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Hypertoric Poisson homology in degree zero

Nicholas Proudfoot

Abstract

Etingof and Schedler formulated a conjecture about the degree zero Poisson homology
of an affine cone that admits a projective symplectic resolution. We strengthen this
conjecture in general and prove the strengthened version for hypertoric varieties. We
also formulate an analogous conjecture for the degree zero Hochschild homology of a
quantization of such a variety.

1. Introduction

Given a Poisson variety N over C, the degree zero Poisson homology group HP0(N) is defined
to be the quotient of C[N] by the linear span of all brackets. If N is affine and symplectic, then
HP0(N) is isomorphic to HdimN(N) via the map that takes the class of a function to the de Rham
class of that function times the appropriate power of the symplectic form.

The next interesting case is when N is an affine cone that admits a projective symplectic
resolution M. In this case, we may deform the map M→ N to a map M → N , where M and N
are varieties over the base H2(M) with zero fibers M0 = M and N0 = N [Nam11, Nam10]. Over
a generic element λ ∈ H2(M), the map from Mλ to Nλ is an isomorphism of affine varieties.
Then HP0(N ) is a module over C[H2(M)] whose specialization at λ is isomorphic to HP0(Nλ).
When λ is generic, this is isomorphic to Hdim Nλ(Nλ) ∼= Hdim Mλ(Mλ) ∼= HdimM(M). Etingof
and Schedler conjecture that the dimension of the zero fiber HP0(N) is also equal to that of
HdimM(M); equivalently, they conjecture that HP0(N ) is free over C[H2(M)] [ES11, 1.3.1(a)].
They prove this conjecture for the Springer resolution and for Hilbert schemes of points on ALE
spaces.

The goal of this paper is to both strengthen and prove this conjecture for hypertoric varieties,
and to pose an analogous strengthening for other projective symplectic resolutions of affine
cones. A hypertoric variety is an affine cone N that admits a projective symplectic resolution M,
equivariant for an effective Hamiltonian action of a torus T , with dimT = 1

2 dimN. A hypertoric
variety N comes with a “dual” hypertoric variety N!, equipped with an action of its own torus T !;
the relationship between these dual pairs has been studied in [BLPW10] and [BLPW12]. One of
the first properties of a dual pair is that the cohomology group H2(M) is canonically isomorphic to
the Lie algebra of T !. Our main result (Theorem 3.1) states that HP0(N ) is isomorphic as a graded
module over C[H2(M)] ∼= H∗(BT !) to the equivariant intersection cohomology group IH∗T !(N

!),
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where the grading in Poisson homology is induced by the conical action of the multiplicative
group. In particular, this implies that HP0(N ) is a free module over C[H2(M)].

The relationship between a dual pair of hypertoric varieties is a special case of a relationship
between pairs of projective symplectic resolutions called symplectic duality, which is being studied
by Braden, Licata, Webster, and the author in a forthcoming paper; see [BLPW12, 1.5] for an
overview of this notion. Examples of symplectic dual pairs, along with a conjectural extension of
Theorem 3.1 to this setting (Conjecture 3.4), are given in Section 3.

We also note that Poisson homology of Poisson varieties is closely related to Hochschild
homology of their quantizations. More precisely, let A be a quantization of C[N ], and let HH0(A)
be the quotient of A by the linear span of all commutators. Then HH0(A) is a filtered vector space
such that gr HH0(A) admits a canonical map from HP0(N ); Etingof and Schedler conjecture
that this map is an isomorphism [ES11, 1.3.3]. In Conjecture 3.6, we conjecture the appropriate
analogue of Theorem 3.1 and Conjecture 3.4 in the quantized setting.

The paper is organized as follows. In Section 2 we give a basic construction of a hypertoric
variety and its dual. Section 3 is devoted to the statement of the main theorem and associated
conjectures. We give a combinatorial presentation of HP0(N ) in Section 4, which we use in
Section 5 to prove that the main theorem holds on the numerical level (that is, we prove that
the modules are isomorphic without obtaining a canonical isomorphism). Section 6, which draws
heavily on the machinery of [BP09], establishes the canonical isomorphism.

