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Abstract. Let G be an algebraic torus acting on a smooth variety V . We study the

relationship between the various GIT quotients of V and the symplectic quotient of

the cotangent bundle of V .

Let G be a reductive algebraic group acting on a smooth variety V . The cotangent bundle

T ∗V admits a canonical algebraic symplectic structure, and the induced action of G on T ∗V

is hamiltonian, that is, it admits a natural moment map µ : T ∗V → g∗ (see Equation (1)

for an explicit formula). Over the past ten years, a guiding principle has emerged that says

that if X is an interesting variety which may be naturally presented as a GIT (geometric

invariant theory) quotient of V by G, then the symplectic quotient µ−1(λ)//G of T ∗V by G

is also interesting. This mantra has been particularly fruitful on the level of cohomology,

as we describe below. Over the complex numbers, a GIT quotient may often be interpreted

as a Kähler quotient by the compact form of G, and an algebraic quotient as a hyperkähler

quotient. For this reason, the symplectic quotient may be loosely thought of as a quaternionic

or hyperkähler analogue of X. Let us review a few examples of this construction.

Hypertoric varieties. These examples comprise the case where G is abelian and V is a

linear representation of G. The geometry of toric varieties is deeply related to the combi-

natorics of polytopes; for example, Stanley [St] used the hard Lefschetz theorem for toric

varieties to prove certain inequalities for the h-numbers of a simplicial polytope. The hy-

perkähler analogues of toric varieties, known as hypertoric varieties, interact in a similar

way with the combinatorics of rational hyperplane arrangements. Introduced by Bielawski

and Dancer [BD], hypertoric varieties were used by Hausel and Sturmfels [HS] to give a

geometric interpretation of virtually every known property of the h-numbers of a rationally

representable matroid. Webster and the author [PW] extended this line of research by

studying the intersection cohomology groups of singular hypertoric varieties.

Quiver varieties. A quiver is a directed graph, and a representation of a quiver is a

vector space for each node along with a linear map for each edge. For any quiver, Nakajima

[N1, N2, N3] defined a quiver variety to be the quaternionic analogue of the moduli space of

framed representations. Examples include the Hilbert scheme of n points in the plane and

the moduli space of instantons on an ALE space. He has shown that the cohomology and

K-theory groups of quiver varieties carry actions of Kac-Moody algebras and their associated

quantum algebras, and has exploited this fact to define canonical bases for highest weight

representations. Crawley-Boevey and Van den Bergh [CBVdB] and Hausel [Ha] have used

Betti numbers of quiver varieties to prove a long standing conjecture of Kac.

Hyperpolygon spaces. Given an ordered n-tuple of positive real numbers, the associated

polygon space is the moduli space of n-sided polygons in R3 with edges of the prescribed

1Partially supported by a National Science Foundation Postdoctoral Research Fellowship.
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lengths, up to rotation. Such a space may be interpreted as a moduli space of stable configu-

rations of points on a projective line, or, via the Gelfand-MacPherson correspondence [HK],

as a GIT quotient of the grassmannian G(2, n) by the natural action of the torus T n−1.

The quaternionic analogues of these spaces were introduced by Konno [K2], and dubbed

hyperpolygon spaces in [HP]. In [HP], Harada and the author show that certain projective

subvarieties of a hyperpolygon space have interpretations in terms of spacial polygons, which

suggests the general problem of searching for moduli-theoretic interpretations of hyperkähler

analogues of moduli spaces. While hyperpolygon spaces are in fact special cases of quiver

varieties, they will be of special interest to us in this paper because they may be constructed

using an abelian group.

To define a GIT quotient of a variety V by a group G one needs more data than just an

action; to be precise, we need a G-equivariant ample line bundle on V . If we define two such

line bundles to be equivalent whenever they lead to the same GIT quotient, there will in

general be finitely many distinct equivalent classes of equivariant ample line bundles. In the

toric case, these classes correspond to triangulations of an oriented matroid [Sa]. In the case

of polygon spaces, the choice of line bundle corresponds to the choice of edge lengths. The

various GIT quotients of V by G will always be birational, but will generally be topologically

distinct.

