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Abstract. We study the way in which equivariant Kazhdan–Lusztig polynomials, equivariant

inverse Kazhdan–Lusztig polynomials, and equivariant Z-polynomials of matroids change under

the operation of relaxation of a collection of stressed hyperplanes. This allows us to compute

these polynomials for arbitrary paving matroids, which we do in a number of examples, including

various matroids associated with Steiner systems that admit actions of Mathieu groups.

1 Introduction

We consider in this paper three polynomial invariants of matroids: the Kazhdan–Lusztig poly-

nomial [EPW16], the inverse Kazhdan–Lusztig polynomial [GX21], and the Z-polynomial

[PXY18]. These invariants have been computed for uniform matroids [GPY17, GLX+21, GX21],

then generalized to sparse paving matroids [LNR20a, LNR20b, FV21], and finally to arbitrary

paving matroids [FNV21].

The purpose of this paper is to generalize the results of [FNV21] to the equivariant setting. Sup-

pose that M is a matroid and W is a finite group that acts on the ground set of M , preserving the

set of bases. We then have the equivariant Kazhdan–Lusztig polynomial [GPY17], the equiv-

ariant inverse Kazhdan–Lusztig polynomial [Pro21], and the equivariant Z-polynomial

[PXY18]; these are polynomials whose coefficients are isomorphism classes of W -representations

over the rational numbers, and they have the property that taking dimensions recovers the non-

equivariant polynomials. The equivariant Kazhdan–Lusztig polynomials and inverse Kazhdan–

Lusztig polynomials have been computed for uniform matroids [GPY17, GXY21], and it is straight-

forward to use these results to compute the equivariant Z-polynomials. Our main result extends

these computations to paving matroids.

Our approach is based on the notion of relaxation. If M is a matroid of rank k, a hyperplane

1Supported by NSF grant DMS-2053243.
2Supported by NSF grants DMS-1954050, DMS-2039316, and DMS-2053243.
3Partially supported by the National Group for Algebraic and Geometric Structures, and their Applications

(GNSAGA - INdAM)
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H of M is called stressed if every k-element subset of H is a circuit. In this case, there is a new

matroid M̃ whose bases consist of all of the bases for M along with all of the k-element subsets of

H. A matroid is paving if and only if it can be transformed into a uniform matroid by a sequence

of relaxations. The operation of relaxation changes our three polynomials in a controlled way,

thus one may leverage the formulas for uniform matroids to obtain formulas for paving matroids

[FNV21]. We will use the same idea in the equivariant setting, though now rather than relaxing

one stressed hyperplane at a time, we will relax one W -orbit of stressed hyperplanes at a time.

Remark 1.1. The notion of stressed hyperplanes and their relaxations is quite new, appearing for

the first time in [FNV21]. When H is a circuit-hyperplane, it is a much more well-known operation;

see for example [Oxl11, Proposition 1.5.14]. A matroid is sparse paving if and only if it can be

transformed into a uniform matroid by a sequence of relaxations of circuit-hyperplanes.

Remark 1.2. It is conjectured that asymptotically almost all matroids are sparse paving [MNWW11],

and a logarithmic version of this conjecture has been proved [PvdP15]. In this sense, the results of

this paper allow us to compute our three equivariant polynomials for most matroids.

We now give a more precise statement of our results. Given a matroid M equipped with

an action of a finite group W , we denote the equivariant Kazhdan–Lusztig polynomial of M by

PW
M (t), the equivariant inverse Kazhdan–Lusztig polynomial of M by QW

M (t), and the equivariant

Z-polynomial of M by ZW
M (t).

Given a stressed hyperplane H, we write M̃ to denote the matroid obtained by simultaneously

relaxing all hyperplanes in the W -orbit of H. Note that the action of W on M induces an action on

M̃ . Let WH be the stabilizer of H in W . The group WH acts on H, inducing a homomorphism from

W to the permutation group SH . If h = |H| and we fix an ordering of H, then we can identify SH

with the symmetric group Sh. For any representation V of Sh, we will write ResSh
WH

V to denote

the pullback of V to a representation of WH (even though the homomorphism from WH to Sh need

not be an inclusion).

