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Abstract. We study an integration theory in circle equivariant cohomology in order to prove

a theorem relating the cohomology ring of a hyperkähler quotient to the cohomology ring of

the quotient by a maximal abelian subgroup, analogous to a theorem of Martin for symplectic

quotients. We discuss applications of this theorem to quiver varieties, and compute as an

example the ordinary and equivariant cohomology rings of a hyperpolygon space.

Let X be a symplectic manifold equipped with a hamiltonian action of a compact Lie group G.

Let T ⊆ G be a maximal torus, let ∆ ⊂ t∗ be the set of roots of G, and let W = N (T )/T be the

Weyl group. If the symplectic quotients X//G and X//T are both compact, Martin’s theorem [M,

Theorem A] relates the cohomology1 of X//G to the cohomology of X//T . Specifically, it says that

H∗(X//G) ∼=
H∗(X//T )W

ann(e0)
,

where

e0 =
∏

α∈∆

α ∈ (Sym t∗)W ∼= H∗
T (pt)W ,

which acts naturally on H∗(X//T )W ∼= H∗
T (µ−1

T (0))W . In the case where X is a complex vector

space and G acts linearly on X , a similar result was obtained by Ellingsrud and Strømme [ES]

using different techniques.

Our goal is to state and prove an analogue of this theorem for hyperkähler quotients [HKLR].

There are two main obstacles to this goal. First, hyperkähler quotients are rarely compact. The

assumption of compactness in Martin’s theorem is crucial because his proof involves integration.

Generalizing an idea of [MNS] and [P], our answer to this problem is to work with equivariant

cohomology of circle compact manifolds, by which we mean oriented manifolds with an action of

S1 such that the fixed point set is oriented and compact. By the localization theorem of Atiyah-

Bott [AB] and Berline-Vergne [BV], integration in rationalized S1-equivariant cohomology of circle

compact manifolds can be defined in terms of integration on their fixed point sets. Section 1 is

devoted to making this statement precise by defining a well-behaved push forward in the rationalized

S1-equivariant cohomology of circle compact manifolds.

The second obstacle is that Martin’s result uses surjectivity [Ki] of the Kirwan map fromH∗
G(X)

to H∗(X//G). The analogous map for hyperkähler quotients is surjective only conjecturally. Our

approach is to assume that the rationalized Kirwan map is surjective, which is equivalent to saying

that the cokernel of the non-rationalized Kirwan map

κG : H∗
S1×G(X) → H∗

S1(X////G)

1In this paper cohomology means cohomology with rational coefficients.
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is torsion as a module over H∗
S1(pt). This is a weaker assumption than surjectivity of KG; in

particular, we show in Section 3 that this assumption holds for quiver varieties, as a consequence

of the work of Nakajima.

Under this assumption, Theorem 2.3 computes the rationalized equivariant cohomology ofX////G

in terms of that of X////T . We show that

Ĥ∗
S1(X////G) ∼=

Ĥ∗
S1(X////T )W

ann(e)
,

where

e =
∏

α∈∆

α(x− α) ∈ (Sym t∗)W ⊗ Q[x] ∼= H∗
S1×T (pt)W .

Theorem 2.4 describes the image of the non-rationalized Kirwan map in a similar way:

H∗
S1(X////G) ⊇ Im(κG) ∼=

(Im κT )W

ann(e)
,

where κT : H∗
S1×T (X) → H∗

S1(X////T ) is the Kirwan map for the abelian quotient. In many

situations, such as when X = T ∗Cn, κT is known to be surjective.

In Section 3 we show that all of the hypotheses of Theorems 2.3 and 2.4 are satisfied for

Nakajima’s quiver varieties. This way we can reduce questions about the (rationalized) equivariant

cohomology of quiver varieties to questions about the (rationalized) equivariant cohomology of toric

hyperkähler varieties (also called hypertoric varieties in [HP1]). The cohomology rings of toric

hyperkähler varieties are well understood, as in [BD], [HP1], [HS] and [K1]. When the hyperkähler

Kirwan map is known to be surjective, for example in the case of the Hilbert scheme of points on an

ALE space, Theorem 2.4 gives an explicit description of the cohomology ring of the quiver variety.

Such cases are discussed in Remarks 3.3 and 4.3.

We conclude in Section 4 by demonstrating how the ideas of the present paper work in the case

of a particular quiver variety, the so-called hyperpolygon space. We show that the hyperkähler

Kirwan map is surjective, and therefore our machinery reproduces, by different means, the results

of [K2, §7] and [HP2, §3].

Acknowledgment. We would like to acknowledge useful conversations with Hiraku Nakajima

and Michael Thaddeus. In particular an example of Thaddeus is used in Example 3.5. Financial

support was provided in part by NSF grants DMS-0072675 and DMS-0305505.