The symplectic quotient of T ∗V by G requires two choices, namely an equivariant line

bundle as well as an element λ ∈ (g∗)G at which to reduce. If G is abelian and λ is chosen

generically, however, then G will act locally freely on µ−1(λ), and the symplectic quotient

Mλ := µ−1(λ)//G = µ−1(λ)/G

will not depend on the choice of line bundle. In fact, the topological type of the symplectic

quotient over the complex numbers does not depend on the choice of generic λ, either!

Intuitively, this can be seen from the fact that the set of generic parameters λ is connected,

but the noncompactness of the quotients makes this argument technically difficult. In this

paper we take a different approach, proving the following theorem (Corollary 1.4).

Theorem. If G is abelian and λ ∈ g∗ is a regular value for µ, then Mλ is isomorphic to the

total space of an affine bundle over the nonseparated prevariety obtained by gluing together

the various smooth GIT quotients of V along the open sets on which they agree.

This surprising result, taken over the complex numbers, implies that the topology of any one

symplectic quotient of T ∗V is intimately related to the topology of all of the different GIT

quotients of V . It is for this reason that we use the phrase ‘all the GIT quotients at once’.

We note that the theorem in fact holds over arbitrary fields, and was used in [PW] to count

points on hypertoric varieties over finite fields.

Section 1 is devoted to giving a careful definition of the various objects referred to in the

above theorem. The proof itself is remarkably simple, following Crawley-Boevey’s work on

quiver varieties in [CB]. In Section 2.1 we consider the natural map from the cohomology

ring of Mλ to the direct sum of the cohomology rings of the GIT quotients, whose existence

follows immediately from the theorem. Konno [K2, 7.6] proves that this map is an injection
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in the case of hyperpolygon spaces2, and we prove the analogous theorem for hypertoric

varieties (Theorem 2.8). We conjecture that such a result will hold in greater generality

(Conjecture 2.1). A consequence of this conjecture would be that the cohomology ring of

Mλ is level, meaning that it satisfies an analogue of Poincaré duality for noncompact spaces

(see Remark 2.4). In the case of hypertoric varieties, this is a well known and nontrivial fact

[HS, §7], but it is by no means the case for every smooth manifold.

If G is allowed to be nonabelian, the above theorem will fail. To fix it we would have

to replace the base by a stack which contains the union of the GIT quotients as an open

subscheme, and interpret the affine bundle in a suitable stacky context (see Remark 1.5).

One can formulate an analogue of Conjecture 2.1 in the nonabelian case, but we do not feel

that enough evidence exists for such a conjecture at the present time.

1 An affine bundle

Let V be a smooth algebraic variety over an arbitrary field k. We will assume that V is

projective over affine, which means that the natural map V → SpecOV is projective. Let

G be an algebraic torus over k acting effectively on V , and let L be a G-equivariant ample

line bundle on V . A point p ∈ V is called L-semistable if there exists a G-invariant section

of a positive power of L that does not vanish at p. The set of L-semistable points of V will

be denoted V ss(L). An L-semistable point p is called L-stable if G acts locally freely at p

and its orbit is closed in V ss(L). The set of L-stable points of V will be denoted V st(L). If

every L-semistable point is L-stable, then we will call L nice.

We will consider two equivariant ample line bundles to be equivalent if they induce the

same stable and semistable sets. Let {Li | i ∈ I} be a complete set of representatives of

equivalence classes of nice line bundles with nonempty stable sets. Let V f̀ denote the set of

points of V at which G acts locally freely. By definition, V st(L) is contained in V f̀ for any

L. The following lemma is a converse to this fact.

Lemma 1.1. Suppose that there exists at least one ample equivariant line bundle on V . If

G acts locally freely at p, then p is L-stable for some nice L, thus we have V f̀ =
⋃

i∈I

V st(Li).

Proof: For any point p ∈ V , and any equivariant line bundle L, choosing an identification of

Lp with k gives us a natural element ev(p) ∈ Γ(L)∨, the dual of the vector space of sections

of L. The equivariant structure on L gives a decomposition

Γ(L)∨ =
⊕

χ

Γ(L)∨χ,

where χ ranges over the lattice Char(G) = Hom(G, Gm). Let ev(p)χ be the component of

ev(p) corresponding to the character χ. The state polyhedron ∆p(L) ⊆ Char(G)Q is defined

to be the convex hull inside of Char(G)Q of the set {χ | ev(p)χ 6= 0}. Dolgachev and Hu [DH,

2Konno does not phrase his theorem in these terms, as he does not have Corollary 1.4 at his disposal.
But it is easy to translate his result into the one that we attribute to him.
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1.1.5] show that p is L-semistable if and only if the trivial character is contained in ∆p(L),

and L-stable if and only if it is contained in the interior of ∆p(L). The affine span of ∆p(L)

is equal to a shift of the set of rational characters that vanish on the stabilizer of p, where

the shift is given by the character with which the stabilizer of p acts on Lp. In particular,

the interior of ∆p(L) is nonempty if and only if G acts locally freely at p.