Theorem 1.3. Fix integers h ≥ k ≥ 1. There exist polynomials pSh
k,h(t), q

Sh
k,h(t), and zSh

k,h(t), each

with isomorphism classes of Sh-representations as coefficients, such that for any matroid M of rank

k, any group W of symmetries of M , and any stressed hyperplane H of cardinality h, the following

identities hold:

PW
M̃

(t) = PW
M (t) + IndWWH

ResSh
WH

pSh
k,h(t)

QW
M̃
(t) = QW

M (t) + IndWWH
ResSh

WH
qSh
k,h(t)

ZW
M̃
(t) = ZW

M (t) + IndWWH
ResSh

WH
zSh
k,h(t).

Next, we give explicit formulas for two of the three Sh-equivariant polynomials appearing

in Theorem 1.3. Given a partition λ of h, we write Vλ to denote the corresponding irreducible

representation of Sh over the rational numbers, which is called the Specht module associated

with λ. More generally, given a pair of partitions λ and µ with |λ| − |µ| = h, we write Vλ/µ to
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denote the corresponding skew Specht module, which is characterized by the property that the

multiplicity of Vν in Vλ/µ is equal to the multiplicity of Vλ in

Ind
S|λ|
S|µ|×Sh

(
Vµ ⊠ Vν

)
.

For uniform matroids, the coefficients of equivariant inverse Kazhdan–Lusztig polynomials are

Specht modules [GXY21, Theorem 3.2], while the coefficients of equivariant Kazhdan–Lusztig poly-

nomials are skew Specht modules [GXY21, Theorem 3.7].

Theorem 1.4. When k = 1, we have pSh
1,h(t) = V[h] = qSh

1,h(t) and zSh
1,h(t) = 0. When k > 1, we

have the following explicit formulas:4

pSh
k,h(t) =

∑
0<i<k/2

V[h−2i+1,(k−2i+1)i]/[k−2i,(k−2i−1)i−1] t
i

qSh
k,h(t) =

∑
0≤i<k/2

(
V[h−k+2,2i−1,1k−2i] + V[h−k+1,2i,1k−2i−1]

)
ti.

Remark 1.5. One can use similar methods to obtain an explicit formula for zSh
k,h(t), but since this

formula is considerably less elegant, we omit it.

An unpublished conjecture of Gedeon states that the coefficients of the equivariant Kazhdan–

Lusztig polynomial of a matroid M are bounded above by the coefficients of the equivariant

Kazhdan–Lusztig polynomial of the uniform matroid of the same rank on the same ground set.

We give a precise statement of this conjecture here; the non-equivariant version of the conjecture

appears in [LNR20b, Conjecture 1.1].

Conjecture 1.6. Let M be a matroid of rank k on the ground set E, and let W be a finite group

that acts on E preserving M . Then the coefficients of PW
Uk,E

(t) − PW
M (t) are honest (rather than

virtual) representations of W .5

Remark 1.7. The fact that the constant and linear terms of PW
Uk,E

(t) − PW
M (t) are honest repre-

sentations follows from [GPY17, Corollary 2.10]. In higher degrees, the conjecture remains open.

Theorems 1.3 and 1.4 imply that Conjecture 1.6 holds for paving matroids.

Corollary 1.8. Conjecture 1.6 holds when M is paving.

Proof. If M is paving, then M may be transformed into Uk,E by relaxing finitely many W -orbits

of stressed hyperplanes. Theorems 1.3 and 1.4 imply that each of these relaxations changes the

equivariant Kazhdan–Lusztig polynomial by adding a correction term whose coefficients are honest

representations.

4In the expression for q
Sh
k,h(t), we interpret the first term to be zero if i = 0, and we interpret the second term to

be zero if i > 0 and k = h.
5We write Uk,E to denote the uniform matroid of rank k on the set E, and Uk,n to denote the uniform matroid

of rank k on the set [n]. This differs from the notation in some of the references, where Um,d is used to denote the
uniform matroid of rank d on the set [m+ d].
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Theorems 1.3 and 1.4, along with the known formulas for uniform matroids, provide us with the

tools to compute our equivariant polynomials for any paving matroid and any group of symmetries.