2. Hypertoric varieties

Fix a positive integer n, let Tn := (C∗)n be the coordinate torus, and let X(Tn) ∼= Zn be its
character lattice. Let ι : G ↪→ Tn be a connected algebraic subtorus, and let ι∗ : X(Tn)→ X(G)
be the pullback map on characters. We will impose two technical assumptions about this subtorus.
First, we assume that the image of ι does not contain any of the one-dimensional coordinate
subtori of Tn. Second, we assume that ι is unimodular, which means that for some (equivalently
any) choice of basis for X(G), all minors of ι∗ belong to the set {−1, 0, 1}.

Let V = Cn, equipped with the standard action of Tn. The vector space V ⊕ V ∗ carries a
natural symplectic form, and the induced action of Tn is Hamiltonian with moment map

Φ : V ⊕ V ∗ → X(Tn)C ∼= Cn

given by the formula Φ(z, w) = (z1w1, . . . , znwn). The action of the subtorus G on V ⊕ V ∗ is
Hamiltonian with moment map

µ = ι∗C ◦ Φ : V ⊕ V ∗ → X(G)C .

Fix once and for all a generic character θ ∈ X(G). Let

M := V ⊕ V ∗//θG = ProjC[z1, . . . , zn, w1, . . . , wn, t]
G

and

N := V ⊕ V ∗//0G = SpecC[z1, . . . , zn, w1, . . . , wn]G ,

where G acts on t with weight θ. The map µ descends to a pair of maps

π : M → X(G)C and π̄ : N → X(G)C ,
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and we let

M := π−1(0) and N := π̄−1(0) .

These two spaces are called hypertoric varieties [BD00, Pro08]. The variety N is an affine cone,
and M is a projective symplectic resolution of N.

Let T := Tn/G; the action of Tn on V ⊕ V ∗ descends to an effective Poisson action of T on
all of the aforementioned spaces. There is an additional (non-Poisson) action of S ∼= C∗ induced
by the inverse scalar action on V ⊕ V ∗. We have the following S × T -equivariant commutative
diagram, where T fixes X(G)C and S acts on X(G)C with weight −2:

M

��

// M

��

π // X(G)C

=

��
N // N

π̄ // X(G)C .

The vector space X(G)C is isomorphic to H2(M) via the Kirwan map1, and M is the universal
Poisson deformation of M [Nam11, Nam10].

Remark 2.1. It may or may not be the case that N is the universal Poisson deformation of N. In
general, this universal deformation is parameterized by H2(M)/W , where W is the Namikawa
Weyl group of N (which may or may not be trivial). The deformation N is the pullback of the
universal deformation from H2(M)/W to X(G)C. We will refer to this as the quasi-universal
deformation of N.

Let (Tn)∗ be the dual torus to Tn, and let G! ⊂ (Tn)∗ be the inclusion of the connected
subtorus whose Lie algebra is perpendicular to that of G ⊂ Tn. Fixing a generic character
θ! ∈ X(G!), we may construct new spaces

M!

��

// M !

��

π!
// X(G!)C

=

��

N! // N ! π̄!
// X(G!)C

as above. This diagram will be S × T !-equivariant, where S is as before and T ! := (Tn)∗/G!. The
relationship between N and N! (and all of their associated geometry and representation theory)
was explored in detail in [BLPW10] and [BLPW12].

3. Results and conjectures

For any λ ∈ X(G)C ∼= g∗, let

Mλ := π−1(λ) and Nλ := π̄−1(λ) .

The degree zero Poisson homology group HP0(N ) is a module over C[X(G)C] ∼= Sym g, and for
any λ, we have

HP0(Nλ) ∼= HP0(N )⊗Sym g Cλ .
The action of S induces positive integer gradings of HP0(M ) and Sym g, with g sitting in degree
two. This grading descends to HP0(N) = HP0(N0), but not to HP0(Nλ) for nonzero λ.

1The fact that the Kirwan map is an isomorphism in degree 2 follows from the assumption that the image of ι
contains no coordinate subtorus of Tn.