Let Lχ be the trivial bundle on V with equivariant structure given by the character χ.

Then

∆p(L
⊗m ⊗ Lχ) = m · ∆p(L) − χ,

thus by taking a high enough tensor power of L and twisting it by an appropriate character,

we may find a new equivariant ample line bundle whose state polytope is an arbitrary dilation

and translation of that of L. In particular, if p ∈ V f̀ , we may find an L with respect to

which p is stable. It remains to show that this line bundle can be chosen to be nice. For all

q /∈ V f̀ , ∆q(L) is contained in a proper affine subspace of Char(G)Q. Let χ be a character

which is nontrivial on the stabilizer of q for every q ∈ V r V f̀ . By again replacing L with a

large tensor power and twisting by χ, we may ensure that none of these subspaces contains

the origin. If χ is chosen to be small with respect to the size of the tensor power, then this

operation will not break the L-stability of p.

For any ample equivariant line bundle L, the GIT (geometric invariant theory) quotient

V//LG := V ss(L)/G

is defined to be the categorical quotient of V ss(L) by G, in which two points are identified

if the closures of their G-orbits intersect. The fact that V is projective over SpecOV implies

that V//LG is projective over SpecOG
V . If L is nice, then V//LG is simply the geometric

quotient of V st(L) by G. For all i ∈ I, let Xi = V//Li
G be the corresponding GIT quotient.

Example 1.2. Let V = G(2, n) be the grassmannian of 2-planes in Cn, and let G =

T n/C×
diag be the (n − 1)-torus acting on V . The GIT quotients {Xi} can also be realized as

GIT quotients of an n-fold product of projective lines by the diagonal action of PSL(2, C).

These quotients have been studied extensively, for example in [MFK, Th]. In the symplectic

geometry literature these spaces are known as polygon spaces, as they parameterize n-sided

polygons in R3 with fixed edge lengths, up to rotation [HK].

The action of G on V induces a symplectic action on the cotangent bundle T ∗V , with

moment map µ : T ∗V → g∗ given by the equation

µ(p, α)(x) = α(x̂p), (1)

where α is a cotangent vector to V at p, and x̂p is the tangent vector at p induced by the

infinitesimal action of x ∈ g. For λ ∈ g∗, let φλ : µ−1(λ) → V be the canonical projection to

V . Given an equivariant ample line bundle L on V , we define the space

Mλ,L := µ−1(λ)//φ∗
λ
LG
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to be the GIT quotient of µ−1(λ) by G. If λ is a regular value of µ, then G acts locally freely

on µ−1(λ), and the quotient is geometric; in particular, it is independent of L. Thus when λ

is a regular value we will drop L from the notation.

Proposition 1.3. If λ ∈ g∗ is a regular value of µ, then Im φλ = V f̀ , and the fibers of φλ

are affine spaces of dimension dim V − dim G.

Proof: For any point p ∈ V , we have an exact sequence of k-vector spaces3

0 → {α | µ(p, α) = 0} → T ∗
p V

µ(p,−)
−→ g∗ → stab(p)∗ → 0, (2)

where stab(p)∗ = g∗/stab(p)⊥ is the Lie coalgebra of the stabilizer of p in G. By exactness

of (2) at g∗, p is in the image of φλ if and only if λ · stab(p) = 0. If p ∈ V f̀ , then stab(p) = 0,

thus p ∈ Im φλ. Conversely, suppose that p ∈ Im φλ. Since λ is a regular value of µ, G acts

locally freely on µ−1(λ), and therefore Stab(p) ⊆ G acts locally freely on φ−1
λ (p). But φ−1

λ (p)

is a torsor for the vector space {α | µ(p, α) = 0}, and any torus action on an affine space

has a fixed point. Hence Stab(p) must be finite, and therefore p ∈ V f̀ . Finally, we see that

if p ∈ V f̀ = Im φλ, then dim φ−1
λ (p) = dim{α | µ(p, α) = 0} = dim T ∗

p V − dim g∗.