To illustrate this, we apply our results to compute the equivariant Kazhdan–Lusztig polynomials in

six specific examples. First, we consider the Vámos matroid, a sparse paving matroid of rank 4 with

symmetry group isomorphic to D4 ×D4. Our last five examples involve the Mathieu groups M11,

M12, M22, M23, and M24, which are sporadic finite simple groups. Each of the Mathieu groups can

be realized as a group of symmetries of a Steiner system, and therefore also of the paving matroid

associated with that Steiner system. The SageMath [Sag22] code used to study each of these six

examples is available at

https://github.com/trevorkarn/equivariant-matroid-relaxation.

Acknowledgments: The authors are grateful to June Huh suggesting the study of matroids asso-

ciated with Steiner systems, to Tom Braden and Luis Ferroni for valuable discussions, and to the

anonymous referee for a careful reading and thoughtful suggestions.

2 Defining the polynomials

For any subset S ⊂ E, we write MS to denote the matroid obtained by localizing at S (equivalently

deleting the complement of S), and we write MS to denote the matroid obtained by contracting

S. Both of these matroids admit actions of the stabilizer group WS ⊂ W . We denote the trivial

representation of W by τW .

The equivariant Kazhdan–Lusztig polynomial PW
M (t) and the equivariant Z-polynomial ZW

M (t)

are characterized by the following conditions:

• If the ground set of M is empty, then PW
M (t) = ZW

M (t) = τW .

• If the ground set of M is nonempty, then the degree of PW
M (t) is strictly smaller than half of

the rank of M .

• The polynomial ZW
M (t) is palindromic, with degree equal to the rank of M :

trkMZW
M (t−1) = ZW

M (t).

• For all M ,

ZW
M (t) =

∑
[S]∈2E/W

trkS IndWWS
PWS
MS

(t). (1)

Remark 2.1. To be more explicit about how this works, let M be a matroid of rank k on a

nonempty ground set E, and assume that equivariant Kazhdan–Lusztig polynomials have been
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defined for all matroids whose ground sets are proper subsets of E. Let

RW
M (t) :=

∑
[S]∈(2E∖{∅})/W

trkS IndWWS
PWS
MS

(t).

Then PW
M (t) is the unique polynomial of degree strictly less than k/2 with the property that

ZW
M (t) := PW

M (t) +RW
M (t) is palindromic of degree k.

The equivariant inverse Kazhdan–Lusztig polynomial is characterized by the following two con-

ditions [Pro21, Proposition 4.6]:

• If the ground set of M is empty, then QW
M (t) = τW .

• If the ground set of M is nonempty, then∑
[S]∈2E/W

(−1)rkS IndWWS

(
QWS

MS (t)⊗ PWS
MS

(t)
)
= 0. (2)

Remark 2.2. The original definition of the (ordinary or equivariant) Kazhdan–Lusztig polynomial

of M and inverse Kazhdan–Lusztig polynomial of M applied only to loopless matroids. With this

definition, one can prove inductively that PW
M (t) = 0 = QW

M (t) whenever M has a loop. In contrast,

the polynomial ZW
M (t) are unchanged when we replace M with its simplification. These are the

most natural definitions from the geometric point of view.

Remark 2.3. The contraction MS is loopless if and only if S is a flat, so Remark 2.2 implies that

we may replace the sums in equations (1) and (2) with sums over W orbits in the lattice of flats of

M . However, it will be more convenient for our purposes to work with the sum over all subsets.

3 The first theorem

This section is devoted to the proof of Theorem 1.3. Let H be a stressed hyperplane of M , and

let H be the W -orbit of H. Let WH ⊂ W denote the stabilizer of H, so that H ∼= W/WH . Let

M̃ be the matroid obtained by relaxing every hyperplane in H, and note that the W -action on M

induces a W -action on M̃ .

