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Abstract. Ferroni and Larson gave a combinatorial interpretation of the braid Kazhdan–Lusztig

polynomials in terms of series-parallel matroids. As a consequence, they confirmed an explicit

formula for the leading Kazhdan–Lusztig coefficients of braid matroids with odd rank, as con-

jectured by Elias, Proudfoot, and Wakefield. Based on Ferroni and Larson’s work, we further

explore the combinatorics behind the leading Kazhdan–Lusztig coefficients of braid matroids.

The main results of this paper include an explicit formula for the leading Kazhdan–Lusztig

coefficients of braid matroids with even rank, a simple expression for the number of simple

series-parallel matroids of rank k + 1 on 2k elements, and explicit formulas for the leading co-

efficients of inverse Kazhdan–Lusztig polynomials of braid matroids. The binomial identity for

the Abel polynomials plays an important role in the proofs of these formulas.
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1 Introduction

Given a matroid M of positive rank, the Kazhdan–Lusztig polynomial PM (t) ∈ N[t] is a

polynomial with non-negative integer coefficients of degree strictly less than half the rank of M
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[EPW16, BHM+20]. Though these polynomials are characterized by a simple recursive formula,

computing them in practice for explicit families of matroids is often quite difficult. Let Bn be the

braid matroid, associated with the complete graph on n vertices. Ferroni and Larson [FL23] gave

a beautiful combinatorial interpretation of the coefficients of PBn(t), which we now describe.

A matroid is called quasi series-parallel if it is isomorphic to a direct sum of loops and

matroids associated with series-parallel graphs. Equivalently, it is quasi series-parallel if it does

not contain any minor isomorphic to the braid matroid B4 or the uniform matroid of rank two on

four elements [FL23, Proposition 2.6]. For a finite set E, let S(E, k) denote the set of simple quasi

series-parallel matroids of rank k on E, and write S(n, k) := S([n], k), where [n] = {1, 2, . . . , n}.
Ferroni and Larson’s combinatorial interpretation of PBn(t) is as follows.

Theorem 1.1. [FL23, Theorem 1.1] For any positive integer n, the coefficient of ti in the Kazhdan–

Lusztig polynomial PBn(t) is equal to the cardinality of the set S(n− 1, n− 1− i).

The matroid Bn has rank n−1, therefore the polynomial PB2n(t) has degree at most n−1, while

the polynomial PB2n−1(t) has degree at most n − 2. Using Theorem 1.1, Ferroni and Larson gave

the following explicit formula for the leading coefficient of PB2n(t), which was originally conjectured

in [EPW16, Appendix].

Theorem 1.2. [FL23, Corollary 2.12] For any n > 1, the coefficient of tn−1 in PB2n(t) is equal to

|S(2n− 1, n)| = (2n− 1)n−2 · (2n− 3)!!.

Our first main result is the following explicit formula for the leading coefficient of PB2n−1(t),

which we regard as a complement to Theorem 1.2.

Theorem 1.3. For any n > 1, the coefficient of tn−2 in PB2n−1(t) is equal to

|S(2n− 2, n)| = (2n− 1)n−2 · (2n− 3)!!− (n− 2)(n− 1)n−5 · (2n− 1)!

3 · (n− 2)!
.

Remark 1.4. By looking at the formulas in Theorems 1.2 and 1.3, it is apparent that the key

formula is for the difference |S(2n − 1, n)| − |S(2n − 2, n)|, or equivalently the leading coefficient

of the polynomial PB2n(t) − tPB2n−1(t). It is not a priori obvious that this difference should be

meaningful or interesting.

Let En denote the number of simple series-parallel matroids of rank n on the set [2n − 2].

Ferroni and Larson [FL23] noted that the En can have large prime factors, and did not give a

simple expression for En. However, they obtained the following expression of |S(2n − 2, n)| in

terms of En.

Theorem 1.5. [FL23, Proposition 2.13] For any n > 1, the coefficient of tn−2 in PB2n−1(t) is equal

to

|S(2n− 2, n)| = En +
1

2

n−2∑
j=0

(
2n− 2

2j + 1

)
· (2j − 1)!!(2j + 1)j−1 · (2n− 2j − 5)!!(2n− 2j − 3)n−j−3.
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Based on Theorems 1.3 and 1.5, we obtain the following explicit formula for En.

Corollary 1.6. For any n > 1, we have

En = (2n− 1)n−2 · (2n− 3)!!− (n− 2)(n− 1)n−5 · (2n− 1)!

3 · (n− 2)!
− (n+ 1)(n− 1)n−3 · (2n− 3)!

3 · (n− 1)!
.