3



Nicholas Proudfoot

Observe that T ! is canonically dual to G; in particular, H∗(BT !) is canonically isomorphic as
a graded ring to Sym g. Our main result is the following.

Theorem 3.1. There is a canonical isomorphism of graded Sym g-modules HP0(N ) ∼= IH∗T !(N
!).

In particular, HP0(N) is isomorphic as a graded vector space to IH∗(N!).

Remark 3.2. A combinatorial interpretation of the intersection cohomology Betti numbers of N!

was given in [PW07, 4.3]. In particular, they vanish in odd degree, thus IH∗T !(N
!) is a free Sym g-

module. Theorem 3.1 is therefore a strengthening in the hypertoric case of a conjecture of Etingof
and Schedler [ES11, 1.3.1(a)], which says (for an affine cone that admits a projective symplectic
resolution) that the degree zero Poisson homology of the quasi-universal deformation is a free
module over the coordinate ring of the base. In fact, proving freeness (Corollary 5.3) is one of the
steps toward proving Theorem 3.1.

Remark 3.3. In subsequent work with Schedler, we generalize Theorem 3.1 by computing the higher
Poisson-de Rham homology groups of hypertoric varieties. We do this by proving Conjectures
1.3.1(b) and 1.3.1(c) of [ES11] for hypertoric varieties, which state roughly that the higher Poisson-
de Rham homology groups of N may be understood in terms of the degree zero Poisson homology
groups of the slices to the various symplectic leaves of N. Since these slices are themselves
hypertoric varieties [PW07, 2.4], this allows us to leverage Theorem 3.1 to obtain a description of
all of the higher groups.

The relationship between N and N! is a special case of a phenomenon called symplectic duality
[BLPW12, 1.5], which relates pairs of affine cones that admit projective symplectic resolutions.
Theorem 3.1 invites the following generalization.

Conjecture 3.4. Let N and N! be a symplectic dual pair of cones admitting projective symplectic
resolutions M and M!. Let N be the quasi-universal deformation of N, and let T ! be a maximal
torus in the Hamiltonian automorphism group of M!. There exist isomorphisms of graded vector
spaces

HP0(N) ∼= IH∗(N!) and HP0(N ) ∼= IH∗T !(N
!) ,

where the second isomorphism is compatible with the module structure over C[H2(M)] ∼= H∗(BT !).

Note that IH∗(N!) ⊂ H∗(M!) is always concentrated in even degree [BPW12, 2.5], and therefore
the deformation coming from equivariant cohomology is always free. Thus Conjecture 3.4 would
imply the conjecture of Etingof and Schedler from Remark 3.2 for any cone that has a symplectic
dual.

A general definition of a symplectic dual pair appears in a forthcoming paper by Braden,
Licata, Webster, and the author. In addition to the hypertoric examples discussed here, other
examples include the following.

– If G is a simple algebraic group and GL is its Langlands dual, then the nilpotent cone
of g should be dual to the nilpotent cone of gL. In this case, both Poisson homology and
intersection cohomology are one-dimensional [ES10, 1.6].

– A normal slice inside the nilpotent cone to a subregular nilpotent orbit in a simply-laced
simple Lie algebra g should be dual to the closure of the minimal nontrivial nilpotent orbit
in gL ∼= g. The Poisson homology Poincaré polynomial of the slice is computed in [AL98]
and the intersection cohomology Poincaré polynomial of the orbit closure is computed in
[MOV05, 6.4.2], and they agree.2

2In the arXiv version of [MOV05], it is 6.2.2.
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– Let X(r, n) be the symmetric scheme of n points on the quotient of C2 by the symplectic
action of Z/rZ. Let Y (r, n) be the Uhlenbeck space which is obtained by taking the spectrum
of the ring of global functions on the moduli space of framed torsion-free sheaves on P2

of rank r and charge n. Then X(r, n) is dual to Y (r, n). The Poisson homology Poincaré
polynomial of X(r, n) is computed in [ES12, Eq. (1.1.15)] and the intersection cohomology
Poincaré polynomial of Y (r, n) can be deduced from [Nak99, 5.15(2)] and [Bar00, 3.7], and
they agree.