Let S ⊂ H a nonempty proper subset, and let WS ⊂ W be its stabilizer, which acts on the

contraction MS . The matroid M̃S := (M̃)S can be obtained from M either by first relaxing all of

the stressed hyperplanes in H and then contracting S, or by first contracting S and then relaxing

a bunch of stressed hyperplanes in MS , namely J ∖ S for all J ∈ H such that J contains S. This

is not necessarily a single WS-orbit, but rather a collection of WS-orbits of stressed hyperplanes.

More precisely, let L(S,H) := {w ∈ W | wS ⊂ H}. This set admits an action by WH via left

multiplication, as well as a commuting action of WS via right multiplication. The quotients by
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these actions can be described as follows:

C(S,H) := {wS | w ∈ W and wS ⊂ H} ∼= L(S,H)/WS

D(S,H) := {J ∈ H | S ⊂ J} ∼= WH\L(S,H),

where the second isomorphism takes J = wH to the coset WHw−1. The double quotient

WH\C(S,H) ∼= WH\L(S,H)/WS
∼= D(S,H)/WS

may be regarded as a set of WS-orbits of stressed hyperplanes of the matroid MS , and relaxing all

of these orbits yields the matroid M̃S . Let M̃S be the matroid obtained by relaxing only one of

those orbits, namely the one containing the stressed hyperplane H ∖ S.

We now state and prove a lemma that will be a crucial ingredient in the inductive proof of

Theorem 1.3.

Lemma 3.1. Suppose that Theorem 1.3 holds for the matroids of rank equal to the rank of MS.

Then we have

IndWWS

(
PWS

M̃S
(t)− PWS

MS
(t)

)
=

∑
[T ]∈WH\C(S,H)

IndWWT

(
PWT

M̃T
(t)− PWT

MT
(t)

)
.

Proof. Let i = |S|. Theorem 1.3 for the action of WS on MS tells us that

PWS

M̃S
(t)− PWS

MS
(t) =

∑
[J ]∈D(S,H)/WS

IndWS
WJ∩WS

Res
Sh−i

WJ∩WS
p
Sh−i

k−i,h−i(t).

Theorem 1.3 for the action of WT on MT tells us that

PWT

M̃T
(t)− PWT

MT
(t) = IndWT

WH∩WT
Res

Sh−i

WH∩WT
p
Sh−i

k−i,h−i(t).

The lemma now follows from the identification of D(S,H)/WS with WH\C(S,H).

Proof of Theorem 1.3. We proceed by induction on the rank k of our matroid. If k = 1, then H is

necessarily the set of all loops in M , and WH = W . In this case, Remark 2.2 implies that we can

take pSh
1,h(t) = V[h] = qSh

1,h(t) and zSh
1,h(t) = 0.

For the induction step, we will prove only the statements about PW
M̃

(t) and ZW
M̃
(t); the proof of

the statement about QW
M̃
(t) is nearly identical. By Remark 2.1, it will be sufficient to prove that

there is a polynomial rSh
k,h(t) such that

RW
M̃
(t) = RW

M (t) + IndWWH
ResSh

WH
rSh
k,h(t).

The polynomials pSh
k,h(t) and zSh

k,h(t) can be obtained from rSh
k,h(t) in the same way that we obtain
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PW
M (t) and ZW

M (t) from RW
M (t). Assume k > 1, and consider the difference

RW
M̃
(t)−RW

M (t) =
∑

[S]∈(2E∖{∅})/W

trkS IndWWS

(
PWS

M̃S
(t)− PWS

MS
(t)

)
.

We break the sum into three different parts and analyze each part individually.

• Suppose S is a subset of E that is not contained in any element of H. In this case, M̃S = MS ,

so the summand indexed by [S] vanishes.

• The set S = H is a flat of M but not of M̃ , and therefore PWH

M̃H
(t) = 0 by Remark 2.2. The

contraction MH is uniform of rank 1, so PWH
MH

(t) = τWH
. Thus the summand indexed by [H]

is equal to

− IndWWH
τWH

= − IndWWH
ResSh

WH
τSh

.