1 Integration

The localization theorem of Atiyah-Bott [AB] and Berline-Vergne [BV] says that given a manifold

M with a circle action, the restriction map from the circle equivariant cohomology ofM to the circle

equivariant cohomology of the fixed point set F is an isomorphism modulo torsion. In particular,

integrals on a compact M can be computed in terms of integrals on F . If F is compact, it is

possible to use the Atiyah-Bott-Berline-Vergne formula to define integrals on M .

We will work in the category of circle compact manifolds, by which we mean oriented S1-
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manifolds with compact and oriented fixed point sets. Maps between circle compact manifolds are

required to be equivariant.

Definition 1.1 Let K = Q(x), the rational function field of H∗
S1(pt) ∼= Q[x]. For a circle compact

manifold M , let Ĥ∗
S1(M) = H∗

S1(M)⊗K, where the tensor product is taken over the ring H∗
S1(pt).

We call Ĥ∗
S1(M) the rationalized S1-equivariant cohomology of M . Note that because deg(x) = 2,

Ĥ∗
S1(M) is supergraded, and supercommutative with respect to this supergrading.

An immediate consequence of [AB] is that restriction gives an isomorphism

Ĥ∗
S1(M) ∼= Ĥ∗

S1(F ) ∼= H∗(F ) ⊗Q K, (1)

where F = MS1
denotes the compact fixed point set of M . In particular Ĥ∗

S1(M) is a finite

dimensional vector space over K, and trivial if and only if F is empty.

Let i : N↪→M be a closed embedding. There is a standard notion of proper pushforward

i∗ : H∗
S1(N ) → H∗

S1(M)

given by the formula i∗ = r ◦ Φ, where r : H∗
S1(M,M \ N ) → H∗

S1(M) is the restriction map,

and Φ : H∗
S1(N ) → H∗

S1(M,M \ N ) is the Thom isomorphism. We will also denote the induced

map Ĥ∗
S1(N ) → Ĥ∗

S1(M) by i∗. Geometrically, i∗ can be understood as the inclusion of cycles in

Borel-Moore homology.

This map satisfies two important formal properties [AB]:

Functoriality: (i ◦ j)∗ = i∗ ◦ j∗ (2)

Module homomorphism: i∗(γ · i∗α) = i∗γ · α for all α ∈ Ĥ∗
S1(M), γ ∈ Ĥ∗

S1(N ). (3)

We will denote the Euler class i∗i∗(1) ∈ Ĥ∗
S1(N ) by e(N ). If a class γ ∈ Ĥ∗

S1(N ) is in the image

of i∗, then property (3) tells us that i∗i∗γ = e(N )γ. Since the pushforward construction is local in

a neighborhood of N in M , we may assume that i∗ is surjective, hence this identity holds for all

γ ∈ Ĥ∗
S1(N ).

Let F = MS1
be the fixed point set of M . Since M and F are each oriented, so is the normal

bundle to F inside of M . The following result is standard, see e.g. [Ki].

Lemma 1.2 The Euler class e(F ) ∈ Ĥ∗
S1(F ) of the normal bundle to F in M is invertible.

Proof: Let {F1, . . . , Fd} be the connected components of F . Since Ĥ∗
S1(F ) ∼=

⊕
Ĥ∗
S1(Fi) and

e(F ) = ⊕e(Fi), our statement is equivalent to showing that e(Fi) is invertible for all i. Since S1

acts trivially on Fi, Ĥ
∗
S1(Fi) ∼= H∗(Fi)⊗Q K. We have e(Fi) = 1⊗ axk + nil, where k = codim(Fi),

a is the product of the weights of the S1 action on any fiber of the normal bundle, and nil consists

of terms of positive degree in H∗(Fi). Since Fi is a component of the fixed point set, S1 acts freely

on the complement of the zero section of the normal bundle, therefore a 6= 0. Since axk is invertible

and nil is nilpotent, we are done. 2
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Definition 1.3 For α ∈ Ĥ∗
S1(M), let

∫

M
α =

∫

F

α|F
e(F )

∈ K.

Note that this definition does not depend on our choice of orientation of F . Indeed, reversing

the orientation of F has the effect of negating e(F ), and introducing a second factor of −1 coming

from the change in fundamental class. These two effects cancel.

For this definition to be satisfactory, we must be able to prove the following lemma, which is

standard in the setting of ordinary cohomology of compact manifolds.

Lemma 1.4 Let i : N↪→M be a closed immersion. Then for any α ∈ Ĥ∗
S1(M), γ ∈ Ĥ∗

S1(N ), we

have
∫
M α · i∗γ =

∫
N i

∗α · γ.

Proof: Let G = NS1
, let j : G → F denote the restriction of i to G, and let φ : F → M and

ψ : G→ N denote the inclusions of F and G into M and N , respectively.