Consider the nonseparated prevariety

X f̀ = V f̀/G =
⋃

i∈I

V st(Li)/G =
⋃

i∈I

Xi,

where two GIT quotients Xi and Xj are glued together along the open set of points which

are simultaneously stable for both Li and Lj . Proposition 1.3 has the following immediate

corollary.

Corollary 1.4. For any regular value λ of µ, Mλ = µ−1(λ)/G is isomorphic to the total

space of an affine bundle over X f̀ , modeled on the cotangent bundle.

Remark 1.5. The space Mλ is sometimes known as the twisted cotangent bundle to the stack

V/G. In this language, Proposition 1.3 says that the twisted cotangent bundle has support

X f̀ ⊆ V/G, and that over its support it has constant rank. This formulation generalizes

to the nonabelian case if we replace X f̀ by the locus of points in V/G whose infinitesimal

stabilizer is perpendicular to λ, and interpret rank to be the difference between the dimension

of the fiber and the dimension of the stabilizer group at a point. If λ is generic, the stabilizer

Lie algebra is perpendicular to λ if and only if it is nilpotent.

2 A cohomological conjecture

The purpose of this section will be to consider the cohomological implications of Corollary

1.4, taken over the complex numbers, focusing on the case of toric and hypertoric varieties.

3The analogous exact sequence in the context of representations of quivers first appeared in [CB], and
was used to count points on quiver varieties over finite fields in [CBVdB].
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Specifically, there is a natural map on cohomology

Ψ : H∗(Mλ; R) ∼= H∗(X f̀ ; R) →
⊕

i∈I

H∗(Xi; R) (3)

given by the inclusions of each Xi into X f̀ .

Conjecture 2.1. If OG
V
∼= C, then Ψ is injective.

Remark 2.2. The hypothesis OG
V

∼= C says precisely that the GIT quotients {Xi} are

projective, and without this assumption Conjecture 2.1 fails. Specifically, let G = C× act on

V = C2 with eigenvalues ±1. There are two GIT quotients, namely X1 =
(

V rC×{0}
)

/G ∼=
C and X2 =

(

V r {0} × C
)

/G ∼= C, neither of which has any nontrivial cohomology. On

the other hand, X f̀ = V r {0}/G is an affine line with a double point, which is weakly

homotopy equivalent to the 2-sphere. So Ψ fails to be injective in degree 2.

Theorem 2.3. Conjecture 2.1 holds for the polygon spaces of Example 1.2.

Proof: Konno studies a map from H∗(M0,L; R) to
⊕

H∗(Xi; R) for generic L, which he

shows is injective [K2, 7.6]. He also observes that M0,L is diffeomorphic to Mλ, and while

this diffeomorphism is not canonical, the induced isomorphism of cohomology rings is. It is

then not hard to see that the map studied by Konno agrees with our map Ψ.

Remark 2.4. If Conjecture 2.1 were true, it would imply that H∗(Mλ; R) is level, which

means that every nonzero class divides a nonzero class of top degree. (One may think of

this property as a generalization of Poincaré duality to the situation where the top degree

cohomology need not be one dimensional.) Indeed, given a nonzero class α ∈ H∗(Mλ; R),

Conjecture 2.1 would tell us that α restricts to a nonzero class αi ∈ H∗(Xi; R) for some

i. Then, by Poincaré duality for Xi, there exists a class βi ∈ H∗(Xi; R) such that αi · βi

is a nonzero class on Xi of top degree. Now it suffices to show that βi is the restriction

of a class in H∗(Mλ; R) ∼= H∗(X f̀ ; R). But this follows from Kirwan surjectivity [Ki, 5.4],

which tells us that the map H∗
G(V ; R) → H∗(Xi; R) is surjective. This map factors through

H∗
G(V f̀ ; R) ∼= H∗(X f̀ ; R), which implies that the map from H∗(X f̀ ; R) to H∗(Xi; R) is

surjective as well.

We note that Conjecture 2.1 is in fact equivalent to the statement that H∗(Mλ; R) is

level and the fundamental cycles of the GIT quotients {Xi} generate the top homology of

X f̀ . This is essentially the strategy used by Konno to prove Theorem 2.3.