It is known that the inverse Kazhdan–Lusztig polynomial QM (t) ∈ N[t] of matroid M

is a polynomial with non-negative integer coefficients of degree strictly less than half the rank of

M [GX21, BHM+20]. While we have no concrete combinatorial interpretation of these coefficients

along the lines of Theorem 1.1,we obtain the following explicit formulas for the leading coefficients.

Theorem 1.7. For any n > 1, the coefficient of tn−1 in QB2n(t) is equal to

(2n− 1)n−2 · (2n− 3)!!,

and the coefficient of tn−2 in QB2n−1(t) is equal to

(n− 1)n−5 · (2n− 1)!

3 · (n− 2)!
.

Remark 1.8. Comparing Theorem 1.7 with Theorems 1.2 and 1.3, we see that the leading coeffi-

cient of QB2n(t) coincides with that of PB2n(t), and the difference |S(2n− 1, n)| − |S(2n− 2, n)| is

the leading coefficient of (n− 2)QB2n−1(t).

By Theorem 1.3, Corollary 1.6, and Theorem 1.7, we see that understanding the difference

|S(2n−1, n)|−|S(2n−2, n)| is very important for us to determine the leading coefficients of PBn(t)

and QBn(t). We prove Theorem 1.3 by constructing a surjective map

Φ(n) : S(2n− 1, n)→ S(2n− 2, n)

and studying the fibers. Many of the fibers turn out to be singletons, and therefore contribute

nothing to the difference |S(2n − 1, n)| − |S(2n − 2, n)|. The remaining fibers can be understood

via the enumeration of Husimi graphs. The construction of the map and analysis of the fibers take

place in Section 2, while the discussion of Husimi graphs takes place in Section 3. The proof of

Corollary 1.6 is also presented in Section 3, which will involve the binomial identity for the Abel

polynomials. Section 4 will be devoted to the proof of Theorem 1.7.

Acknowledgments: We would like to thank Linyuan Lu and Matthew Xie for very helpful dis-

cussions about the leading coefficients of the Kazhdan-Lusztig polynomials and inverse Kazhdan-

Lusztig polynomials of braid matroids of even rank.
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2 A surjective map from S(2n− 1, n) to S(2n− 2, n)

The aim of this section is to express the difference between |S(2n−1, n)| and |S(2n−2, n)| in terms

of the count of certain combinatorial objects. To this end, we will introduce some definitions and

lemmas.

Lemma 2.1. If n > 1, M ∈ S(2n− 1, n), and M ′ = M \ (2n− 1), then M ′ ∈ S(2n− 2, n).

Proof. The class of simple quasi series-parallel matroids is minor closed by [FL23, Proposition

2.6(iii)], so we just need to show that the rank cannot decrease. In other words, we need to show

that 2n − 1 is not a coloop of M . This follows from the fact that M is connected, which is a

consequence of [FL23, Proposition 2.10].

For any n ≥ 2, Lemma 2.1 enables us to define a map

Φ(n) : S(2n− 1, n)→ S(2n− 2, n)

by sending M ∈ S(2n − 1, n) to M \ (2n − 1). Our next goal is to show that Φ(n) is surjective.

To achieve this, it is convenient to use a connection between simple quasi series-parallel matroids

and triangular cacti. Recall that a triangular cactus is a connected graph with the property

that every edge belongs to a unique cycle and all cycles have length 3. Let E be a finite set of

cardinality 2n−1, and let ∆(E) denote the set of triangular cacti on E. In [FL23, Proposition 2.11],

the authors constructed a bijection Ψ(E) from S(E,n) to ∆(E). We will write ∆(n) := ∆([2n−1])

and Ψ(n) := Ψ([2n− 1]), and denote the bijection by

Ψ(n) : S(2n− 1, n)→ ∆(n).

Lemma 2.2. For any n ≥ 2, the deletion map Φ(n) is surjective.

Proof. We will proceed by induction on n. The cases where n = 2 or n = 3 are trivial, thus we

may assume that n > 3. Let M ′ ∈ S(2n − 2, n) be given. By [FL23, Proposition 2.10], either

M ′ ∼= A⊕B for some A ∈ S(2k − 1, k) and B ∈ S(2(n− k)− 1, n− k), or M ′ is connected.

Suppose first that M ′ is not connected. That is, we have a subset S ⊂ [2n − 2] of cardinality

2k − 1, a simple quasi series-parallel matroid A of rank k on S, and a simple quasi series-parallel

matroid B of rank n−k on [2n−2]\S, with the property that M ′ = A⊕B. Choose elements e ∈ S
and f ∈ [2n− 2] \S, and consider the triangular cactus G on [2n− 1] obtained by taking the union

of the cactus ∆(S)(A), the cactus ∆([2n − 2] \ S)(B), and the triangle {e, f, 2n − 1}. If we take

M ∈ S(2n−1, n) to be the unique element with Ψ(n)(M) = G, then Φ(n)(M) = M \(2n−1) = M ′.