N
i

−−−−→ M

ψ

x
xφ

G
j

−−−−→ F

Then ∫

M
α · i∗γ =

∫

F

φ∗α · φ∗i∗γ

e(F )
,

and ∫

N
i∗α · γ =

∫

G

ψ∗i∗α · ψ∗γ

e(G)
=

∫

G

j∗φ∗α · ψ∗γ

e(G)
=

∫

F
φ∗α · j∗

(
ψ∗γ

e(G)

)
,

where the last equality is simply the integration formula applied to the map j : G → F of compact

manifolds [AB]. Hence it will be sufficient to prove that

φ∗i∗γ = e(F ) · j∗

(
ψ∗γ

e(G)

)
∈ Ĥ∗

S1(F ).

To do this, we will show that the difference of the two classes lies in the kernel of φ∗, which we

know is trivial because the composition φ∗φ∗ is given by multiplication by the invertible class

e(F ) ∈ Ĥ∗
S1(F ). On the left hand side we get

φ∗φ
∗i∗γ = φ∗(1) · i∗γ by (3),

and on the right hand side we get

φ∗

(
e(F ) · j∗

(
ψ∗γ

e(G)

))
= φ∗

(
φ∗φ∗(1) · j∗

(
ψ∗γ

e(G)

))

= φ∗(1) · φ∗j∗

(
ψ∗γ

e(G)

)
by (3)

= φ∗(1) · i∗ψ∗

(
ψ∗γ

e(G)

)
by (2).
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It thus remains only to show that γ = ψ∗

(
ψ∗γ
e(G)

)
. This is seen by applying ψ∗ to both sides, which

is an isomorphism (working over the field K) by [AB]. 2

For α1, α2 ∈ Ĥ∗
S1(M), consider the symmetric, bilinear, K-valued pairing

〈α1, α2〉M =

∫

M
α1α2.

Lemma 1.5 (Poincaré Duality) This pairing is nondegenerate.

Proof: Suppose that α ∈ Ĥ∗
S1(M) is nonzero, and therefore φ∗α 6= 0. Since F is compact, there

must exist a class γ ∈ Ĥ∗
S1(F ) such that 0 6=

∫
F φ

∗α · γ =
∫
M α · φ∗γ = 〈α, φ∗γ〉M . 2

Definition 1.6 For an arbitrary equivariant map f : N →M , we may now define the pushforward

f∗ : Ĥ∗
S1(N ) → Ĥ∗

S1(M)

to be the adjoint of f∗ with respect to the pairings 〈·, ·〉N and 〈·, ·〉M . This is well defined be-

cause, according to (1), Ĥ∗
S1(M) and Ĥ∗

S1(N ) are finite dimensional vector spaces over the field K.

Lemma 1.4 tells us that this definition generalizes the definition for closed immersions. Further-

more, properties (2) and (3) for pushforwards along arbitrary maps are immediate corollaries of

the definition. If f is a projection, then f∗ will be given by integration along the fibers. Using the

fact that every map factors through its graph as a closed immersion and a projection, we always

have a geometric interpretation of the pushforward.

As an application, let us consider the manifold M ×M , along with the two projections π1 and

π2, and the diagonal map ∆ : M →M ×M . Suppose that we can write

∆∗(1) =
∑

π∗1αi · π
∗
2βi

for a finite collection of classes ai, bi ∈ Ĥ∗
S1(M). The following Proposition will be used in Section 3.

Proposition 1.7 The set {bi} is an additive basis for Ĥ∗
S1(M).

Proof: For any α ∈ Ĥ∗
S1(M), we have

α = id∗ id∗ α

= (π2 ◦ ∆)∗(π1 ◦ ∆)∗α

= π2∗

(
∆∗ (1 · ∆∗π∗1α)

)

= π2∗

(
π∗1α ·∆∗(1)

)

= π2∗

(∑
π∗1(aiα) · π∗2bi

)

=
∑

π2∗π
∗
1(aiα) · bi

=
∑

〈ai, α〉 · bi,
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hence α is in the span of {bi}. 2

2 An analogue of Martin’s theorem

Let X be a hyperkähler manifold with a circle action, and suppose that a compact Lie group G

acts hyperhamiltonianly on X . We will assume that the circle action preserves a given complex

structure I . Having chosen a particular complex structure on X , we may write the hyperkähler

moment map in the form

µG = µR ⊕ µC : X → g∗ ⊕ g∗C,

where µC is holomorphic with respect to I [HP1]. We require that the action of G commute with

the action of S1, that µR is S1-invariant, and that µC is S1-equivariant with respect to the action

of S1 on g∗C by complex multiplication. We do not ask the action of S1 on X to preserve the

hyperkähler structure.