Remark 3.5. Note that we do not include the word “canonical” in Conjecture 3.4. Though the
isomorphism is canonical in the hypertoric case, the proof of this fact uses techniques that are
very specific to hypertoric varieties.

Let A be a quantization of N , that is, a filtered algebra whose associated graded ring is
isomorphic to C[N ] (with grading induced by the S-action), inducing the given Poisson structure.
Then A has a central quotient A0 which is a quantization of N. The Hochschild homology group
HH0(A) := A

/
[A,A] admits a filtration whose associated graded module admits a surjection from

HP0(N ) as a graded module over Z(A) ∼= Sym g; in particular, we also get a surjection from
HP0(N) to HH0(A0). If the conjecture [ES11, 1.3.1(a)] holds, then these surjections are both
isomorphisms [ES11, § 1.3]. The appropriate analogue of Conjecture 3.4 is the following.

Conjecture 3.6. In the situation of Conjecture 3.4, there exist isomorphisms of filtered vector
spaces

HH0(A0) ∼= IH∗S(N!)⊗C[u] C1 and HH0(A) ∼= IH∗S×T !(N
!)⊗C[u] C1 ,

where C1 is the one-dimensional module over H∗(BS) ∼= C[u] annihilated by u− 1. The second
isomorphism is compatible with the module structure over Z(A) ∼= H∗(BT !).

In the hypertoric case, we may take A to be the ring of G-invariant differential operators on V ,
which is called the hypertoric enveloping algebra [BLPW12, 5.2]. Since we know by Theorem 3.1
that HP0(N ) is a free module, HH0(A) must be a filtered free module whose associated graded
module is canonically isomorphic to HP0(N ). In this case, we expect the second isomorphism
of Conjecture 3.6 to be canonical, and it should be possible to establish this isomorphism using
techniques similar to those that we use to prove Theorem 3.1. The main task would be to extend
the results of [BP09] to the S-equivariant setting, which would be straightforward.

Remark 3.7. Let λ ∈ X(G)C be generic. In this case Nλ is smooth and affine, thus

HP0(N )⊗Sym g Cλ ∼= HP0(Nλ) ∼= Hdim Nλ(Nλ) ∼= Hdim Mλ(Mλ) ∼= HdimM(M) .

Here the second isomorphism is given by multiplication by the appropriate power of the symplectic
form, the third isomorphism comes from the fact that Nλ is isomorphic to Mλ, and the fourth
isomorphism comes from the topological triviality of the family π : M → X(G)C. On the
other hand, [BLPW12, 7.21] implies that IH∗T !(N

!)⊗Sym g Cλ is canonically dual to HdimM(M).

Comparing these two results gives us a nondegenerate bilinear form on the vector space HdimM(M)
that depends nontrivially on λ. It would be interesting to understand this family of bilinear forms
in more detail (see Example 3.8 for the first interesting case).

An analogue of [BLPW12, 7.21] is part of the package for all symplectic dual pairs, so a similar
phenomenon should arise for all of the examples mentioned above.

Example 3.8. Suppose that n = 3 and G ⊂ T 3 is the determinant 1 subtorus. In this case, N is
the Kleinian singularity of type A2 and M is its minimal resolution. We may identify the groups
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X(G)C ∼= H2(M) with C2 by taking the two projective lines in the exceptional fiber as a basis
for H2(M). For u, v ∈ C2 ∼= H2(M) and λ ∈ C2 ∼= X(G)C, we consider the pairing of u with v
using the bilinear form defined by λ via Remark 3.7. This is well defined if and only if λ is generic
enough for Nλ to be affine, which in this case means that λ1, λ2, and λ1 + λ2 are all nonzero.
Explicit computation then yields

(u, v)λ =
1

[λ1λ2(λ1 + λ2)]2

(
λ2

2(2λ1 + λ2)u1v1 + λ1λ
2
2u1v2 − λ2

1λ2u2v1 − λ2
1(2λ2 + λ1)u2v2

)
.

In general, the family of bilinear forms will be homogeneous in λ of degree −n.