Now suppose that M ′ is connected. We will break the argument into two cases, depending on

whether or not M ′ is a series extension of a simple series-parallel matroid. First assume that it

is, i.e. that there exists a cocircuit {e, f} ⊂ [2n − 2] of M ′ such that M ′′ := M ′/e is a simple

series-parallel matroid. Let E := [2n− 2] \ {e}. Note that M ′′ is a simple series-parallel matroid of

rank n− 1 on E. Consider the triangular cactus G′′ := Ψ(E)(M ′′). Let G be the triangular cactus
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on [2n−1] obtained by taking the union of G′′ and the triangle {e, f, 2n−1} and then interchanging

f and 2n− 1. If we take M ∈ S(2n− 1, n) to be the unique matroid with Ψ(n)(M) = G, then we

have Φ(n)(M) = M \ (2n− 1) = M ′.

Finally, suppose that M ′ is connected but is not a series extension of a simple series-parallel

matroid. In this case, there must exist a circuit {e, f, g} ⊂ [2n−2] of M ′ such that M ′′ := M ′\{e, f}
is a simple series-parallel matroid of rank n − 1 on [2n − 2] \ {e, f} and M ′ can be obtained from

M ′′ by first adding a new element e that is parallel to g (a parallel extension) and then replacing

e with a cocircuit {e, f} (a series extension). We will refer to M ′ as a triangle extension of M ′′

at the element g. By our inductive hypothesis, there exists a simple series-parallel matroid M ′′′ of

rank n − 1 on the set [2n − 1] \ {e, f} such that M ′′ is obtained by deleting the element 2n − 1

from M̃ . Let M be the matroid on [2n− 1] obtained from M ′′′ as a triangle extension at g. Then

Φ(n)(M) = M \ (2n− 1) = M ′.

We proceed to study the fibers of the surjection Φ(n). This will be done by a careful analysis

of the circuits of elements in S(2n− 1, n). Let M be a matroid on the ground set E, and suppose

that C ⊂ E is a circuit. We say that an element e ∈ E \C is a chord for C if there exists a subset

S ⊂ C such that S ∪ {e} and (C \ S) ∪ {e} are both circuits. If C does not have any chords, we

will say that it is chordless. We note that every 3-circuit in a simple matroid is chordless, and

a simple matroid is determined by its chordless circuits. A simple matroid that has no chordless

k-circuits for any k ≥ 4 is called chordal. Note that every element of S(2n− 1, n) is chordal.

Let m be a natural number. Let Sm(2n− 1, n) ⊂ S(2n− 1, n) be the set of matroids in which

the element 2n− 1 is contained in exactly m 3-circuits, and let

Sm(2n− 2, n) := Φ(n)
(
Sm(2n− 1, n)

)
.

If M ∈ Sm(2n − 1, n), then Φ(n)(M) has exactly
(
m
2

)
chordless 4-circuits, coming from pairs of

3-circuits in M that contain 2n− 1. This fact, along with Lemma 2.2, implies that S(2n− 2, n) is

equal to the disjoint union of the sets Sm(2n− 2, n). We will write

Φm(n) : Sm(2n− 1, n)→ S(2n− 2, n)

to denote the restriction of Φ(n) to Sm(2n− 1, n).

Lemma 2.3. If M ′ ∈ Sm(2n− 2, n), then M ′ is connected if and only if m > 1.

Proof. Choose M ∈ Sm(2n− 1, n) such that M ′ = Φm(n)(M). We know from [FL23, Proposition

2.10] that M is connected, and we also know that all of the chordless circuits of M are 3-circuits.

If m > 1, then 2n−1 is contained in multiple 3-circuits of M , so deleting it does not disconnect the

matroid. On the other hand, if m = 1, then 2n−1 is contained in a unique 3-circuit {e, f, 2n−1} of

M . This implies that there are no circuits of M ′ containing both e and f , so M ′ is disconnected.

The following lemme characterizes the fibers of Φ(n) over the connected elements of S(2n−2, n).
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Lemma 2.4. Let n ≥ 2. The map Φm(n) is a bijection when m ≥ 3, and it is 3-to-1 when m = 2.

Proof. Let M ′ ∈ Sm(2n− 2, n) be given. We want to count the matroids M ∈ Sm(2n− 1, n) with

Φm(n)(M) = M ′. Since M must be chordal, it is determined by its 3-circuits. The 3-circuits of M

that do not contain the element 2n − 1 coincide with the 3-circuits of M ′, hence it is sufficient to

think about the 3-circuits of M that contain 2n− 1.