Let T ⊆ G be a maximal torus, and let pr : g∗ → t∗ be the natural projection. Then T acts on

X with hyperkähler moment map

µT = pr ◦ µR ⊕ prC ◦ µC : X → t∗ ⊕ t∗C.

Let ξ ∈ g∗ be a central element such that (ξ, 0) is a regular value of µG and (pr(ξ), 0) is a regular

value of µT . Let

X////G = µ−1
G (ξ, 0)/G and X////T = µ−1

T (pr(ξ), 0)/T

be the hyperkähler quotients of X by G and T , respectively. Because µG and µT are circle equiv-

ariant, the action of S1 on X descends to actions on the hyperkähler quotients. Note that X////T

also inherits an action of the Weyl group W of G.

Example 2.1 Suppose that G acts linearly on Cn with moment map µ : Cn → g∗, and let X be

the hyperkähler manifold T ∗Cn ∼= Hn. The action of G on Cn induces an action of G on X with

hyperkähler moment map

µR(z, w) = µ(z) − µ(w) and µC(z, w)(v) = w(v̂z),

where w ∈ T ∗
z Cn ∼= Cn, v ∈ g∗C, and v̂z the element of TzC

n induced by v [HP1]. The action

of G commutes with the action of S1 on X given by scalar multiplication on each fiber, and the

hyperkähler moment map is equivariant. The quotient X////G is a partial compactification of the

cotangent bundle T ∗(X//G), and is circle compact if µ is proper [HP1, 1.3].

Consider the Kirwan maps

κG : H∗
S1×G(X) → H∗

S1(X////G) and κT : H∗
S1×T (X) → H∗

S1(X////T ),

induced by the inclusions of µ−1
G (ξ, 0) and µ−1

T (pr(ξ), 0) into X , along with their rationalizations

κ̂G : Ĥ∗
S1×G(X) → Ĥ∗

S1(X////G) and κ̂T : Ĥ∗
S1×T (X) → Ĥ∗

S1(X////T ).
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Let

rGT : Ĥ∗
S1×G(X) → Ĥ∗

S1×T (X)W

be the standard isomorphism.

Let ∆ = ∆+ t ∆− ⊂ t∗ be the set of roots of G. Let

e =
∏

α∈∆

α(x− α) ∈ (Sym t∗)W ⊗ Q[x] ∼= HS1×G(pt) ⊆ ĤS1×G(pt),

and

e′ =
∏

α∈∆−

α ·
∏

α∈∆

(x− α) ∈ Sym t∗ ⊗ Q[x] ∼= HS1×T (pt) ⊆ ĤS1×T (pt).

The following two theorems are analogues of Theorems B and A of [M], adapted to circle compact

hyperkähler quotients. Our proofs follow closely those of Martin.

Theorem 2.2 Suppose that X////G and X////T are both circle compact. If γ ∈ Ĥ∗
S1×G

(X), then

∫

X////G

κ̂G(γ) =
1

|W |

∫

X////T

κ̂T ◦ rGT (γ) · e.

Theorem 2.3 Suppose that X////G and X////T are both circle compact, and that the rationalized

Kirwan map κ̂G surjective. Then

Ĥ∗
S1(X////G) ∼=

Ĥ∗
S1(X////T )W

ann(e)
∼=

(
Ĥ∗
S1(X////T )

ann(e′)

)W
.

Proof of 2.2: Consider the following pair of maps:

µ−1
G (ξ, 0)/T

i
−−−−→ µ−1

T (pr(ξ), 0)/T ∼= X////T

π

y

µ−1
G (ξ, 0)/G∼= X////G.

Each of these spaces is a complex S1-manifold with a compact, complex fixed point set, and therefore

satisfies the hypotheses of Section 1. Let

b =
∏

α∈∆+

α ∈ HS1×T (pt)

be the product of the positive roots of G, which we will think of as an element of Ĥ∗
S1(X////T ).
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Martin shows that π∗i
∗b = |W |, and that i∗ ◦ κ̂T ◦ rGT = π∗κ̂G [M], hence we have

∫

X////G

κ̂G(γ) =
1

|W |

∫

X////G

κ̂G(γ) · π∗i
∗b

=
1

|W |

∫

µ−1
G

(ξ,0)/T

π∗κ̂G(γ) · i∗b by Definition 1.6

=
1

|W |

∫

µ−1
G

(ξ,0)/T
i∗ ◦ κ̂T ◦ rGT (γ) · i∗b

=
1

|W |

∫

X////T
κ̂T ◦ rGT (γ) · b · i∗(1) by Lemma 1.4.