4. A presentation of HP0(N )

For each α ∈ X(Tn) ⊂ (tn)∗, consider the differential operator

∂α : Sym tn → Sym tn

defined by putting ∂αx = 〈α, x〉 for all x ∈ tn and extending via the Leibniz rule. It will be
convenient for us to work in coordinates; we identify X(Tn) with Zn and Sym tn with C[e1, . . . , en],
and we have ∂αei = αi (the ith coordinate of α ∈ Zn). We will be particularly interested in those
operators ∂α for which α is in the kernel of ι∗ : X(Tn)→ X(G).

Consider the vector space

J := C
{
∂αe

β | α ∈ ker ι∗, β ∈ Nn, Supp(α) ⊂ Supp(β)
}
⊂ C[e1, . . . , en] ,

where the support of an element of α ∈ Zn is the set of i such that αi 6= 0. This is not an ideal,
but it is a module over

Sym g ⊂ Sym tn = C[e1, . . . , en]

because ∂αx = 0 for all x ∈ g ⊂ tn and α ∈ ker ι∗.

Remark 4.1. For any α and β, we have ∂α + ∂β = ∂α+β. For this reason, we may restrict our
attention in the definition of J to those α which are primitive and have minimal support. The
unimodularity condition implies that for such an α, αi ∈ {−1, 0, 1} for all i. Such an α is called a
signed circuit, and there are only finitely many of them.

Proposition 4.2. The homology group HP0(N ) is isomorphic to C[e1, . . . , en]/J as a graded
Sym g-module.

Proof. Recall that HP0(N ) is defined as the quotient of C[N ] = C[z1, . . . , zn, w1, . . . , wn]G by
the linear span of all brackets, and consider the graded Sym g-module homomorphism

ψ : C[e1, . . . , en]→ HP0(N )

taking ei to the class represented by ziwi. We will show that ψ is surjective with kernel J .

The invariant ring C[z1, . . . , zn, w1, . . . , wn]G consists of all monomials zβwδ with β, δ ∈ Nn
and ι∗(β − δ) = 0. The Poisson bracket is given by the formula

{p(z, w), q(z, w)} =
n∑
i=1

ri(z, w) ,

where ri(z, w) is the coefficient of dzi ∧ dwi in the expansion of dp(z, w) ∧ dq(z, w). In particular,
we have

{ziwi, zβwδ} = (δi − βi)zβwδ.
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This tells us that the class of zβwδ in HP0(N ) is zero unless β = δ, and therefore that ψ is
surjective.

The remaining relations in HP0(N ) come from brackets of the form{
(zw)γzβwδ, (zw)εzδwβ

}
for some β, δ, γ, ε ∈ Nn with ι∗(β − δ) = 0. This bracket expands to

n∑
i=1

(βi − δi)(βi + δi + γi + εi)(zw)β+δ+γ+ε/(ziwi) = ψ
(
∂β−δ e

β+δ+γ+ε
)
.

Thus the kernel of ψ is contained in J .

The fact that J is contained in the kernel follows from unimodularity: given a signed circuit α,
we can find a unique pair β, δ ∈ Nn such that α = β− δ and Supp(α) = Supp(β)tSupp(δ). Then
every monomial whose support contains that of α is a multiple of eβ+δ.

Remark 4.3. If the condition of unimodularity is dropped, then the last sentence of the proof
of Proposition 4.2 will fail, and this will cause Theorem 3.1 to fail, as well. Geometrically,
unimodularity ensures that M is a manifold rather than an orbifold. Thus Conjecture 3.4 is really
about affine cones that admit symplectic resolutions; orbifold resolutions are not good enough.

5. Numerics

In this section we will prove Theorem 3.1 minus the word “canonical”. That is, we will show
that HP0(N ) is a free Sym g-module with the same Hilbert series as IH∗T !(N

!). This will be a
necessary first step toward establishing the canonical isomorphism, which we will do in the next
section.

Lemma 5.1. The graded Sym g-module C[e1, . . . , en]/J degenerates flatly to C[e1, . . . , en]/J∆bc ,
where J∆bc is the Stanley-Reisner ideal of the broken circuit complex of the matroid associated
with the inclusion G ⊂ Tn.

