Positivity theorems for hyperplane arrangements via intersection theory

Nicholas Proudfoot

University of Oregon

Arrangements and Flats

Let V be a finite dimensional vector space, and \mathcal{A} a finite set of hyperplanes in V with $\bigcap_{H \in \mathcal{A}} H=\{0\}$.

Definition

A flat $F \subset V$ is an intersection of some hyperplanes.

Example

- 1 flat of dimension 2 (V itself)
- 3 flats of dimension 1 (the lines)
- 1 flat of dimension 0 (the origin)

Arrangements and Flats

Example

Suppose $V=\mathbb{C}^{6}$ and \mathcal{A} consists of 8 generic hyperplanes.

- $\binom{8}{0}=1$ flat of dimension 6 (V itself)
- $\binom{8}{1}=8$ flats of dimension 5 (the hyperplanes)
- $\binom{8}{2}=28$ flats of dimension 4
- $\binom{8}{3}=56$ flats of dimension 3
- $\binom{8}{4}=70$ flats of dimension 2
- $\binom{8}{5}=56$ flats of dimension 1
- 1 flat of dimension 0 (the origin)

Arrangements and Flats

Example

Suppose $V=\mathbb{C}^{7} / \mathbb{C}_{\Delta}=\left\{\left(z_{1}, \ldots, z_{7}\right) \in \mathbb{C}^{7}\right\} / \mathbb{C} \cdot(1, \ldots, 1)$ and \mathcal{A} consists of the $\binom{7}{2}$ hyperplanes $H_{i j}:=\left\{z_{i}=z_{j}\right\}$.

$$
H_{14} \cap H_{46} \cap H_{37}=\left\{\left(z_{1}, \ldots, z_{7}\right) \mid z_{1}=z_{4}=z_{6}, z_{3}=z_{7}\right\} / \mathbb{C}_{\Delta}
$$

is a flat of dimension 3 .
flats \leftrightarrow partitions of the set $\{1, \ldots, 7\}$
$H_{14} \cap H_{46} \cap H_{37} \leftrightarrow \quad\{1,4,6\} \sqcup\{3,7\} \sqcup\{2\} \sqcup\{7\}$
$H_{14} \leftrightarrow\{1,4\} \sqcup\{2\} \sqcup\{3\} \sqcup\{5\} \sqcup\{6\} \sqcup\{7\}$
$V \leftrightarrow\{1\} \sqcup\{2\} \sqcup\{3\} \sqcup\{4\} \sqcup\{5\} \sqcup\{6\} \sqcup\{7\}$
$\{0\} \leftrightarrow\{1, \ldots, 7\}$
flats of dimension $k \leftrightarrow$ partitions into $k+1$ parts

The Top-Heavy conjecture

Theorem (Top-Heavy conjecture)

If $k \leq \frac{1}{2} \operatorname{dim} V$, then

\# of flats of codimension $k \leq \#$ of flats of dimension k.
Furthermore, the same statement holds for matroids (combinatorial abstractions of hyperplane arrangements for which we can still make sense of flats).

- Conjectured by Dowling and Wilson, 1974
- True for arrangements: Huh and Wang, 2017
- True for matroids: Braden-Huh-Matherne-P-Wang, 2020

The Top-Heavy conjecture

Example

8 generic hyperplanes in \mathbb{C}^{6}

- $\binom{8}{1}=8$ flats of codimension 1
$\binom{8}{5}=56$ flats of dimension 1
- $\binom{8}{2}=28$ flats of codimension 2
$\binom{8}{4}=70$ flats of dimension 2

Example

$V=\mathbb{C}^{7} / \mathbb{C}_{\Delta}, \mathcal{A}=\left\{H_{i j}\right\}$

- \# partitions into 6 parts $=\binom{7}{2}=21$ flats of codimension 1 \# partitions into 2 parts $=\frac{2^{7}-2}{2}=63$ flats of dimension 1
- $S(7,5)=140$ flats of codimension 2 $S(7,3)=301$ flats of dimension 2

Characteristic polynomial

The characteristic polynomial $\chi_{\mathcal{A}}(t)$ is a polynomial, depending only on the poset of flats, with the following property:

If V is a vector space over \mathbb{F}_{q}, then $\chi_{\mathcal{A}}(q)$ is equal to the number of points on the complement of the hyperplanes.

Example

- $\chi_{\mathcal{A}}(q)=q^{2}-3 q+2$
- Since q could be any prime power, we must have $\chi_{\mathcal{A}}(t)=t^{2}-3 t+2$.