It remains to compute i∗(1) ∈ Ĥ∗
S1(X////T ). For α ∈ ∆, let

Lα = µ−1
T ((pr(ξ), 0)×T Cα

be the line bundle onX////T with S1-equivariant Euler class α. Similarly, let Lx be the (topologically

trivial) line bundle with S1-equivariant Euler class x. Following the idea of [M, 1.2.1], we observe

that the restriction of µG − (ξ, 0) to µ−1
T (pr(ξ), 0) defines an S1 × T -equivariant map

s : µ−1
T (pr(ξ), 0) → V ⊕ VC,

where V = pr−1(0) and VC = pr−1
C (0). This descends to an S1-equivariant section of the bundle

E = µ−1
T (pr(ξ), 0)×T (V ⊕ VC) with zero locus µ−1

G (ξ, 0)/T . The fact that (ξ, 0) is a regular value

implies that this section is generic, hence the equivariant Euler class e(E) ∈ Ĥ∗
S1(X////T ) is equal

to i∗(1).

The vector space V is isomorphic as a T -representation to
⊕

α∈∆− Cα, with S1 acting trivially.

Similarly, VC is isomorphic to V ⊗ C ∼= V ⊕ V ∗, with S1 acting diagonally by scalars. Hence

E ∼=
⊕

α∈∆−

Lα ⊕
⊕

α∈∆−

(Lx ⊗ Lα) ⊕ (Lx ⊗ L−α)

∼=
⊕

α∈∆−

Lα ⊕
⊕

α∈∆

Lx ⊗ L−α,

and therefore

i∗(1) = e(E) =
∏

α∈∆−

α ·
∏

α∈∆

(x− α) = e′.

Multiplying by b we obtain e, and the theorem is proved. 2

Proof of 2.3: Observe that the restriction of π∗ to the Weyl-invariant part Ĥ∗
S1

(
µ−1
G (ξ, 0)/T

)W

is given by the composition of isomorphisms

Ĥ∗
S1

(
µ−1
G (ξ, 0)/T

)W ∼= Ĥ∗
S1×T

(
µ−1
G (ξ, 0)

)W ∼= Ĥ∗
S1×G

(
µ−1
G (ξ, 0)

)
∼= Ĥ∗

S1(X////G),
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hence we may define

i∗W := (π∗)−1 ◦ i∗ : Ĥ∗
S1(X////T )W → Ĥ∗

S1

(
µ−1
G (ξ, 0)/T

)W
.

Furthermore, we have κ̂G = i∗W ◦ κ̂T ◦ rGT , hence i∗W is surjective. As in [M, §3],

i∗W (a) = 0 ⇔ ∀c ∈ Ĥ∗
S1(X////T )W ,

∫

X////G
i∗W (c) · i∗W (a) = 0 by 1.5 and surjectivity of i∗W

⇔ ∀c ∈ Ĥ∗
S1(X////T )W ,

∫

X////T
c · a · e = 0 by Theorem 2.2

⇔ ∀d ∈ Ĥ∗
S1(X////T ),

∫

X////T
d · a · e = 0 by using W to average d

⇔ a · e = 0 by Lemma 1.5,

hence ker i∗W = ann(e). By surjectivity of i∗W ,

Ĥ∗
S1(X////G) ∼=

Ĥ∗
S1(X////T )W

ker i∗W

∼=
Ĥ∗
S1(X////T )W

ann(e)
.

By a second application of Lemma 1.5, for any a ∈ Ĥ∗
S1(X////T ), we have

i∗(a) = 0 ⇒ ∀f ∈ Ĥ∗
S1(µ

−1
G (ξ, 0)/T ),

∫

µ−1
G

(ξ,0)/T
f · i∗(a) = 0

⇒ ∀c ∈ Ĥ∗
S1(X////T ),

∫

µ−1
G

(ξ,0)/T
i∗(c) · i∗(a) = 0

⇒ ∀c ∈ Ĥ∗
S1(X////T ),

∫

X////T

c · a · i∗(1) = 0 by Lemma 1.4

⇒ a · e′ = a · i∗(1) = 0 by Lemma 1.5,

hence ker i∗ ⊆ ann(e′). This gives us a natural surjection

Ĥ∗
S1(X////T )W

ann(e)
=
Ĥ∗
S1(X////T )W

ker i∗W

∼=

(
Ĥ∗
S1(X////T )

ker i∗

)W
→

(
Ĥ∗
S1(X////T )

ann(e′)

)W
,

which is also injective because e′ divides e. This completes the proof of Theorem 2.3. 2

For the non-rationalized version of Theorem 2.3, we make the additional assumption that X////G

and X////T are equivariantly formal S1-manifolds, i.e. that H∗
S1(X////G) and H∗

S1(X////T ) are free

modules over H∗
S1(pt). This is the case whenever the circle action is hamiltonian and its moment

map is proper and bounded below (see [Ki] and [HP1, 4.7]).