Let S ⊂ [2n−2] be the union of the
(
m
2

)
chordless 4-circuits of M ′. Then the restriction of M ′ to

S is isomorphic to the matroid associated with the complete bipartite graph K2,m. If m ≥ 3, there

is a unique chordal extension of this matroid, represented by the thagomizer graph Tm [Ged17].

This uniquely determines all of the 3-circuits of M that contain 2n− 1. If m = 2, then the matroid

associated with K2,2 is the uniform matroid of rank three on four elements, and there are three

different extensions of this matroid to a chordal matroid on five elements, corresponding to the

three ways to partition the four elements into pairs of subsets of size two. These determine three

different matroids M ∈ Sm(2n− 1, n) that map to M ′.

The above lemma shows that only those fibers of Φ(n) over elements of S1(2n−2, n)∪S2(2n−2, n)

can contribute to the difference |S(2n−1, n)|− |S(2n−2, n)|. As shown below, these contributions

can be expressed in terms of the counts of some combinatorial objects constructed from triangular

cacti. Define a desert to be a disjoint union of triangular cacti, and a rooted desert to be a

disjoint union of rooted triangular cacti. Let Desm(n) denote the set of deserts on the vertex set

[2n−2] with exactly 2m connected components, and let RDesm(n) denote the set of rooted deserts

on the vertex set [2n− 2] with exactly 2m connected components. We have a map

Ωm(n) : RDesm(n)→ Desm(n)

given by forgetting the roots.

Let ∆m(n) ⊂ ∆(n) denote the set of triangular cacti with the property that the vertex 2n− 1

has degree 2m, or equivalently that it is contained in exactly m triangles. Then the bijection Ψ(n)

restricts to a bijection

Ψm(n) : Sm(2n− 1, n)→ ∆m(n)

for all m. We also have a map

Πm(n) : ∆m(n)→ RDesm(n)

given by deleting the vertex 2n− 1 along with all of the triangles that passed through that vertex,

and taking the roots to be the vertices from the deleted triangles. Note that Πm(n) is surjective

for all m, and Π1(n) is a bijection.

Lemma 2.5. There is a bijection Σ2(n) : S2(2n − 2, n) → RDes2(n) with the property that the
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following diagram commutes:

S2(2n− 1, n) ∆2(n)

S2(2n− 2, n) RDes2(n).

Ψ2(n)

∼=

Φ2(n) Π2(n)

Σ2(n)

∼=

Proof. Given a matroid M ′ ∈ S2(2n − 2, n), we define Σ2(n)(M ′) ∈ RDes2(n) to have triangles

consisting of the 3-circuits of M ′ and roots consisting of the unique chordless 4-circuit of M ′.

Lemma 2.6. There is a bijection Θ1(n) : Des1(n) → S1(2n − 2, n) with the property that the

following diagram commutes:

S1(2n− 1, n) ∆1(n) RDes1(n)

S1(2n− 2, n) Des1(n).

Ψ1(n)

∼=

Φ1(n)

Π1(n)

∼=

Ω1(n)

Θ1(n)

∼=

Proof. Let M ′ ∈ S1(2n − 2, n) be given. By Lemma 2.3, M ′ is disconnected, so there exists a

subset S ⊂ [2n − 2] of cardinality 2k − 1, a matroid A ∈ S(S, k), and another matroid B ∈
S([2n−2]\B,n−k) such that M ′ = A⊕B. We then define Θ1(n)(M ′) to be the union of Ψ(S)(A)

and Ψ([2n− 2] \ S)(B).

We now come to the main result of this section.

Proposition 2.7. For any n > 1, we have

|S(2n− 1, n)| − |S(2n− 2, n)| = 2 · |RDes2(n)|+ |RDes1(n)| − |Des1(n)|.

Proof. We have

|S(2n− 1, n)| − |S(2n− 2, n)| =
∑
m≥1

(
|Sm(2n− 1, n)| − |Sm(2n− 2, n)|

)
.

When m ≥ 3, Lemma 2.4 tells us that Φm(n) : Sm(2n − 1, n) → Sm(2n − 2, n) is a bijection,

thus the summand indexed by m vanishes. When m = 2, Lemma 2.4 tells us that the map

Φ2(n) : S2(2n − 1, n) → S2(2n − 2, n) is 3-to-1, and Lemma 2.5 identifies S2(2n − 2, n) with

RDes2(n). This implies that

|S2(2n− 1, n)| − |S2(2n− 2, n)| = 2|S2(2n− 2, n)| = 2|RDes2(n)|.

Finally, when m = 1, Lemma 2.6 identifies the map Φ1(n) : S1(2n− 1, n)→ S1(2n− 2, n) with the
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map Ω1(n) : RDes1(n)→ Des1(n). The result follows.

