The Wonderful Geometry of Matroids
Lecture 8: The characteristic polynomial

In this lecture we defined the characteristic polynomial

$$\chi_M(t) := \sum_{S \subset E} (-1)^{|S|} t^{\text{rk} S}$$

and the reduced characteristic polynomial $\bar{\chi}_M(t) := \chi_M(t)/(t - 1)$. We proved that

$$\chi_{M_1 \oplus M_2}(t) = \chi_{M_1}(t) \chi_{M_2}(t) \quad \text{and} \quad \bar{\chi}_{\text{tr}}(t) = \frac{\bar{\chi}_M(t) - \bar{\chi}_M(0)}{t}.$$

If M has a loop, we have $\chi_M(t) = 0$. If e is a coloop of M, we have $\chi_M(t) = (t - 1)\chi_{M \setminus e}(t)$. If e is neither a loop nor a coloop, we showed that

$$\chi_M(t) = \chi_{M \setminus e}(t) - \chi_{M/e}(t).$$

1. Recall that two elements e and f of the ground set of a matroid M are said to be parallel if $\{e\}$ and $\{f\}$ are independent but $\{e, f\}$ is dependent. If this is the case, show that $\chi_M(t) = \chi_{M \setminus e}(t)$. Thus we can always reduce to a simple matroid when computing the characteristic polynomial.

2. Let G be the graph obtained by deleting an edge from K_4. Compute $\chi_{M(G)}(t)$.

3. Prove that, if M has no loops, the coefficients of $\chi_M(t)$ alternate in sign. Equivalently, the coefficients of $(-1)^{\text{rk} M} \chi_{M(G)}(-t)$ are all positive. Do the same for $\bar{\chi}_M(t)$ (with the opposite sign).

Hint: Induct on the size of the ground set using the deletion/contraction formula.