Theorem 2.4 Suppose that X////G and X////T are equivariantly formal, circle compact, and that
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the rationalized Kirwan map κ̂G is surjective. Then

H∗
S1(X////G) ⊇ Im(κG) ∼=

(Im κT )W

ann(e)
∼=

(
Im κT
ann(e′)

)W
.

Remark 2.5 In the context of Example 2.1 with pr ◦ µ proper, X////G and X////T are both cir-

cle compact and equivariantly formal, and κT is always surjective [HP1]. Note that this applies

throughout Sections 3 and 4.

Proof of 2.4: Consider the following exact commutative diagram

0 // A //

��

H∗
S1(X////T )W

i∗
W

//

��

H∗
S1(X////G)

��

0 // Â // Ĥ∗
S1(X////T )W

i∗
W

// Ĥ∗
S1(X////G).

Equivariant formality implies that the downward maps in the above diagram are inclusions, hence

the map on top labeled i∗W is simply the restriction of the map on the bottom to the subring

H∗
S1(X////T ) ⊆ Ĥ∗

S1(X////T ). We therefore have

A = Â ∩H∗
S1(X////T )W = ann(e).

Just as in the rationalized case, we have κG = i∗W ◦ κT ◦ rGT , hence

Im(κG) ∼= i∗W
(
Im κT ◦ rGT

)
∼=

(ImκT )W

ann(e)
.

Now consider the analogous diagram

0 // B //

��

H∗
S1(X////T ) i∗

//

��

H∗
S1(µ

−1
G (ξ, 0)/T )

��

0 // B̂ // Ĥ∗
S1(X////T )

i∗
// H∗

S1(µ
−1
G (ξ, 0)/T ).

Since we have not assumed that µ−1
G (ξ, 0)/T is equivariantly formal, we only know that the first two

downward arrows are inclusions, and hence can only conclude that B is contained in the annihilator

of e′. Since e′ divides e, we have a series of natural surjections

(Im κT )W

ann(e)
∼=

(Im κT )W

A
∼=

(
Im κT
B

)W
→

(
Im κT
ann(e′)

)W
→

(
Im κT
ann(e)

)W
.

The composition of these maps is an isomorphism, hence so is each one. 2

10



3 Quiver varieties

Let Q be a quiver with vertex set I and edge set E ⊆ I × I , where (i, j) ∈ E means that Q has an

arrow pointing from i to j. We assume that Q is connected and has no oriented cycles. Suppose

given two collections of vector spaces {Vi} and {Wi}, each indexed by I , and consider the affine

space

A =
⊕

(i,j)∈E

Hom(Vi, Vj) ⊕
⊕

i∈I

Hom(Vi, Wi).

The group U(V ) =
∏
i∈I U(Vi) acts on A by conjugation, and this action is hamiltonian. Given an

element

(B, J) =
⊕

(i,j)∈E

Bij ⊕
⊕

i∈I

Ji

of A, the u(Vi)
∗ component of the moment map is

µi(B, J) = J†
i Ji +

∑

(i,j)∈E

B†
ijBij ,

where † denotes adjoint, and u(Vi)
∗ is identified with with the set of hermitian matrices via the

trace form. Given a generic central element ξ ∈ u(V )∗, the Kähler quotient A//ξU(V ) parameterizes

stable, framed representations of Q of fixed dimension [N1]. If Wi = 0 for all i, then the diagonal

circle U(1) in the center of U(V ) acts trivially, and we instead quotient by PU(V ) = U(V )/U(1).

Consider the hyperkähler quotient

M = T ∗A////(ξ,0)U(V ).

As in Example 2.1, M has a natural circle action induced from scalar multiplication on the fibers

of T ∗A. We now show that X = T ∗A satisfies the hypotheses of Theorems 2.3 and 2.4.

Proposition 3.1 Let T (V ) ⊆ U(V ) be a maximal torus, and let pr : u(V )∗ → t(V )∗ be the natural

projection. The moment maps µ =
⊕

i∈I
µi : A→ u(V )∗ and pr ◦ µ : A→ t(V )∗ are each proper.

Proof: To show that µ and pr ◦ µ is proper, it suffices to find an element t ∈ T (V ) ⊆ U(V ) such

that the weights of the action of t on A are all strictly positive. Let λ = {λi | i ∈ I} be a collection

of integers, and let t ∈ T (V ) be the central element of U(V ) that acts on Vi with weight λi for all

i. Then t acts on Hom(Vi, Vj) with weight λj−λi, and on Hom(Vi, Wi) with weight −λi. Hence we

have reduced the problem to showing that it is possible to choose λ such that λi < 0 for all i ∈ I

and λi < λj for all (i, j) ∈ E.