More generally, $\chi_{\mathcal{A}}(t)=\sum_{F} \mu(V, F) t^{\operatorname{dim} F}$, where μ is the Möbius function for the poset of flats.

The characteristic polynomial

Example

$$
\begin{aligned}
& V=\mathbb{C}^{7} / \mathbb{C}_{\Delta}, \mathcal{A}=\left\{H_{i j}\right\} \\
& \text { - } \chi_{\mathcal{A}}(q)=(q-1)(q-2)(q-3)(q-4)(q-5)(q-6)
\end{aligned}
$$

- Since q could be any prime power, we must have

$$
\chi_{\mathcal{A}}(t)=(t-1)(t-2)(t-3)(t-4)(t-5)(t-6)
$$

If V is a vector space over \mathbb{F}_{q} and $\operatorname{dim} V>0$, then \mathbb{F}_{q}^{\times}acts freely on the set of the points in the complement of the hyperplanes. That means that $\chi_{\mathcal{A}}(q)$ is a multiple of $q-1$, and therefore $\chi_{\mathcal{A}}(t)$ is a multiple of $t-1$. The reduced characteristic polynomial is

$$
\bar{\chi}_{\mathcal{A}}(t):=\chi_{\mathcal{A}}(t) /(t-1) .
$$

The characteristic polynomial

Example

$$
\begin{aligned}
& V=\mathbb{C}^{7} / \mathbb{C}_{\Delta}, \mathcal{A}=\left\{H_{i j}\right\} \\
& \chi_{\mathcal{A}}(t)=(t-1)(t-2)(t-3)(t-4)(t-5)(t-6) \\
& \bar{\chi}_{\mathcal{A}}(t)=(t-2)(t-3)(t-4)(t-5)(t-6) \\
&=t^{5}-20 t^{4}+155 t^{3}-580 t^{2}+1044 t-720
\end{aligned}
$$

Easy Lemma: There exist positive integers a_{0}, a_{1}, \ldots such that

$$
\bar{\chi}_{\mathcal{A}}(t)=\sum_{i \geq 0}(-1)^{i} a_{i} t^{\operatorname{dim} V-1-i} .
$$

Example

$a_{0}=1, a_{1}=20, a_{2}=155, a_{3}=580, a_{4}=1044, a_{5}=720$.

Log concavity

Theorem

The sequence a_{0}, a_{1}, \ldots is \log concave. That is, for all $i>0$,

$$
a_{i}^{2} \geq a_{i-1} a_{i+1}
$$

Furthermore, the statement holds for matroids.

- Conjectured for graphs by Hoggar, 1974
- Conjectured for all arrangements, and in fact for all matroids, by Welsh, 1976
- True for arrangements over \mathbb{C} : Huh, 2012
- True for all arrangements: Huh and Katz, 2012
- True for matroids: Adiprasito-Huh-Katz, 2017

Contractions

Definition

Let F be a flat. The contraction of \mathcal{A} at F is the arrangement

$$
\mathcal{A}^{F}:=\{H \cap F \mid F \not \subset H \in \mathcal{A}\}
$$

in the vector space F.

Note the special case $\mathcal{A}^{V}=\mathcal{A}$.

The Kazhdan-Lusztig polynomial

The Kazhdan-Lusztig polynomial $P_{\mathcal{A}}(t)$ is uniquely determined by the following three properties:

- If $\operatorname{dim} V=0$, then $P_{\mathcal{A}}(t)=1$
- If $\operatorname{dim} V>0$, then $\operatorname{deg} P_{\mathcal{A}}(t)<\frac{1}{2} \operatorname{dim} V$
- The Z-polynomial

$$
Z_{\mathcal{A}}(t)=\sum_{F} P_{\mathcal{A}^{F}}(t) t^{\operatorname{codim} F}
$$

is palindromic. That is, $t^{\operatorname{dim} V} Z_{\mathcal{A}}\left(t^{-1}\right)=Z_{\mathcal{A}}(t)$.
Easy Lemma: For any $\mathcal{A}, P_{\mathcal{A}}(0)=1$. In particular, $P_{\mathcal{A}}(t)=1$ whenever $\operatorname{dim} V \leq 2$.

The Kazhdan-Lusztig polynomial

Example

Suppose that $\operatorname{dim} V=3$ and \mathcal{A} consists of 5 hyperplanes in general position.

