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Arrangements and Flats

Let V be a finite dimensional vector space,

and A a finite set of hyperplanes in V with
⋂
H∈A

H = {0}.

Definition

A flat F ⊂ V is an intersection of some hyperplanes.

Example

V

• 1 flat of dimension 2 (V itself)

• 3 flats of dimension 1 (the lines)

• 1 flat of dimension 0 (the origin)
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Arrangements and Flats

Example

Suppose V = C6 and A consists of 8 generic hyperplanes.

•
(8

0

)
= 1 flat of dimension 6 (V itself)

•
(8

1

)
= 8 flats of dimension 5 (the hyperplanes)

•
(8

2

)
= 28 flats of dimension 4

•
(8

3

)
= 56 flats of dimension 3

•
(8

4

)
= 70 flats of dimension 2

•
(8

5

)
= 56 flats of dimension 1

• 1 flat of dimension 0 (the origin)

2



Arrangements and Flats

Example

Suppose V = C7/C∆ =
{

(z1, . . . , z7) ∈ C7
}/

C · (1, . . . , 1)

and A consists of the
(7

2

)
hyperplanes Hij := {zi = zj}.

H14 ∩ H46 ∩ H37 =
{

(z1, . . . , z7) | z1 = z4 = z6, z3 = z7

}
/C∆

is a flat of dimension 3.

flats ↔ partitions of the set {1, . . . , 7}
H14 ∩ H46 ∩ H37 ↔ {1, 4, 6} t {3, 7} t {2} t {7}

H14 ↔ {1, 4} t {2} t {3} t {5} t {6} t {7}
V ↔ {1} t {2} t {3} t {4} t {5} t {6} t {7}
{0} ↔ {1, . . . , 7}

flats of dimension k ↔ partitions into k + 1 parts
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The Top-Heavy conjecture

Theorem (Top-Heavy conjecture)

If k ≤ 1
2 dimV , then

# of flats of codimension k ≤ # of flats of dimension k .

Furthermore, the same statement holds for matroids

(combinatorial abstractions of hyperplane arrangements

for which we can still make sense of flats).

• Conjectured by Dowling and Wilson, 1974

• True for arrangements: Huh and Wang, 2017

• True for matroids: Braden–Huh–Matherne–P–Wang, 2020
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The Top-Heavy conjecture

Example

8 generic hyperplanes in C6

•
(8

1

)
= 8 flats of codimension 1(8

5

)
= 56 flats of dimension 1

•
(8

2

)
= 28 flats of codimension 2(8

4

)
= 70 flats of dimension 2

Example

V = C7/C∆, A = {Hij}

• # partitions into 6 parts =
(7

2

)
= 21 flats of codimension 1

# partitions into 2 parts = 27−2
2 = 63 flats of dimension 1

• S(7, 5) = 140 flats of codimension 2

S(7, 3) = 301 flats of dimension 2 5



Characteristic polynomial

The characteristic polynomial χA(t) is a polynomial, depending

only on the poset of flats, with the following property:

If V is a vector space over Fq, then χA(q) is equal to the number

of points on the complement of the hyperplanes.

Example

V

• χA(q) = q2 − 3q + 2

• Since q could be any prime power,

we must have χA(t) = t2 − 3t + 2.

More generally, χA(t) =
∑
F

µ(V ,F )tdimF ,

where µ is the Möbius function for the poset of flats.
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The characteristic polynomial

Example

V = C7/C∆, A = {Hij}

• χA(q) = (q − 1)(q − 2)(q − 3)(q − 4)(q − 5)(q − 6)

• Since q could be any prime power,

we must have

χA(t) = (t − 1)(t − 2)(t − 3)(t − 4)(t − 5)(t − 6).

If V is a vector space over Fq and dimV > 0, then F×q acts freely

on the set of the points in the complement of the hyperplanes.

That means that χA(q) is a multiple of q − 1, and therefore χA(t)

is a multiple of t − 1. The reduced characteristic polynomial is

χ̄A(t) := χA(t)/(t − 1).

7



The characteristic polynomial

Example

V = C7/C∆, A = {Hij}

χA(t) = (t − 1)(t − 2)(t − 3)(t − 4)(t − 5)(t − 6)

χ̄A(t) = (t − 2)(t − 3)(t − 4)(t − 5)(t − 6)

= t5 − 20t4 + 155t3 − 580t2 + 1044t − 720

Easy Lemma: There exist positive integers a0, a1, . . . such that

χ̄A(t) =
∑
i≥0

(−1)i ai t
dimV−1−i .

Example

a0 = 1, a1 = 20, a2 = 155, a3 = 580, a4 = 1044, a5 = 720.
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Log concavity

Theorem

The sequence a0, a1, . . . is log concave. That is, for all i > 0,

a2
i ≥ ai−1ai+1.