We proceed by induction on the order of I . Since Q has no oriented cycles, there must exist a

source i ∈ I ; a vertex such that for all j ∈ I , (j, i) /∈ E. Deleting i gives a smaller (possibly discon-

nected) quiver with no oriented cycles, and therefore we may choose {λj | j ∈ I r {i}} such that

λj < 0 for all j ∈ Ir{i} and λj < λk for all (j, k) ∈ E. We then choose λi < min{λj | j ∈ I r {i}},

and we are done. 2

Proposition 3.2 The rationalized Kirwan map κ̂U (V ) : Ĥ∗
S1×U (V )(T

∗A) → Ĥ∗
S1(M) is surjective.
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Proof: Nakajima [N2, §7.3] shows that there exist cohomology classes ai, bi in the image of κ̂U (V )

such that ∆∗(1) =
∑
π∗1ai · π

∗
2bi. (Nakajima uses a slightly modified circle action, but his proof is

easily adapted to the circle action that we have defined.) It follows from Proposition 1.7 that the

classes {bi} generate Ĥ∗
S1(M). 2

Remark 3.3 This Proposition shows that the assumptions of Theorems 2.2, 2.3, and 2.4 are satis-

fied for Nakajima’s quiver varieties. Thus integration in equivariant cohomology yields a description

of the rationalized S1-equivariant cohomology, and also of the image of the non-rationalized Kirwan

map κG. Therefore if we know that κG is surjective for a particular quiver variety, then we have

a concrete description of the (S1-equivariant) cohomology ring of that quiver variety. It is known

that κG is surjective for Hilbert schemes of n points on an ALE space, so our theory applies and

gives a description of the cohomology ring of these quiver varieties. It would be interesting to

compare our result in this case with that of [LS] and [LQW]. More examples of quiver varieties

with surjective Kirwan map are given in Remark 4.3.

Remark 3.4 Another interesting application of Proposition 1.7 is for the moduli space of Higgs

bundles. It is an easy exercise to write down the cohomology class of the diagonal in M ×M as

an expression in the tautological classes for the equivariantly formal and circle compact moduli

space M of stable rank n and degree 1 Higgs bundles on a genus g > 1 smooth projective algebraic

curve C. Therefore Proposition 1.7 implies that the rationalized S1-equivariant cohomology ring

Ĥ∗
S1(M) is generated by tautological classes. In fact the same result follows from the argument

of [HT1]. There M was embedded into a circle compact manifold M∞, whose cohomology is the

free algebra on the tautological classes. The argument in [HT1] then goes by showing that the

embedding of the S1-fixed point set of M in that of M∞ induces a surjection on cohomology. This

already implies that Ĥ∗
S1(M∞) surjects onto Ĥ∗

S1(M). In [HT1] it is shown that in the rank 2 case

this embedding also implies the surjection on non-rationalized cohomology, and then a companion

paper [HT2] describes the cohomology ring of M explicitly. However for higher rank this part

of the argument of [HT1] breaks down. Later Markman [Ma] used similar diagonal arguments on

certain compactifications of M and Hironaka’s celebrated theorem on desingularization of algebraic

varieties to deduce that the cohomology ring of M is generated by tautological classes for all n.

Example 3.5 Here we present an example of an embedding of circle compact manifolds, due to

Thaddeus [T], where surjection on rationalized S1-equivariant cohomology does not imply surjection

on S1-equivariant cohomology. Let S1 act on P1 × P1 by

((x : y), (u : v)) 7→ ((λx : y), (u : v))

and on P3 by

(z1 : z2 : z3 : z4) 7→ (λz1 : λz2 : z3 : z4).

Then the Segré embedding i : P1 × P1 → P3 given by

i
(
(x : y), (u : v)

)
= (xu : xv : yu : yv)

is S1-equivariant, and clearly induces an isomorphism on the fixed point sets of the S1 action.

Therefore i∗ : Ĥ∗
S1(P

3) → Ĥ∗
S1(P

1 × P1) is surjective, and in fact an isomorphism, however i∗ :

12



H∗
S1(P

3) → H∗
S1(P

1 × P1) is only an injection and therefore cannot be surjective.

4 Hyperpolygon spaces

We conclude by illustrating Theorem 2.4 with a computation of the equivariant cohomology ring

of a hyperpolygon space. Proposition 4.4 first appeared in [HP2], and Corollary 4.5 in [K2], both

obtained by geometric arguments completely different from those used here.

A hyperpolygon space, introduced in [K2], is a quiver variety associated to the following quiver

(Figure 1), with V0 = C2, Vi = C1 for i ∈ {1, . . . , n}, and Wi = 0 for all i. It is so named because,

for

ξ =

(

−
1

2

n∑

i=1

ξi; ξ1, . . . , ξn

)

∈ pu(V )∗ ⊆ u(2)∗ ⊕ u(1)n,

the Kähler quotient A//ξPU(V ) ∼= (C2)n//ξPU(V ) parameterizes n-sided polygons in R3 with edge

lengths ξ1, . . . , ξn, up to rotation [HK].
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Figure 1: The quiver for a hyperpolygon space.