- We have 1 flat V of codimension 0 , and $P_{\mathcal{A}^{v}}(t)=P_{\mathcal{A}}(t)$.
- We have 5 flats F of codimension 1 , and $P_{\mathcal{A}^{F}}(t)=1$.
- We have $\binom{5}{2}=10$ flats F of codimension 2 , and $P_{\mathcal{A}^{F}}(t)=1$.
- We have 1 flat $\{0\}$ of codimension 3 , and $P_{\mathcal{A}^{\{0\}}}(t)=1$.

$$
Z_{\mathcal{A}}(t)=P_{\mathcal{A}}(t)+5 t+10 t^{2}+t^{3}
$$

Since $\operatorname{deg} P_{\mathcal{A}}(t)<\frac{3}{2}$, we must have

$$
P_{\mathcal{A}}(t)=1+5 t .
$$

The Kazhdan-Lusztig polynomial

Example

Suppose that $\operatorname{dim} V=4$ and \mathcal{A} consists of 6 hyperplanes in general position.

- We have 1 flat V of codimension 0 , and $P_{\mathcal{A}^{v}}(t)=P_{\mathcal{A}}(t)$.
- We have 6 flats F of codimension 1, and $P_{\mathcal{A}^{F}}(t)=1+5 t$.
- We have $\binom{6}{2}=15$ flats F of codimension 2 , and $P_{\mathcal{A}^{F}}(t)=1$.
- We have $\binom{6}{3}=20$ flats F of codimension 3 , and $P_{\mathcal{A}^{F}}(t)=1$.
- We have 1 flat $\{0\}$ of codimension 3 , and $P_{\mathcal{A}^{\{0\}}}(t)=1$.

$$
\begin{aligned}
Z_{\mathcal{A}}(t) & =P_{\mathcal{A}}(t)+6(1+5 t) t+15 t^{2}+20 t^{3}+t^{4} \\
& =P_{\mathcal{A}}(t)+6 t+45 t^{2}+20 t^{3}+t^{4}
\end{aligned}
$$

Since $\operatorname{deg} P_{\mathcal{A}}(t)<\frac{4}{2}=2$, we must have $P_{\mathcal{A}}(t)=1+14 t$.

KL positivity

Theorem

The coefficients of $P_{\mathcal{A}}(t)$ are non-negative. Furthermore, the statement holds for matroids.

- Proved for hyperplane arrangements and conjectured for matroids: Elias-P-Wakefield, 2016
- True for matroids: Braden-Huh-Matherne-P-Wang, 2020

The Hodge-Riemann bilinear relations

Let X be a (nonempty, connected) smooth projective variety of dimension $r>0$ over \mathbb{C}, and let $\alpha \in H^{2}(X ; \mathbb{Q})$ be the class of an ample line bundle.

Poincaré duality provides an isomorphism

$$
\operatorname{deg}: H^{2 r}(X ; \mathbb{Q}) \rightarrow \mathbb{Q} .
$$

Consider the symmetric bilinear pairing \langle,\rangle_{α} on $H^{2}(X ; \mathbb{Q})$ given by the formula

$$
\langle\eta, \xi\rangle_{\alpha}:=\operatorname{deg}\left(\alpha^{r-2} \eta \xi\right)
$$

Theorem (Hodge-Riemann bilinear relations in degree 2)

- The form \langle,\rangle_{α} is positive definite on $\mathbb{Q} \alpha$, i.e. $\langle\alpha, \alpha\rangle_{\alpha}>0$.
- Let $P_{\alpha}:=(\mathbb{Q} \alpha)^{\perp}$. The form \langle,\rangle_{α} is negative definite on P_{α}.

The Hodge-Riemann and log concavity

Corollary

Suppose that α and β are two ample classes, and let

$$
a_{i}:=\operatorname{deg}\left(\alpha^{r-i} \beta^{i}\right) .
$$

The sequence a_{0}, \ldots, a_{r} is log concave.
Proof. We'll prove that $a_{1}^{2} \geq a_{0} a_{2}$; the other inequalities follow from this one by passing to a hyperplane section associated with β. We can assume that α and β are linearly independent; otherwise the statement is trivial.

Restrict the form to $L=\mathbb{Q}\{\alpha, \beta\}$. Since $\alpha \in L$, it has at least one positive eigenvalue. But it only had one positive eigenevalue on all of $H^{2}(X ; \mathbb{Q})$, so its other eigenvalue must be negative.