Thus, to give an explicit formula for computing |S(2n − 1, n)| − |S(2n − 2, n)|, it remains to

determine |RDes2(n)|, |RDes1(n)| and |Des1(n)|. This task will be completed in the next section,

via the enumeration of Husimi graphs.

3 Proofs of Theorem 1.3 and Corollary 1.6

A block of a graph is a maximal 2-connected subgraph. A Husimi graph is a connected graph

whose blocks are all isomorphic to complete graphs. We say that it is of type (n2, n3, n4, . . .), where

ni is the number of blocks isomorphic to Ki. For any p ≥ 1, let τp(n2, n3, n4, . . .) denote the number

of Husimi graphs of type (n2, n3, n4, . . .) on the vertex set [p]. The following result was initially

discovered by Husimi [Hus50] and later given a rigorous mathematical proof by Leroux [Ler04]. See

[Oko15, Lemma 5.3.3] for a clear statement and discussion of the history.

Lemma 3.1. For any p ≥ 1, we have

τp(n2, n3, n4, . . .) =
p!∏p

i=2[(i− 1)!]ni ni!
p−2+

∑p
i=2 ni .

Note that a Husimi graph of type (p−1, 0, 0, . . .) is just a tree on the vertex set [p], and Lemma

3.1 specializes to the statement, due originally to Cayley, that the number of such trees is p p−2.

Similarly, a Husimi graph of type (0, r − 1, 0, 0, . . .) is a triangular cactus on the set [2r − 1]. In

this case, Lemma 3.1 says that

|∆(r)| = (2r − 1)r−3 · (2r − 1)!

2r−1 · (r − 1)!
. (1)

Proposition 3.2. For any n > 1 and m ≥ 1, we have

|RDesm(n)| = (n− 1)n−m−2 · (2n− 2)!

2 · (2m− 1)! · (n−m− 1)!
.

In particular,

|RDes1(n)| = (n− 1)n−3 · (2n− 2)!

2 · (n− 2)!
and |RDes2(n)| = (n− 1)n−4 · (2n− 2)!

12 · (n− 3)!
.

Proof. Let HTm(n) denote the set of Husimi graphs on the vertex set [2n − 2] with n − m − 1

triangular blocks and one block isomorphic to K2m. There is a bijection from HTm(n) to RDesm(n)

that takes a Husimi graph to the rooted desert obtained by deleting the edges of K2m and taking

its vertices as the roots. The result then follows from Lemma 3.1.

We proceed to determine |Des1(n)|. Before that, let us recall a result on the Abel polynomials

Am(x; a) := x(x− am)m−1.
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Abel [Rom05, Section 2.6] showed that these polynomials satisfy the identity

m∑
j=0

(
m

j

)
Aj(x; a)Am−j(y; a) = Am(x+ y; a)

for any integers m,x, y and a. By combining this formula with the definition of the Abel polyno-

mials, we obtain the equation

m∑
j=0

(
m

j

)
xy(x− aj)j−1(y − am+ aj)m−j−1 = (x+ y)(x+ y − am)m−1. (2)

Differentiating both sides of (2) with respect to x, we get

m∑
j=0

(
m

j

)
j(x− a)y(x− aj)j−2(y − am+ aj)m−j−1 = m(x+ y − a)(x+ y − am)m−2. (3)

With these formulas, we are able to give the following explicit formula for |Des1(n)|.

Lemma 3.3. For n > 1, we have

|Des1(n)| = (n+ 1)(n− 1)n−5 · (2n− 2)!

6 · (n− 2)!
.

Proof. For any m ≥ 1, an element of Desm(n) consists of a partition of [2n− 2] into 2m parts and

a triangular cactus on each of those parts. This implies that

(2m)! |Desm(n)| =
∑

(2k1−1)+···+(2k2m−1)=2n−2

(
2n− 2

2k1 − 1, . . . , 2k2m − 1

) 2m∏
i=1

|∆(ki)|,

where the factor of (2m)! reflects the fact that the parts of the partition are unordered. When

m = 1, the above formula simplifies to

|Des1(n)| = 1

2

n−1∑
r=1

(
2n− 2

2r − 1

)
|∆(r)| · |∆(n− r)|.

Substituting (1) into the right hand side and reindexing, we obtain the formula

|Des1(n)| = 1

2

n−2∑
r=0

(
2n− 2

2r + 1

)
· (2r − 1)!!(2r + 1)r−1 · (2n− 2r − 5)!!(2n− 2r − 3)n−r−3 (4)

=
n−2∑
r=0

(2n− 2)!(2r + 1)r−2(2n− 2r − 3)n−r−4

2n−1 · r! · (n− r − 2)!
.
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Now it suffices to show that

n−2∑
r=0

(2n− 2)!(2r + 1)r−2(2n− 2r − 3)n−r−4

2n−1 · r! · (n− r − 2)!
=

(n+ 1)(n− 1)n−5 · (2n− 2)!