• Suppose that ∅ ⊊ S ⊊ H. Our inductive hypothesis and Lemma 3.1 tell us that the contri-

bution indexed by [S] is equal to

trkS
∑

[T ]∈WH\C(S,H)

IndWWT

(
PWT

M̃T
(t)− PW

MT
(t)

)
.

If we take the sum over all such [S], we get

trkS
∑

[T ]∈(2H∖{∅,H})/WH

IndWWT

(
PWT

M̃T
(t)− PW

MT
(t)

)
.

Our inductive hypothesis tells us that

PWT

M̃T
(t)− PWT

MT
(t) = IndWT

WT∩WH
Res

Sh−|T |
WT∩WH

p
Sh−|T |
k−|T |,h−|T |(t),

and therefore that

IndWWT

(
PWT

M̃T
(t)− PWT

MT
(t)

)
= IndWWT

IndWT
WT∩WH

Res
Sh−|T |
WT∩WH

p
Sh−|T |
k−|T |,h−|T |(t)

= IndWWT∩WH
Res

Sh−|T |
WT∩WH

p
Sh−|T |
k−|T |,h−|T |(t)

= IndWWH
IndWH

WT∩WH
Res

Sh−|T |
WT∩WH

p
Sh−|T |
k−|T |,h−|T |(t).
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Taking the sum over all [T ] ∈ (2H ∖ {∅, H})/WH , we get∑
[T ]∈(2H∖{∅,H})/WH

IndWWH
IndWH

WT∩WH
Res

Sh−|T |
WT∩WH

p
Sh−|T |
k−|T |,h−|T |(t)

= IndWWH

 ∑
[T ]∈(2H∖{∅,H})/WH

IndWH
WT∩WH

Res
Sh−|T |
WT∩WH

p
Sh−|T |
k−|T |,h−|T |(t)


= IndWWH

 ∑
∅⊊T⊊H

Res
Sh−|T |
WT∩WH

p
Sh−|T |
k−|T |,h−|T |(t)

 ,

where the second equality is a standard fact about induced representations; see for example

[Pro21, lemma 2.7]. (Note that the individual terms in the sum are not representations of

WH , but rather of WH ∩WT . An element w ∈ WH takes the term indexed by T to the term

indexed by wT .) We may rewrite this expression as

IndWWH
ResSh

WH

 ∑
∅⊊T⊊[h]

p
Sh−|T |
k−|T |,h−|T |(t)

 ,

where now the individual terms in the sum are representations of S[h]∖T
∼= Sh−|T |, and the

entire sum is a representation of Sh. Finally, we once again employ the same standard fact

about induced representations, this time using the action of Sh, to rewrite our expression as

IndWWH
ResSh

WH

h−1∑
i=1

IndSh
Si×Sh−i

(
τSi ⊠ p

Sh−i

k−i,h−i(t)
)
,

which is manifestly of the desired form.

Putting the four parts together, we may take

rSh
k,h(t) = −τSh

+
h−1∑
i=1

IndSh
Si×Sh−i

(
τSi ⊠ p

Sh−i

k−i,h−i(t)
)
.

This completes the proof.

4 The second theorem

This section is devoted to the proof of Theorem 1.4. The k = 1 case was treated as the base case

of the induction in the proof of Theorem 1.3, so we may assume that k > 1. Following the strategy

of [FNV21], we prove this result by examining a single example. Let

Mk,h := Uk−1,h ⊕B1
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be the direct sum of the uniform matroid of rank k − 1 on h elements and the Boolean matroid of

rank 1. The group Sh acts on the first summand, which is a stressed hyperplane of cardinality h

[FNV21, Proposition 3.11]. The relaxation M̃k,h is equal to Uk,h+1. We have the equalities

pSh
k,h(t) = PSh

M̃k,h
(t)− PSh

Mk,h
(t)

qSh
k,h(t) = QSh

M̃k,h
(t)−QSh

Mk,h
(t),

so it will suffice to compute the four polynomials on the right-hand sides of the two equations.