Hodge-Riemann and log concavity

This means that

$$
0>\operatorname{det}\left(\begin{array}{ll}
\langle\alpha, \alpha\rangle_{\alpha} & \langle\alpha, \beta\rangle_{\alpha} \\
\langle\beta, \alpha\rangle_{\alpha} & \langle\beta, \beta\rangle_{\alpha}
\end{array}\right)=a_{0} a_{2}-a_{1}^{2} .
$$

Corollary

Suppose that α and β are two nef classes, and let

$$
a_{i}:=\operatorname{deg}\left(\alpha^{r-i} \beta^{i}\right) .
$$

The sequence a_{0}, \ldots, a_{r} is log concave.

Proof. Approximate by ample classes.

Hodge-Riemann and log concavity

Now we want to interpret the coefficients of the reduced characteristic polynomial as intersection numbers on some smooth projective variety.

Given an arrangement \mathcal{A} in V, construct the wonderful variety $X_{\mathcal{A}}$ as follows:

- Start with $\mathbb{P}(V)$.
- Blow up $\mathbb{P}(F)$ for each 1-dimensional flat F.
- Blow up the proper transform of $\mathbb{P}(F)$ for each 2-dimensional flat F.
- Continue through all flats $F \subsetneq V$.

Hodge-Riemann and log concavity

Proposition (Adiprasito-Huh-Katz)

Let $r:=\operatorname{dim} V-1=\operatorname{dim} X_{\mathcal{A}}$. There exist nef classes
$\alpha, \beta \in H^{2}(X ; \mathbb{Q})$ such that

$$
\bar{\chi}_{\mathcal{A}}(t)=\sum_{i \geq 0}(-1)^{i} \operatorname{deg}\left(\alpha^{r-i} \beta^{i}\right) t^{r-i}
$$

For arbitrary matroids, there is no analogue of $X_{\mathcal{A}}$, but there is a combinatorially defined ring that stands in for $H^{*}\left(X_{\mathcal{A}} ; \mathbb{Q}\right)$. The hard work of AHK is showing that this ring satisfies the Hodge-Riemann bilinear relations.

The hard Lefschetz theorem

Let Y be a (singular) projective variety of dimension d. We have the cohomology ring $H^{*}(Y)$ and the intersection cohomology module $I H^{*}(Y)$. There is a $H^{*}(Y)$-module homomorphism

$$
H^{*}(Y) \rightarrow I H^{*}(Y)
$$

which is an isomorphism when Y is smooth, but is in general neither injective nor surjective.

Let $\alpha \in H^{2}(Y)$ be an ample class.

Theorem (Hard Lefschetz)

For all $k \leq d$, multiplication by α^{d-k} gives an isomorphism

$$
I H^{k}(Y) \xrightarrow{\cong} I H^{2 d-k}(Y) .
$$

The Schubert variety of \mathcal{A}

Let \mathcal{A} be an arrangement in V. We have

$$
V \hookrightarrow \bigoplus_{H \in \mathcal{A}} V / H \cong \bigoplus_{H \in \mathcal{A}} \mathbb{A}^{1} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}
$$

Definition

We define the Schubert variety $Y_{\mathcal{A}}:=\bar{V} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}$.

For any flat F, let

$$
U_{F}=\left\{p \in Y_{\mathcal{A}} \mid p_{H} \neq \infty \Leftrightarrow F \subset H\right\} .
$$

Example

We have $U_{V}=(\infty, \ldots, \infty)$ and $U_{\{0\}}=V$.

The Schubert variety of \mathcal{A}

Proposition

- For each $F, U_{F} \cong V / F$ (it's a V-orbit with stabilizer F).
- We have $Y_{\mathcal{A}}=\bigsqcup_{F} U_{F}$ (i.e. every orbit is of this form).

The fact that $Y_{\mathcal{A}}$ admits a stratification by affine spaces has two consequences.

Corollary

- We have $H^{2 k}\left(Y_{\mathcal{A}}\right) \cong \mathbb{Q}\{$ codimension k flats $\}$.
- The natural map from $H^{*}\left(Y_{\mathcal{A}}\right)$ to $I H^{*}\left(Y_{\mathcal{A}}\right)$ is an inclusion.

Hard Lefschetz and the Top-Heavy conjecture

$$
\begin{aligned}
& I H^{2 k}\left(Y_{\mathcal{A}}\right) \xrightarrow[\alpha^{d-2 k}]{\cong} I H^{2(d-k)}\left(Y_{\mathcal{A}}\right) \\
& \uparrow \uparrow \\
& H^{2 k}\left(Y_{\mathcal{A}}\right) \xrightarrow[\alpha^{d-2 k}]{ } H^{2(d-k)}\left(Y_{\mathcal{A}}\right) \\
& \cong \uparrow \quad \cong \\
& \mathbb{Q}\{\text { codim } k \text { flats }\} \longleftrightarrow \mathbb{Q}\{\operatorname{dim} k \text { flats }\}
\end{aligned}
$$

This proves the Top-Heavy conjecture!
For arbitrary matroids, there is no analogue of $Y_{\mathcal{A}}$, but one can give a combinatorial definition of a ring and a module that stand in for $H^{*}\left(Y_{\mathcal{A}}\right)$ and $I H^{*}\left(Y_{\mathcal{A}}\right)$. The hard work of BHMPW is showing that this module satisfies the hard Lefschetz theorem.