6 · (n− 2)!
,

or equivalently that

n−2∑
r=0

3

(
n− 2

r

)
(2r + 1)r−2(2n− 2r − 3)n−r−4 = 2n−2(n+ 1)(n− 1)n−5. (5)

To this end, we take m = n− 2, a = −2, x = 1, and y = 1 in Equations (2) and (3) to obtain the

following two equations:

n−2∑
r=0

(
n− 2

r

)
(2r + 1)r−1(2n− 2r − 3)n−r−3 = 2n−2(n− 1)n−3, (6)

n−2∑
r=0

(
n− 2

r

)
3r(2r + 1)r−2(2n− 2r − 3)n−r−3 = 2n−2(n− 2)(n− 1)n−4. (7)

Substituting r for n− 2− r into the left hand side of (7) yields

n−2∑
r=0

(
n− 2

r

)
3(n− r − 2)(2r + 1)r−1(2n− 2r − 3)n−r−4 = 2n−2(n− 2)(n− 1)n−4. (8)

By subtracting (7) and (8) from (6) multiplied by 3, we obtain the desired (5). This completes the

proof.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let gn := |S(2n − 1, n)| − |S(2n − 2, n)|. By Proposition 2.7, Proposition

3.2, and Lemma 3.3, we have

gn = 2 · |RDes2(n)|+ |RDes1(n)| − |Des1(n)|

=
(n− 1)n−4 · (2n− 2)!

6 · (n− 3)!
+

(n− 1)n−3 · (2n− 2)!

2 · (n− 2)!
− (n+ 1)(n− 1)n−5 · (2n− 2)!

6 · (n− 2)!

= (2n− 2)! · (n− 2)(n− 1)n−4 + 3(n− 1)n−3 − (n+ 1)(n− 1)n−5

6 · (n− 2)!

=
2(n− 2)(n− 1)n−5 · (2n− 1)!

6 · (n− 2)!

=
(n− 1)n−5 · (2n− 1)!

3 · (n− 3)!
.

Combining this with Theorem 1.2 gives the result.

Finally, we prove Corollary 1.6.
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Proof of Corollary 1.6. By Equation (4) and Theorem 1.5, we find that

En = |S(2n− 2, n)| − |Des1(n)|.

Then combining Lemma 3.3 and Theorem 1.3 gives the desired result.

4 Proof of Theorem 1.7

The aim of this section is to prove Theorem 1.7. To this end, we need to use a relation between

QBn(t) and PBn(t). Before recalling this relation, we will follow [GM12] to introduce some notation

from matroid theory.

Let M = (E,F) be a loopless matroid on ground set E with the set of flats F . The lattice of

flats of M is denoted by L (M). For any flat F of M , let M |F denote the restriction of M to F ,

and let M/F denote the matroid obtained from M by contracting F . For any subset I of E, let

rk I denote the rank of I in the matroid M . The rank of matroid M , denoted by rkM , is defined

to be rkE. Gao and Xie [GX21, Theorem 1.3] established the following relation between QM (t)

and PM (t):

PM (t) = −
∑

F∈L (M)\{E}

PM |F (t) · (−1)rkM/FQM/F (t). (9)

Let [ti]f(t) denote the coefficient ti in the polynomial f(t). Based on (9), Vecchi [Vec21,

Theorem 4.1] showed that, for any matroid M of odd rank 2m− 1, we have the identity

[tm−1]PM (t) = [tm−1]QM (t).

Since the rank of braid matroid B2n is 2n− 1, we have

[tn−1]PB2n(t) = [tn−1]QB2n(t). (10)

The relationship between the leading coefficients of PB2n−1(t) and QB2n−1(t) is more subtle; the

precise formula appears in the following lemma.