The rest of Section 2 will be devoted to understanding and proving Conjecture 2.1 in

the toric case (Theorem 2.8). Let V = Cn, T n the coordinate torus acting on V , and G is

a codimension d subtorus of T n. Let χ = (χ1, . . . , χn) be an n-tuple of integers, which we

interpret as a multiplicative character T n → C∗ by the equation

χ(t) = tχ1

1 . . . tχn

n .
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Let Lχ be the G-equivariant line bundle on V obtained from twisting the trivial bundle by

the restriction of χ to G. The GIT quotients V//Lχ
G are called toric varieties4, and the

symplectic quotients Mλ,Lχ are called hypertoric varieties. Both are intricately related to

various combinatorial data associated to the subtorus G ⊆ T n and the character χ, as we

describe below.

Let T d = T n/G with Lie algebra td = tn/g. This algebra is equipped with an integer

lattice (the kernel of the exponential map), and therefore with a canonical real form tdR ⊆ td.

Let a1, . . . , an ∈ tdR be the projections of the standard basis vectors in tn. For all i ∈

{1, . . . , n}, we define half spaces

F χ
i := {x ∈ (tdR)∗ | x · ai + χi ≥ 0} and Gχ

i := {x ∈ (tdR)∗ | x · ai + χi ≤ 0}. (4)

The geometry of the toric variety V//Lχ
G is completely controlled by the polyhedron

∆χ :=

n
⋂

i=1

F χ
i (5)

(see [Pr] and references therein). The line bundle Lχ is nice if and only if ∆χ is a simple

polyhedron of dimension d, which means that exactly d facets meet at each vertex. In this

case, we have the following well-known theorem (see for example [HS, 2.11]).

Theorem 2.5. If Lχ is nice, then the T d-equivariant cohomology ring of V//Lχ
G is isomorphic

to the Stanley-Reisner ring of the normal fan to ∆χ.

In particular, this implies that the Betti numbers of toric varieties are given by combi-

natorial invariants of polytopes [St]. Theorem 2.5 has the following analogue for hypertoric

varieties, which appeared in this form in [HS], and in a different but equivalent form in [K1].

Theorem 2.6. If λ is generic, then the T d-equivariant cohomology ring of Mλ is isomorphic

to the Stanley-Reisner ring of the matroid associated to the vector collection {a1, . . . , an}.

A consequence of this fact is that the Betti numbers of hypertoric varieties are combina-

torial invariants of matroids [HS, 6.6]. It is also possible to obtain this result by counting

points on Mλ over finite fields, as in [PW] or [Ha].

Remark 2.7. The set of equivalence classes of nice line bundles on V corresponds to the

set of possible combinatorial types of ∆χ, which in turn is indexed by triangulations of the

oriented matroid determined by the vectors {a1, . . . , an} [Sa].

Theorem 2.8. If OG
V
∼= C, then the map Ψ of Equation (3) is injective.

Remark 2.9. Using Theorems 2.5 and 2.6, it is relatively easy to prove injectivity of the

natural lift of Ψ to a map in T d-equivariant cohomology. Theorem 2.8, however, does not

follow formally from this fact. For our proof it is necessary to use different descriptions of

the cohomology rings of toric and hypertoric varieties (see Theorems 2.11 and 2.12).

4An introduction to toric varieties from the GIT perspective can be found in [Pr].
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Remark 2.10. Since we know that the cohomology ring of a hypertoric variety is level [HS,

§7], Remark 2.4 tells us that Theorem 2.8 is equivalent to the statement that the fundamental

cycles of the projective toric varieties {Xi} generate H2d(X f̀). This is a little bit surprising,

as X f̀ will often contain proper but nonprojective toric varieties as open subsets. Theorem

2.8 asserts that the fundamental cycle of any such subvariety can be expressed as a linear

combination of the fundamental cycles of the {Xi}. Our proof, though not in this language,

will roughly follow this line of attack.