A spectral sequence for $1 H^{*}\left(Y_{\mathcal{A}}\right)$

Let $I C_{Y_{\mathcal{A}}}$ be the intersection cohomology sheaf of $Y_{\mathcal{A}}$; this is a sheaf (actually an object in the derived category of sheaves) with $H^{*}\left(I C_{Y_{\mathcal{A}}}\right)=I H^{*}\left(Y_{\mathcal{A}}\right)$.

Let $I C_{Y_{\mathcal{A}}, F}$ be the stalk at a point in U_{F}.
Let $j_{F}: U_{F} \rightarrow Y_{\mathcal{A}}$ be the inclusion. There is a spectral sequence converging to $I H^{*}\left(Y_{\mathcal{A}}\right)$ with

$$
\begin{aligned}
E_{1}^{p, q} & =\bigoplus_{\operatorname{codim} F=p} H_{c}^{p+q}\left(j_{F}^{*} / C_{Y_{\mathcal{A}}}\right) \\
& \cong \cdots \\
& \cong H^{q-p}\left(I C_{Y_{\mathcal{A}}, F}\right)
\end{aligned}
$$

A spectral sequence for $1 H^{*}\left(Y_{\mathcal{A}}\right)$

Lemma

For any flat $F, H^{*}\left(I C_{Y_{\mathcal{A}}, F}\right) \cong H^{*}\left(I C_{Y_{\mathcal{A}},\{0\}}\right)$, and this cohomology vanishes in odd degree.

This implies that the spectral sequence degenerates at the E_{1} page. This in turn means that $I H^{*}\left(Y_{\mathcal{A}}\right)$ vanishes in odd degree, and we have a vector space isomorphism

$$
I H^{2 k}\left(Y_{\mathcal{A}}\right) \cong \bigoplus_{p+q=2 k} E_{1}^{p, q} \cong \bigoplus_{F} H^{2(k-\operatorname{codim} F)}\left(I C_{Y_{\mathcal{A}},\{0\}}\right)
$$

or equivalently

$$
I H^{*}\left(Y_{\mathcal{A}}\right) \cong \bigoplus_{F} H^{*}\left(I C_{Y_{\mathcal{A}},\{0\}}\right)[-2 \operatorname{codim} F]
$$

KL positivity from the spectral sequence

Let $\tilde{Z}_{\mathcal{A}}(t):=\sum_{k \geq 0} \operatorname{dim} I H^{2 k}\left(Y_{\mathcal{A}}\right) t^{k}$ and $\tilde{P}_{\mathcal{A}}(t):=\sum_{k \geq 0} \operatorname{dim} H^{2 k}\left(I C_{Y_{\mathcal{A}},\{0\}}\right) t^{k}$.

The previous equation implies that

$$
\tilde{Z}_{\mathcal{A}}(t)=\sum_{F} \tilde{P}_{\mathcal{A}^{F}}(t) t^{\operatorname{codim} F}
$$

Hard Lefschetz implies that $\tilde{Z}_{\mathcal{A}}(t)$ is palindromic, and general nonsense implies that $\operatorname{deg} \tilde{P}_{\mathcal{A}}(t)<\frac{d}{2}$ unless $d=0$. Thus we must have

$$
\tilde{Z}_{\mathcal{A}}(t)=Z_{\mathcal{A}}(t) \text { and } \tilde{P}_{\mathcal{A}}(t)=P_{\mathcal{A}}(t)
$$

In particular, $P_{\mathcal{A}}(t)$ has non-negative coefficients.

KL positivity for matroids

For arbitrary matroids, one can give a combinatorial definition of a vector space that stands in for $H^{*}\left(I C_{\mathcal{A},\{0\}}\right)$. The hard work of BHMPW (in addition to hard Lefschetz) is showing that this vector space vanishes in degrees greater than or equal to d, i.e. that $\operatorname{deg} \tilde{P}_{\mathcal{A}}(t)<\frac{d}{2}$.

Thanks!