Proof. Consider the graded lexicographical term order on C[e1, . . . , en], which allows us to define
the initial Sym g-module

in(J) := {in(f) | f ∈ J} ⊂ C[e1, . . . , en] .

We want to show that in(J) = J∆bc . For all α ∈ ker ι∗ and β ∈ Nn with Supp(α) ⊂ Supp(β),
in(∂αe

β) = αiβie
β/ei, where i is the maximal element of the support of α. Thus we have

in(J) ⊃ C
{

in(∂αe
β) | α ∈ ker ι∗, β ∈ Nn, Supp(α) ⊂ Supp(β)

}
= J∆bc .

We do not yet know whether or not this containment is an equality, because the set of initial terms
of a basis for a module need not form a basis for the initial module. What we do know is that
C[e1, . . . , en]/ in(J) is isomorphic to a quotient of C[e1, . . . , en]/J∆bc by some Sym g-submodule,
which we will call Q.

By [PW07, 4.3] and [PS06, Proposition 1], C[e1, . . . , en]/J∆bc is a free Sym g-module with
the same Hilbert series as IH∗T !(N

!). As noted in Remark 3.7, for generic λ ∈ X(G)C ∼= g∗,

HP0(N )⊗Sym g Cλ is isomorphic to HdimM(M), which is in turn dual to IH∗T !(N
!)⊗Sym g Cλ. In

particular HP0(N )⊗Sym g Cλ and IH∗T !(N
!)⊗Sym g Cλ have the same vector space dimension, and

therefore so do(
C[e1, . . . , en]/ in(J)

)
⊗Sym g Cλ and

(
C[e1, . . . , en]/J∆bc

)
⊗Sym g Cλ .

7



Nicholas Proudfoot

This implies that Q⊗Sym g Cλ = 0. But since Q is a submodule of a free module and λ is generic,
this implies that Q = 0, and we are done.

Remark 5.2. In the last paragraph of the proof of Lemma 5.1, we invoked the statement that
HdimM(M) is (naturally) dual to IH∗T !(N

!)⊗Sym gCλ. This result, which is established in [BLPW12,
7.21], builds on an enormous amount of background material, and might be frustrating to a reader
who does not want to take the time to learn all about hypertoric category O and symplectic
duality. In fact, this was overkill; all we needed to know was that the dimension of HdimM(M) is
equal to that of IH∗T !(N

!)⊗Sym g Cλ, which is the same as the total dimension of IH∗(N!). This
fact follows from [PW07, 3.5 & 4.3], which is considerably more accessible than [BLPW12, 7.21].

Corollary 5.3. The homology group HP0(N ) is a free Sym g-module with the same Hilbert
series as IH∗T !(N

!).

Proof. This follows from Proposition 4.2 and Lemma 5.1 along with [PW07, 4.3] and [PS06,
Proposition 1].

6. The canonical isomorphism

In this section we prove Theorem 3.1. Consider the hyperplane arrangement H = {H1, . . . ,Hn}
in the vector space g ⊂ tn where Hi is the intersection of g with the ith coordinate hyperplane of
tn ∼= Cn. (This is the hyperplane arrangement that is standardly associated with the hypertoric
variety N!, for example in [BD00] or [Pro08].) A flat ofH is a subspace of g obtained by intersecting
some (possibly empty) subset of the hyperplanes. Let LH be the poset of flats of H, ordered by
reverse inclusion.

The set LH has a topology in which U ⊂ LH is open if and only if whenever F 6 F ′ and F ′ ∈ U ,
we have F ∈ U . If S is a sheaf on LH and F is a flat, let S(F ) be the stalk of S at F . For each F ,
there is a minimal open set UF containing F , so S(F ) is simply equal to S(UF ). We have UF ⊂ UF ′

if and only if F 6 F ′, therefore we have a collection of restriction maps r(F, F ′) : S(F ′)→ S(F )
for every pair of comparable flats. By [BP09, 1.1], a sheaf is completely determined by its stalks
and these restriction maps. Let A be the sheaf of algebras with A(F ) = Sym(g/F ), along with
the obvious restriction maps. This sheaf is called the structure sheaf of LH.