Furthermore, the statement holds for matroids.

• Conjectured for graphs by Hoggar, 1974

• Conjectured for all arrangements, and in fact for all matroids,

by Welsh, 1976

• True for arrangements over C: Huh, 2012

• True for all arrangements: Huh and Katz, 2012

• True for matroids: Adiprasito–Huh–Katz, 2017
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Contractions

Definition

Let F be a flat. The contraction of A at F is the arrangement

AF := {H ∩ F | F 6⊂ H ∈ A}

in the vector space F .

F

V

F

A AF

Note the special case AV = A.
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The Kazhdan–Lusztig polynomial

The Kazhdan–Lusztig polynomial PA(t) is uniquely determined

by the following three properties:

• If dimV = 0, then PA(t) = 1

• If dimV > 0, then degPA(t) < 1
2 dimV

• The Z -polynomial

ZA(t) =
∑
F

PAF (t)tcodimF

is palindromic. That is, tdimVZA(t−1) = ZA(t).

Easy Lemma: For any A, PA(0) = 1. In particular, PA(t) = 1

whenever dimV ≤ 2.
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The Kazhdan–Lusztig polynomial

Example

Suppose that dimV = 3 and A consists of 5 hyperplanes in

general position.

• We have 1 flat V of codimension 0, and PAV (t) = PA(t).

• We have 5 flats F of codimension 1, and PAF (t) = 1.

• We have
(5

2

)
= 10 flats F of codimension 2, and PAF (t) = 1.

• We have 1 flat {0} of codimension 3, and PA{0}(t) = 1.

ZA(t) = PA(t) + 5t + 10t2 + t3.

Since degPA(t) < 3
2 , we must have

PA(t) = 1 + 5t.
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The Kazhdan–Lusztig polynomial

Example

Suppose that dimV = 4 and A consists of 6 hyperplanes in

general position.

• We have 1 flat V of codimension 0, and PAV (t) = PA(t).

• We have 6 flats F of codimension 1, and PAF (t) = 1 + 5t.

• We have
(6

2

)
= 15 flats F of codimension 2, and PAF (t) = 1.

• We have
(6

3

)
= 20 flats F of codimension 3, and PAF (t) = 1.

• We have 1 flat {0} of codimension 3, and PA{0}(t) = 1.

ZA(t) = PA(t) + 6(1 + 5t)t + 15t2 + 20t3 + t4

= PA(t) + 6t + 45t2 + 20t3 + t4.

Since degPA(t) < 4
2 = 2, we must have PA(t) = 1 + 14t. 13



KL positivity

Theorem

The coefficients of PA(t) are non-negative. Furthermore, the

statement holds for matroids.

• Proved for hyperplane arrangements and conjectured for

matroids: Elias–P–Wakefield, 2016

• True for matroids: Braden–Huh–Matherne–P–Wang, 2020
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The Hodge–Riemann bilinear relations

Let X be a (nonempty, connected) smooth projective variety of

dimension r > 0 over C, and let α ∈ H2(X ;Q) be the class of an

ample line bundle.

Poincaré duality provides an isomorphism

deg : H2r (X ;Q)→ Q.

Consider the symmetric bilinear pairing 〈 , 〉α on H2(X ;Q) given by

the formula

〈η, ξ〉α := deg(αr−2ηξ).

Theorem (Hodge–Riemann bilinear relations in degree 2)

• The form 〈 , 〉α is positive definite on Qα, i.e. 〈α, α〉α > 0.

• Let Pα := (Qα)⊥. The form 〈 , 〉α is negative definite on Pα.
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The Hodge–Riemann and log concavity

Corollary

Suppose that α and β are two ample classes, and let

ai := deg(αr−iβi ).

The sequence a0, . . . , ar is log concave.

Proof. We’ll prove that a2
1 ≥ a0a2; the other inequalities follow

from this one by passing to a hyperplane section associated with β.

We can assume that α and β are linearly independent; otherwise

the statement is trivial.

Restrict the form to L = Q{α, β}. Since α ∈ L, it has at least one

positive eigenvalue. But it only had one positive eigenevalue on all

of H2(X ;Q), so its other eigenvalue must be negative.

16



Hodge–Riemann and log concavity

This means that

0 > det

(
〈α, α〉α 〈α, β〉α
〈β, α〉α 〈β, β〉α

)
= a0a2 − a2

1.

Corollary

Suppose that α and β are two nef classes, and let

ai := deg(αr−iβi ).

The sequence a0, . . . , ar is log concave.

Proof. Approximate by ample classes.
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Hodge–Riemann and log concavity

Now we want to interpret the coefficients of the reduced

characteristic polynomial as intersection numbers on some smooth

projective variety.

Given an arrangement A in V , construct the wonderful variety

XA as follows:

• Start with P(V ).

• Blow up P(F ) for each 1-dimensional flat F .

