of Proposition 6.27 to an impure twisting functor shows that the class corresponding

to w is a specialization of the graph of the map w : π−1(ν)→ π−1(w · ν).
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