Proof of 2.8: We begin by noting that the definitions given in Equations (4) and (5) make

sense for any vector χ = (χ1, . . . , χn) ∈ Rn ∼= (tnR)∗, regardless of whether the coordinates of

χ are integers. For any subset A ⊆ {1, . . . , n}, let

∆χ
A :=

⋂

i∈Ac

F χ
i ∩

⋂

j∈A

Gχ
j ,

and note that ∆χ

∅ = ∆χ. In general, one should imagine ∆χ
A as the polytope obtained from

∆χ by “flipping” it over the hyperplane F χ
i ∩ Gχ

i for each i ∈ A. We will call χ simple if

for every A ⊆ {1, . . . , n}, ∆χ
A is either empty or simple of dimension d. In particular, if χ is

an integer vector and χ is simple, then Lχ is nice. If ∆χ
A is nonempty, then it is bounded if

and only if the vectors {ε1(A)a1, . . . , εn(A)an} span tdR over the non-negative real numbers,

where εi(A) = (−1)|A∩{i}|. We call such an A admissible. Note that the assumption OG
V = C

is equivalent to the assumption that the empty set is admissible.

The volume function Vol ∆χ
A is locally polynomial in χ. More precisely, for every simple

χ ∈ (tnR)∗ and every admissible A ⊆ {1, . . . , n}, there exists a polynomial P χ
A ∈ Symd tnR such

that for every simple η ∈ (tnR)∗ sufficiently close to χ, we have

Vol∆η
A = P χ

A (η).

We will refer to P χ
A as the volume polynomial of ∆χ

A, and write P χ = P χ

∅ . The cohomology

rings of toric and hypertoric varieties may be described in terms of these volume polynomials

as follows. Let {x1, . . . , xn} be the coordinate basis for (tnR)∗, and {∂1, . . . , ∂n} the dual basis

for tnR. There is a natural action of Sym tnR on Sym(tnR)∗ given by differentiation of polynomials,

and this restricts to an action of the subring Sym gR.

Theorem 2.11. [GS, KP] If χ ∈ (tnR)∗ is simple with integer coordinates, then

H∗(V//Lχ
G; R) ∼= Sym gR/Ann(P χ),

where Ann(P χ) =
{

∂ ∈ Sym gR | ∂ · P χ = 0
}

.

Theorem 2.12. [HS, 7.1] If χ ∈ (tnR)∗ is simple with integer coordinates, then for any λ ∈ td,

H∗(Mλ,Lχ ; R) ∼= Sym gR/Ann{P χ
A | A admissible}.

If we fix λ to be a regular value of µ, then we have already observed that the left-hand

side of the isomorphism of Theorem 2.12 does not depend on χ. From this it follows that
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the right-hand side does not depend on χ either; in other words, the linear span

U = R
{

P χ
A | A admissible

}

is independent of χ. Since the empty set is admissible, P χ is contained in U for all simple

integral χ, and this inclusion induces the canonical map from H∗(Mλ; R) to H∗(V//Lχ
G; R).

The kernel of Φ is therefore equal to the image in H∗(Mλ) of the set of polynomials in Sym tdR
that annihilate P χ for every simple integral χ. To prove Theorem 2.8, we need to show that

every such polynomial annihilates U ; in other words, we must show that every polynomial

of the form P χ
A for some simple χ and admissible A can be expressed as a linear combination

of polynomials of the form P χ, where χ is allowed to vary.

To this end, let F be the infinite dimensional vector space consisting of all real-valued

functions on (tdR)∗ modulo those which are zero on a dense open set, and let F bd be the

subspace spanned by functions with bounded support. For all subsets A ⊆ {1, . . . , n}, let

WA = Q
{

1∆χ
A
| χ simple and integral

}

be the subspace of F spanned by the characteristic functions of polyhedra ∆χ
A for simple

and integral χ, and let

W bd
A = WA ∩ F bd.

Note that W bd
A = WA if and only if A is admissible.

Lemma 2.13. For all A, A′ ⊆ {1, . . . , n}, W bd
A = W bd

A′ .

Proof: We may immediately reduce to the case where A′ = A∪{k} for some k. Fix a simple

χ ∈ (tnR)∗. Let χ̃ ∈ (tn)∗ be another simple element obtained from χ by putting χ̃i = χi for

all i 6= k, and χ̃k = N for some integer N � 0. Then ∆χ
A ⊆ ∆χ̃

A, and

∆χ̃
A r ∆χ

A =
⋂

i∈(A′)c

F χ
i ∩

⋂

j∈A

Gχ
j ∩

(

F χ̃
k r F χ

k

)

= ∆χ
A′ ∩ F χ̃

k r F χ
k ∩ Gχ

k .