We begin with the polynomials associated with the matroid Mk,h. We have

PSh
B1

(t) = QSh
B1

(t) = V[h],

and each of our three polynomials is multiplicative with respect to direct sums. By [GXY21,

Theorem 3.7], we have

PSh
Mk,h

(t) = PSh
Uk−1,h

(t) =
∑

i<(k−1)/2

V[h−2i,(k−2i)i]/[(k−2i−2)i] t
i. (3)

By [GXY21, Theorem 3.2], we have

QSh
Mk,h

(t) = QSh
Uk−1,h

(t) =
∑

i<(k−1)/2

V[h−k+2,2i,1k−2i−2] t
i. (4)

By the same theorems, we have

PSh

M̃k,h
(t) = Res

Sh+1

Sh
P

Sh+1

Uk,h+1
(t) =

∑
i<(k−1)/2

Res
Sh+1

Sh
V[h−2i+1,(k−2i+1)i]/[(k−2i−1)i] t

i (5)

and

QSh

M̃k,h
(t) = Res

Sh+1

Sh
Q

Sh+1

Uk,h+1
(t) =

∑
i<(k−1)/2

Res
Sh+1

Sh
V[h−k+2,2i,1k−2i−1] t

i. (6)

We compute the restrictions using the following lemma.

Lemma 4.1. If λ is a partition of h+ 1, then

Res
Sh+1

Sh
Vλ =

⊕
λ′

Vλ′ ,

where λ′ ranges over partitions of h with the property that the Young diagram for λ′ is obtained from

the Young diagram for λ by removing a single box. If λ and µ are partitions with |λ| − |µ| = h+1,

then

Res
Sh+1

Sh
Vλ/µ =

⊕
µ′

Vλ/µ′ ,

where µ′ ranges over partitions with the property that the Young diagram for µ′ is obtained from
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the Young diagram for µ by adding a single box.

Proof. The first statement is a well known special case of the Pieri rule. To prove the second state-

ment, let ν be any partition of h. By Frobenius reciprocity, the multiplicity of Vν in Res
Sh+1

Sh
Vλ/µ

is equal to the dimension of the hom space from Ind
Sh+1

Sh
Vν to Vλ/µ, which is in turn equal to the

multiplicity of Vλ in

Ind
Sh+1

S|ν|×S1×S|µ|
Vν ⊠ V[1] ⊠ Vµ.

By the Pieri rule, this may be reinterpreted as the sum over all µ′ of the stated form of the

multiplicity of Vλ in

Ind
Sh+1

S|ν|×S|µ′|
Vν ⊠ Vµ′ .

In other words, it is the multiplicity of Vν in
⊕

µ′ Vλ/µ′ .

Applying the second statement of Lemma 4.1 to Equation (5), we find that

PSh

M̃k,h
(t) =

∑
i<(k−1)/2

(
V[h−2i+1,(k−2i+1)i]/[(k−2i−1)i,1] + V[h−2i+1,(k−2i+1)i]/[k−2i,(k−2i−1)i−1]

)
ti, (7)

where we interpret the second term inside the parentheses to be zero if i = 0. Similarly, applying

the first statement of Lemma 4.1 to Equation (6), we find that

QSh

M̃k,h
(t) =

∑
i<(k−1)/2

(
V[h−k+2,2i,1k−2i−2] + V[h−k+2,2i−1,1k−2i] + V[h−k+1,2i,1k−2i−1]

)
ti, (8)

where we interpret the second term to be zero if i = 0, and we interpret the third term to be zero

if i > 0 and k = h.