• Blow up the proper transform of P(F )

for each 2-dimensional flat F .

• Continue through all flats F ( V .

18



Hodge–Riemann and log concavity

Proposition (Adiprasito–Huh–Katz)

Let r := dimV − 1 = dimXA. There exist nef classes

α, β ∈ H2(X ;Q) such that

χ̄A(t) =
∑
i≥0

(−1)i deg(αr−iβi ) tr−i .

For arbitrary matroids, there is no analogue of XA, but there is a

combinatorially defined ring that stands in for H∗(XA;Q). The

hard work of AHK is showing that this ring satisfies the

Hodge–Riemann bilinear relations.
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The hard Lefschetz theorem

Let Y be a (singular) projective variety of dimension d . We have

the cohomology ring H∗(Y ) and the intersection cohomology

module IH∗(Y ). There is a H∗(Y )-module homomorphism

H∗(Y )→ IH∗(Y )

which is an isomorphism when Y is smooth, but is in general

neither injective nor surjective.

Let α ∈ H2(Y ) be an ample class.

Theorem (Hard Lefschetz)

For all k ≤ d , multiplication by αd−k gives an isomorphism

IHk(Y )
∼=−→ IH2d−k(Y ).
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The Schubert variety of A

Let A be an arrangement in V . We have

V ↪→
⊕
H∈A

V /H ∼=
⊕
H∈A

A1 ⊂
∏
H∈A

P1.

Definition

We define the Schubert variety YA := V̄ ⊂
∏
H∈A

P1.

For any flat F , let

UF =
{
p ∈ YA | pH 6=∞⇔ F ⊂ H

}
.

Example

We have UV = (∞, . . . ,∞) and U{0} = V .
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The Schubert variety of A

Proposition

• For each F , UF
∼= V /F (it’s a V -orbit with stabilizer F ).

• We have YA =
⊔
F

UF (i.e. every orbit is of this form).

The fact that YA admits a stratification by affine spaces has two

consequences.

Corollary

• We have H2k(YA) ∼= Q{codimension k flats}.
• The natural map from H∗(YA) to IH∗(YA) is an inclusion.
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Hard Lefschetz and the Top-Heavy conjecture

IH2k(YA) IH2(d−k)(YA)

H2k(YA) H2(d−k)(YA)

Q{codim k flats} Q{dim k flats}

∼=
αd−2k

αd−2k

∼= ∼=

This proves the Top-Heavy conjecture!

For arbitrary matroids, there is no analogue of YA, but one can

give a combinatorial definition of a ring and a module that stand in

for H∗(YA) and IH∗(YA). The hard work of BHMPW is showing

that this module satisfies the hard Lefschetz theorem.
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A spectral sequence for IH∗(YA)

Let ICYA be the intersection cohomology sheaf of YA; this is a

sheaf (actually an object in the derived category of sheaves) with

H∗(ICYA) = IH∗(YA).

Let ICYA,F be the stalk at a point in UF .

Let jF : UF → YA be the inclusion. There is a spectral sequence

converging to IH∗(YA) with

Ep,q
1 =

⊕
codimF=p

Hp+q
c (j∗F ICYA)

∼= . . .

∼= Hq−p(ICYA,F ).

24



A spectral sequence for IH∗(YA)

Lemma

For any flat F , H∗(ICYA,F ) ∼= H∗(ICYAF ,{0}), and this

cohomology vanishes in odd degree.

This implies that the spectral sequence degenerates at the E1

page. This in turn means that IH∗(YA) vanishes in odd degree,

and we have a vector space isomorphism

IH2k(YA) ∼=
⊕

p+q=2k

Ep,q
1
∼=
⊕
F

H2(k−codimF )
(
ICYAF ,{0}

)
or equivalently

IH∗(YA) ∼=
⊕
F

H∗
(
ICYAF ,{0}

)
[−2 codimF ].

25



KL positivity from the spectral sequence

Let

Z̃A(t) :=
∑
k≥0

dim IH2k(YA)tk and P̃A(t) :=
∑
k≥0

dimH2k(ICYA,{0})t
k .

The previous equation implies that

Z̃A(t) =
∑
F

P̃AF (t)tcodimF .

Hard Lefschetz implies that Z̃A(t) is palindromic, and general

nonsense implies that deg P̃A(t) < d
2 unless d = 0. Thus we must

have

Z̃A(t) = ZA(t) and P̃A(t) = PA(t).

In particular, PA(t) has non-negative coefficients.
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KL positivity for matroids

For arbitrary matroids, one can give a combinatorial definition of a

vector space that stands in for H∗(ICA,{0}). The hard work of

BHMPW (in addition to hard Lefschetz) is showing that this

vector space vanishes in degrees greater than or equal to d , i.e.

that deg P̃A(t) < d
2 .

Thanks!
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