Since the complement of the hyperplane F χ
k ∩Gχ

k is dense and open in (tdR)∗, this computation

yields the equality

1∆χ̃
A
− 1∆χ

A
= 1∆χ

A′
· 1

F
χ̃
k

in F . Suppose that f ∈ F bd can be written as a linear combination of functions of the form

1∆χ

A′
. Choosing N large enough that the support of f is contained in the half space F χ̃

k , it

follows that f can be written as a linear combination of functions of the form 1∆χ
A
, hence

W bd
A′ ⊆ W bd

A . The reverse inclusion is obtained by an identical argument.
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By Lemma 2.13, we may write

1∆χ
A

=

m
∑

j=1

αj1∆ηj (6)

for any simple χ and admissible A, where αj ∈ Q and ηj is a simple integral element of (tn)∗

for all j ≤ m. Taking volumes of both sides of the equation, we have

P χ
A (χ) =

m
∑

j=1

αjP
ηj(

ηj
)

. (7)

Furthermore, we can assume (by the proof of Lemma 2.13) that for all j ≤ m and all i ≤ n,

the ith coordinate ηj
i of ηj is either equal to χi, or to some large number N � 0. The

Equation (7) still holds if we wiggle these large numbers a little bit, hence the polynomial

on the right hand side must be independent of the variable ηj
i whenever ηj

i 6= χi. Thus we

may substitute χ for each ηj, and we obtain the equation

P χ
A (χ) =

m
∑

j=1

αjP
ηj

(χ).

This equation clearly holds in a neighborhood of χ, hence we obtain an equation of polyno-

mials

P χ
A =

m
∑

j=1

αjP
ηj

.

This completes the proof of Theorem 2.8.

Example 2.14. Let us consider an example in which n = 4 and d = 2. The picture on the

left-hand side of Figure 1 shows a polytope ∆χ where χ = (0, 1, 1, 0), and the picture on the

right shows ∆χ

{1,4}.

2(1)

3(1)

4(0)

1(0)

2(1)

3(1)

4(0)

1(0)

�� � �� �

Figure 1: The number outside of the parentheses denotes the index i of the half space, and
the number inside denotes the value of χi. This value is equal (up to sign) to the distance
from the boundary of the ith half space to the origin of (tdR)∗, which is marked with a black
dot.

The key to the proof of Theorem 2.8 is our ability to express the characteristic function

of ∆χ

{1,4} in terms of the characteristic functions of ∆ηj

for some finite set {η1, . . . , ηm} of

10



simple integral vectors, as we did in Equation 6. Since {1, 4} has two elements, the procedure

described in Lemma 2.13 must be iterated twice, and the result will have a total of 22 = 4

terms, as illustrated in Figure 2. The first iteration exhibits 1∆{1,4}
as an element of W bd

{4}

by expressing it as the difference of the characteristic functions of two (unbounded) regions.

With the second iteration, we attempt to express each of these two characteristic functions

as elements of W bd
{1,4} = W{1,4}. This attempt must fail, because each of the two functions

that we try to express has unbounded support. But the failures cancel out, and we succeed

in expressing the difference as an element of W{1,4}.

2(1)

3(1)

4(0)

1(0)

=

=

1(0)

2(1)

3(1)

4(0)

1(0)

2(1)2(1)

3(1)

4(0)

... ...

2(1)2(1)

3(1)

4(0)

1(N)

4(N’)

2(1)

3(1)

4(N’)

1(0)

2(1)

3(1)

1(N)

2(1)2(1)

3(1)

4(0)

1(N)

+

−

−

−

� �� �

� ��

� �� ���

� �	 	
�

�

Figure 2: An equation of characteristic functions. The procedure of Lemma 2.13 have
produced two undetermined large numbers, which we call N and N ′.

Let’s see what happens when we take volume polynomials in the equation of Figure 2.

The two polytopes on the top line have different volumes, but the same volume polynomial,
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hence these two terms cancel. We are left with the equation

P
(0,1,1,0)
{1,4} = P (0,1,1,0) − P (N,1,1,0),

which translates into

1

2
(−χ1 + χ2 − χ4)

2 =
1

2
(χ1 + χ3 + χ4)

2 − (χ2 + χ3)

(

χ1 + χ4 +
1

2
χ3 −

1

2
χ2

)

.
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