Proof of Theorem 1.4. The k = 1 case was treated as the base case of the induction in the proof of

Theorem 1.3, so we may assume that k > 1. We compute pSh
k,h(t) by taking the difference between

Equations (7) and (3). We observe that we have an isomorphism

V[h−2i+1,(k−2i+1)i]/[(k−2i−1)i,1]
∼= V[h−2i,(k−2i)i]/[(k−2i−2)i]

of skew Specht modules, which follows from the fact that the skew diagrams

[h− 2i+ 1, (k − 2i+ 1)i]/[(k − 2i− 1)i, 1] and [h− 2i, (k − 2i)i]/[(k − 2i− 2)i]

are related by a horizontal translation [Kle05, Proposition 2.3.5, Lemma 2.3.12]. This leads to a

cancelation which gives us the formula for pSh
k,h(t) stated in Theorem 1.4. We compute qSh

k,h(t) by

taking the difference between Equations (8) and (4).
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5 The Vámos matroid

In this section we consider the Vámos matroid V , which is the smallest non-realizable matroid.

The ground set of V is equal to [8], and it is a paving matroid of rank 4 with 5 circuit-hyperplanes

corresponding to the five shaded rectangles in Figure 1. The automorphism group W of V is

1

2

3

4
5

6

7

8

Figure 1: A visual representation of the circuit-hyperplanes for V .

generated by the following four elements:

r1 = (12), s1 = (17)(28), r2 = (34), and s2 = (35)(46).

Note that W ∼= D4 ×D4, where the first factor is generated by r1 and s1 and the second factor is

generated by r2 and s2.

Let H := {1, 2, 3, 4} and H ′ := {3, 4, 5, 6}. The orbit of H under the action of W consists of

the four circuit hyperplanes other than H ′, and the stabilizer of H is

WH = ⟨(12), (34), (56), (78)⟩ ∼= S4
2.

In contrast, H ′ is fixed by W . By Theorem 1.3, we have

PW
V (t) = ResS8

W PS8
U4,8

(t)− IndWWH
ResS4

WH
pS4
4,4(t)− ResS4

W pS4
4,4(t).

Here the first restriction is the pullback along the homomorphism from WH to S4 given by the

action of WH on H ∼= [4], while the second is the pullback along the homomorphism from W to S4

given by the action of W on H ′ ∼= [4].
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The formula for PS8
U4,8

(t) is given in [GPY17, Theorem 3.1] or [GXY21, Theorem 3.7], and the

formula for pS4
4,4(t) is given in Theorem 1.4. Note that the constant term of PS8

U4,8
(t) is equal to

the trivial representation of dimension 1, as is the case for all loopless matroids [GPY17, Corollary

2.10]. All three polynomials are linear, so the only nontrivial calculation is of the coefficient of t.

The calculation can be done explicitly using character tables. We use the following standard

representation of the character table for D4:

e s r2 sr r

χ1 1 1 1 1 1

χ2 1 1 −1 1 −1

χ3 1 −1 −1 1 1

χ4 1 −1 1 1 −1

χ5 2 0 0 −2 0

The irreducible characters of W ∼= D4 × D4 are of the form χi ⊠ χj for i, j ∈ {1, . . . , 5}. After

performing all of the restrictions and inductions, we find that the character of the linear term of

PW
M (t) is equal to

3χ1 ⊠ χ1 + χ1 ⊠ χ2 + χ1 ⊠ χ4 + 2χ2 ⊠ χ1 + χ2 ⊠ χ2 + χ2 ⊠ χ4 + χ4 ⊠ χ1 + χ4 ⊠ χ2

+χ1 ⊠ χ5 + χ2 ⊠ χ5 + χ4 ⊠ χ5 + 2χ5 ⊠ χ1 + χ5 ⊠ χ2 + χ5 ⊠ χ5 + 2χ5 ⊠ χ5.

We observe that the value of this character on the identity is 33, so the non-equivariant Kazhdan–

Lusztig polynomial of V is PV (t) = 1 + 33t.

6 Steiner systems

A Steiner system of type (d, k, n) consists of a set E of cardinality n along with a family H of

k-element subsets (called blocks) with the property that every d-element subset of E is contained

in exactly one block. A Steiner system (E,H) of type (d, k, n) determines a paving matroid of rank

d+ 1 on the ground set E characterized by the property that H is the set of hyperplanes [Wel76,

Chapter 12.3]. Given a Steiner system (E,H) of type (d, k, n) and an element e ∈ E, one can

construct a new Steiner system (E/e,H/e) of type (d− 1, k − 1, n− 1) by putting E/e := E ∖ {e}
and H/e := {H ∖ {e} | e ∈ H ∈ H}.