We will be interested in sheaves of graded A-modules on LH. A sheaf L of graded A-modules
is called a minimal extension sheaf if it satisfies four properties:

– L is indecomposable;

– L is flabby;

– L(F ) is a free A(F )-module for all F ;

– L(g) ∼= A(g) = C.

Such a sheaf exists by [BP09, 1.10]. For any two minimal extension sheaves L and L′, there
exists an isomorphism of A-modules from L to L′, and this isomorphism is unique up to scalar
multiplication [BP09, 2.7]. Furthermore, there is a particular minimal extension sheaf L (defined
by applying a certain localization functor to the equivariant IC-sheaf of N!) with the property
that L(0) = IH∗T !(N

!) [BP09, 2.7].

To prove Theorem 3.1, we will find another minimal extension sheafM with the property that
M(0) is canonically isomorphic to HP0(N ). This will get us an isomorphism of modules over
A(0) = Sym g between L(0) = IH∗T !(N

!) and M(0) ∼= HP0(N ). Since the isomorphism between

8



Hypertoric Poisson homology in degree zero

L and M is unique up to scalar multiplication, the isomorphism between stalks at 0 will be
canonical up to scalar multiplication. It can then be made completely canonical by noting that
both IH∗T !(N

!) and HP0(N ) are canonically isomorphic to C in degree zero.

Recall that the data with which we began in Section 2 was an inclusion of tori G ↪→ Tn, or
equivalently an inclusion of abelian Lie algebras g→ tn. For each flat F , let

tnF := tn/C{ei | F 6⊂ Hi} ,

and consider the inclusion g/F ↪→ tnF . With this starting point, we can repeat all of the construc-
tions in this paper with F in the subscript.

Define two sheaves of graded A-modules M and Rbc, where

M(F ) := Sym tnF /JF and Rbc(F ) := Sym tnF /J∆bc
F
,

with the obvious restriction maps. Lemma 5.1 tells us thatM admits a filtration whose associated
graded module is isomorphic to Rbc. We know that Rbc is a minimal extension sheaf by [BP09,
3.9], thus the same is true of M. This completes the proof of Theorem 3.1.

Remark 6.1. We now summarize our approach to the proof of Theorem 3.1, in case the central
idea got lost in the machinery of [BP09]. Two free graded Sym g-modules L and M with the
same Hilbert series are necessarily isomorphic, but not canonically so. The problem is that graded
Sym g-modules are very floppy objects—that is, they have lots of automorphisms.

On the other hand, a minimal extension sheaf on LH is a rigid object—that is, it has only
scalar automorphisms—whose space of global sections is a graded Sym g-module. Thus, if L and
M can be promoted to minimal extension sheaves L and M, then L and M are canonically
isomorphic (up to scalars), which induces a canonical isomorphism between L and M (up to
scalars). If L and M are both canonically isomorphic to C in degree zero, then we can do away
with the scalar ambiguity.

This becomes particularly bizarre when M admits a filtration such that grM is canonically
isomorphic to L, and this lifts to a filtration on M such that grM is isomorphic to grL. In this
case, you don’t really expect L and M to be canonically isomorphic, but rigidity of minimal
extension sheaves tells you that they are.

In our case we have three modules, L = IH∗T !(N
!), Rbc = Sym tn/J∆bc , and M = HP0(N ),

along with a filtration on M with grM ∼= Rbc (Lemma 5.1). The work of lifting L and Rbc to
sheaves L and Rbc on LH and proving that these sheaves are minimal extension sheaves is done
in [BP09]. The work of lifting M to a sheaf M on LH is easy, and we prove that it is a minimal
extension sheaf by lifting the filtration on M to one on M with grM ∼= Rbc. This gives us
canonical module isomorphisms L ∼= Rbc ∼= M , which is exactly the statement of Theorem 3.1.

Finally, we note that we used a similar argument in [BP09] to show that IH∗T !(N
!) is canonically

isomorphic to the Orlik-Terao algebra of H.
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