Lemma 4.1. For any n > 1, we have

[tn−2]PB2n−1(t) + [tn−2]QB2n−1(t) =
n−1∑
j=1

(
2n− 1

2j

)
[tj−1]PB2j (t) · [tn−1−j ]QB2n−2j (t). (11)

Proof. Taking M to be B2n−1 in Equation (9) yields

PB2n−1(t) +QB2n−1(t) = −
∑

F∈L (B2n−1)\{∅,E}

PB2n−1|F (t) · (−1)rk B2n−1/FQB2n−1/F (t). (12)
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We now compare coefficients of tn−2 on both sides of Equation (12). It suffices to show that∑
F∈L (B2n−1)\{∅,E}

[tn−2]
(
PB2n−1|F (t) · (−1)rk B2n−1/FQB2n−1/F (t)

)

=−
n−1∑
j=1

(
2n− 1

2j

)
[tj−1]PB2j (t) · [tn−1−j ]QB2n−2j (t). (13)

The lattice of L (Bk) is isomorphic to the lattice of set-theoretic partitions of the set [k], with

the minimal element ∅ corresponding to the partition of [k] into k singletons and the maximal

element E corresponding to the partition of [k] into a single part. We say that F ∈ L (Bk) is of

type λ if the partition λ can be obtained by arranging the sizes of the blocks of the corresponding set

partition in descending order. If F is of type λ = (λ1, λ2, . . . , λ`(λ)) ` k, then (after simplification)

we have

Bk|F ∼= Bλ1 ⊕ Bλ2 ⊕ · · · ⊕ Bλ`(λ) and Bk/F ∼= B`(λ). (14)

By [EPW16, Theorem 2.2 and Proposition 2.7] and [GX21, Theorem 1.2], we have

PBk|F (t) = PBλ1
(t)PBλ2

(t) · · ·PBλ`(λ)
(t) and QBk/F (t) = QB`(λ)(t). (15)

Let F be a nonempty proper flat of B2n−1, and let λ ` 2n−1 be the type of F . We will analyze

the summand of Equation (13) indexed by F according to the following cases.

Case I: λ = (2j, 12n−1−2j) for some 1 ≤ j ≤ n − 1. By Equation (15) and the fact PB1(t) = 1, we

have

PB2n−1|F (t) · (−1)rk B2n−1/FQB2n−1/F (t) = −PB2j (t) ·QB2n−2j (t).

Since degPB2j (t) ≤ j − 1 and degQB2n−2j (t) ≤ n− j − 1, we have

[tn−2]
(
PB2n−1|F (t) · (−1)rk B2n−1/FQB2n−1/F (t)

)
= −[tj−1]PB2j (t) · [tn−j−1]QB2n−2j (t).

Case II: λ = (2j − 1, 12n−2j) for some 2 ≤ j ≤ n− 1. This time, we have

PB2n−1|F (t) · (−1)rk B2n−1/FQB2n−1/F (t) = PB2j−1(t) ·QB2n−2j+1(t).

Since degPB2j (t) ≤ j − 2 and degQB2n−2j+1(t) ≤ n− j − 1, we have

[tn−2]
(
PB2n−1|F (t) · (−1)rk B2n−1/FQB2n−1/F (t)

)
= 0.
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Case III: λ = (λ1, λ2, . . . , λi, 1
2n−1−

∑i
j=1 λj ) for some i ≥ 2 and λi > 1. Now we have

PB2n−1|F (t) · (−1)rk B2n−1/FQB2n−1/F (t) = (−1)2n+i−
∑i
j=1 λjPBλ1

(t) · · ·PBλi
(t) ·QB

2n+i−1−
∑i
j=1

λj
(t).

Since degPBk(t) ≤ k−2
2 and degQBk(t) ≤ k−2

2 for any k ≥ 2,

deg(PBλ1
(t) · · ·PBλi

(t)) = degPBλ1
(t) + · · ·+ degPBλi

(t) ≤
∑i

j=1 λj − 2i

2

and

degQB
2n+i−1−

∑i
j=1

λj
(t) ≤

2n+ i− 3−
∑i

j=1 λj

2
.

Since i ≥ 2, we have

degPBλ1
(t) · · ·PBλi

(t) + degQB
2n+i−1−

∑i
j=1

λj
(t) ≤ 2n− i− 3

2
≤ 2n− 5

2
< n− 2.

Thus

[tn−2]
(
PB2n−1|F (t) · (−1)rk B2n−1/FQB2n−1/F (t)

)
= 0.

Combining the above three cases, we find that only those flats of type λ = (2j, 12n−1−2j) can

contribute to the left hand side of (13). Note that, for each 1 ≤ j ≤ n− 1, there are exactly
(

2n−1
2j

)
flats of type λ = (2j, 12n−1−2j). This completes the proof of Equation (13), and hence that of the

lemma.

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. By Equation (10) and Theorem 1.2, we see that

[tn−1]PB2n(t) = [tn−1]QB2n(t) = (2n− 1)n−2 · (2n− 3)!! =
(2n− 1)!(2n− 1)n−3

2n−1 · (n− 1)!
, (16)

and by Theorem 1.3, we have

[tn−2]PB2n−1(t) =
(2n− 1)!(2n− 1)n−3

2n−1 · (n− 1)!
− (n− 2)(n− 1)n−5 · (2n− 1)!