There is a unique Steiner system of type (5, 6, 12) up to isomorphism, which is typically denoted

S(5, 6, 12). The automorphism group of S(5, 6, 12) is the Mathieu group M12. This group acts 4-

transitively on the ground set, and the stabilizer of a point is the Mathieu group M11. Thus we

may perform the aforementioned operation to obtain a Steiner system S(4, 5, 11) with an action of

M11.

There is also a unique Steiner system of type (5, 8, 24) up to isomorphism, which is denoted

S(5, 8, 24), and is known as the Witt geometry. The automorphism group of S(5, 8, 24) is the

Mathieu group M24, which acts 5-transitively on the ground set. The stabilizer of a single point is

12



the Mathieu group M23, which acts on the corresponding Steiner system S(4, 7, 23). The stabilizer

of a pair of points is the Mathieu group M22, which acts on the corresponding Steiner system

S(3, 6, 22). The Mathieu groups M11, M12, M22, M23, and M24 are all sporadic finite simple

groups.

Remark 6.1. The Mathieu groups M11, M12, M23, and M24 are each equal to the automorphism

groups of their corresponding Steiner systems. In contrast, M22 is the unique index 2 subgroup of

the automorphism group of S(3, 6, 22).

We will use the same notation to refer to a Steiner system and its associated matroid. For

example, we will denote by PM24

S(5,8,24)(t) the M24-equivariant Kazhdan–Lusztig polynomial of the

matroid associated with the Steiner system S(5, 8, 24). We will refer to irreducible characters of

the Mathieu groups by the same indices used in the ATLAS of Finite Groups [CCN+85].

Proposition 6.2. The equivariant Kazhdan–Lusztig polynomials of the matroids associated with

the aforementioned Steiner systems are characterized as follows:

charPM11

S(4,5,11)(t) = χ1 + (χ5 + χ8) t+ (χ5 + χ8) t
2

charPM12

S(5,6,12)(t) = χ1 + (χ3 + χ7 + χ8) t+ (χ3 + χ7 + χ8 + χ11 + χ12 + χ14) t
2

charPM22

S(3,6,22)(t) = χ1 + χ5 t

charPM23

S(4,7,23)(t) = χ1 + χ5 t+ χ9 t
2

charPM24

S(5,8,24)(t) = χ1 + (χ8 + χ9) t+ (χ9 + χ14 + χ21) t
2.

Non-equivariantly, we have

PS(4,5,11)(t) = 1 + 55t+ 55t2

PS(5,6,12)(t) = 1 + 120t+ 429t2

PS(3,6,22)(t) = 1 + 55t

PS(4,7,23)(t) = 1 + 230t+ 253t2

PS(5,8,24)(t) = 1 + 735t+ 4830t2.

Proof. All of these calculations are done using only Theorems 1.3 and 1.4 along with the charac-

ter tables found in the ATLAS. We provide a brief outline of the calculation only for the most

interesting case, namely S(5, 8, 24).

The ground set of the matroid S(5, 8, 24) is {1, . . . , 24}. The group M24 acts transitively on the

set of blocks. We have a distinguished block H = {1, . . . , 8}, whose stabilizer group is isomorphic

to A8 ⋉ F4
2, where the alternating group A8

∼= GL4(F2) acts linearly on the vector space F4
2. The

homomorphism from the stabilizer group to SH
∼= S8 is given by the projection onto A8 followed

by the inclusion of A8 into S8. Theorem 1.3 tells us that

PM24

S(5,8,24)(t) = ResS24
M24

PS24
U6,24

(t)− IndM24

A8⋉F4
2
ResS8

A8⋉F4
2
pS8
6,8(t).
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Using the formula for PS24
U6,24

(t) in [GPY17, Theorem 3.1] or [GXY21, Theorem 3.7] and the for-

mula for pS4
4,4(t) given in Theorem 1.4, this becomes a straightforward (if cumbersome) computer

computation.
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