3 · (n− 2)!
. (17)

It remains only to show that

[tn−2]QB2n−1(t) =
(2n− 1)!(n− 1)n−5

3 · (n− 2)!
.
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By Equations (16), (17), and (11), this is equivalent to the statement that

(2n− 1)!(n− 1)n−5

3 · (n− 2)!
=

n−1∑
j=1

(
2n− 1

2j

)
(2j − 1)!(2j − 1)j−3

2j−1 · (j − 1)!
· (2n− 2j − 1)!(2n− 2j − 1)n−j−3

2n−j−1 · (n− j − 1)!

−
((2n− 1)!(2n− 1)n−3

2n−1 · (n− 1)!
− (2n− 1)!(n− 1)n−5

3 · (n− 3)!

)
,

which simplifies further to the equation

n−1∑
j=0

3

(
n− 1

j

)
(2j − 1)j−3(2n− 2j − 1)n−j−3 = −8(n− 3)(2n− 2)n−4. (18)

To prove Equation (18), we will first establish the following two identities:

m∑
j=0

3

(
m

j

)
(2j − 1)j−2(2m− 2j + 1)m−j−2 = 8(2m)m−2, (19)

m∑
j=0

3

(
m

j

)
(4mj − 4j + 1)(2j − 1)j−3(2m− 2j + 1)m−j−2 = 8(2m2 +m− 2)(2m)m−3. (20)

Let us first prove Equation (19). Differentiating both sides of Equation (2) with respect to y,

we obtain the identity

m∑
j=0

(
m

j

)
(m− j)x(y − a)(x− aj)j−1(y − am+ aj)m−j−2 = m(x+ y − a)(x+ y − am)m−2. (21)

Letting a = −2, x = −1, y = 1 in Equations (2), (3), and (21), we obtain the following:

m∑
j=0

(
m

j

)
(2j − 1)j−1(2m− 2j + 1)m−j−1 = 0, (22)

m∑
j=0

(
m

j

)
j(2j − 1)j−2(2m− 2j + 1)m−j−1 = (2m)m−1, (23)

m∑
j=0

−3

(
m

j

)
(m− j)(2j − 1)j−1(2m− 2j + 1)m−j−2 = (2m)m−1. (24)

Now, subtracting Equation (22) from Equation (23) multiplied by 2 yields

m∑
j=0

(
m

j

)
(2j − 1)j−2(2m− 2j + 1)m−j−1 = 2(2m)m−1, (25)
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and adding Equation (22) multiplied by 3 to Equation (24) multiplied by 2 yields

m∑
j=0

3

(
m

j

)
(2j − 1)j−1(2m− 2j + 1)m−j−2 = 2(2m)m−1. (26)

Furthermore, adding Equation (25) multiplied by 3 to Equation (26) and then cancelling the com-

mon factor 2m lead to the desired Equation (19).

In the same manner we can prove Equation (20). Differentiating Equation (21) with respect to

x, we have

m∑
j=0

(
m

j

)
j(m− j)(x− a)(y − a)(x− aj)j−2(y − am+ aj)m−j−2

= m(m− 1)(x+ y − 2a)(x+ y − am)m−3. (27)

Differentiating again gives

m∑
j=0

(
m

j

)
j(j − 1)(m− j)(x− 2a)(y − a)(x− aj)j−3(y − am+ aj)m−j−2

= m(m− 1)(m− 2)(x+ y − 3a)(x+ y − am)m−4. (28)

Letting a = −2, x = −1, y = 1 in Equations (27) and (28), we obtain

m∑
j=0

3

(
m

j

)
j(m− j)(2j − 1)j−2(2m− 2j + 1)m−j−2 = 2(m− 1)(2m)m−2, (29)

m∑
j=0

3

(
m

j

)
j(j − 1)(m− j)(2j − 1)j−3(2m− 2j + 1)m−j−2 = (m− 1)(m− 2)(2m)m−3. (30)

Then, subtracting Equation (30) multiplied by 2 from Equation (29) yields

m∑
j=0

3

(
m

j

)
j(m− j)(2j − 1)j−3(2m− 2j + 1)m−j−2 = 2(m− 1)(m+ 2)(2m)m−3. (31)

Adding Equation (26) to Equation (31) multiplied by 4, we get Equation (20), as desired.

Now we can derive Equation (18) from Equations (19) and (20). By subtracting Equation (19)

multiplied by 2m− 2 from Equation (20) and then cancelling the common factor 2m− 1, we find

that

m∑
j=0

3

(
m

j

)
(2j − 1)j−3

(
2m− 2j + 1

)m−j−2
= −8(m− 2)(2m)m−3.

Substituting m to n− 1 in the above formula yields Equation (18). This completes the proof.
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