We will simplify our computations by dividing first by the torus
∏n
i=1 U(Vi). We have

M =
(
T ∗C2

)n////
PU(V )

∼=

(
(
T ∗C2

)n//// n∏

i=1

U(Vi)

)////
SU(2)

∼=

n∏

i=1

T ∗CP 1
////

SU(2),

where the action of SU(2) on each copy of T ∗CP 1 is induced by the rotation action on CP 1 ∼= S2.

Proposition 4.1 The non-rationalized Kirwan map κU (V ) : H∗
S1×U (V )(T

∗C2n) → H∗
S1(M) is sur-

jective.

Proof: The map κU (V ) factors as a composition

H∗
S1×U (V )(T

∗C2n) → H∗
S1×SU (2)

(
n∏

i=1

T ∗CP 1

)
κSU(2)
−→ H∗

S1(M),
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where the first map is the Kirwan map for a toric hyperkähler variety, and therefore surjective by

[HP1]. Hence it suffices to show that κSU (2) is surjective.

The level set µ−1
C (0) for the action of SU(2) on

∏n
i=1 T

∗CP 1 is a subbundle of the cotangent

bundle, given by requiring the n cotangent vectors to add to zero after being restricted to the

diagonal CP 1. In particular this set is smooth, and its S1 × SU(2)-equivariant cohomology ring is

canonically isomorphic to that of
∏n
i=1 T

∗CP 1. Hence κSU (2) factors as

H∗
S1×SU (2)

(
n∏

i=1

T ∗CP 1

)
∼= H∗

S1×SU (2)

(
µ−1

C (0)
)
→ H∗

S1

(
µ−1

C (0)//SU(2)
)
∼= H∗

S1(M),

where the map in the middle is the Kähler Kirwan map. Surjectivity of this map follows from the

following more general lemma, applied to the manifold µ−1
C (0).

Lemma 4.2 Suppose given a hamiltonian action of S1×G on a symplectic manifold X , such that

the S1 component of the moment map is proper and bounded below with finitely many critical values.

Then the Kähler Kirwan map κ : H∗
S1×G(X) → H∗

S1(X//G) is surjective.

Proof: Extend the action of S1 to an action onX×C by letting S1 act only on the left-hand factor.

On the other hand, consider a second copy of the circle, which we will call T to avoid confusion,

acting diagonally on X × C. Choose r ∈ Lie(T)∗ ∼= R greater than the largest critical value of the

T-moment map, and consider the space

Cut(X//G) := (X × C) //rT ×G ∼=
(
(X//G)× C

)
//rT.

This space, which is called the symplectic cut of X//G [L], is an S1-equivariant (orbifold) compact-

ification of X//G. We then have a commutative diagram

H∗
S1×G×T

(X × C) −−−−→ H∗
S1×G(X)

y
yκ

H∗
S1(Cut(X//G)) −−−−→ H∗

S1(X//G).

The vertical map on the left is surjective because the G× T moment map is proper, and the map

on the bottom is surjective because the long exact sequence in cohomology for X//G ⊆ Cut(X//G)

splits naturally, hence κ is surjective as well. 2

By applying Lemma 4.2 to X = µ−1
C

(0), this completes the proof of Proposition 4.1. 2

Remark 4.3 The argument in Proposition 4.1 generalizes immediately to show that the hy-

perkähler Kirwan map for the quotient

(
n∏

i=1

T ∗Flag(Ck)

)////
SU(k)

is surjective. This is itself a quiver variety, and like the hyperpolygon space, it has a moduli
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theoretic interpretation. The Kähler quotient

(
n∏

i=1

Flag(Ck)

)//
SU(k)

is isomorphic to the space of n-tuples of k× k hermitian matrices with fixed eigenvalues adding to

zero, modulo conjugation. This space has been studied by many authors. The classical problem,

due to Horn, of determining the values of the moment map for which it is nonempty, has only

recently been solved [KT]. For a survey, see [Fu].

To compute the kernel of the hyperkähler Kirwan map for the hyperpolygon space, we first

need to study the abelian quotient

N :=

n∏

i=1

T ∗CP 1
////

T,

where T ∼= U(1) ⊆ SU(2) is a maximal torus. The space
∏n
i=1 T

∗CP 1 is a toric hyperkähler

manifold [BD], given by an arrangement of 2n hyperplanes in Rn, where the (2i− 1)st and (2i)th

hyperplanes are given by the equations xi = ±ξi. Taking the hyperkähler quotient by T corresponds

on the level of arrangements to restricting this arrangement to the hyperplane {x ∈ Rn |
∑
xi = 0}.

Call a subset S ⊆ {1, . . . , n} short if
∑

i∈S

ξi <
∑

j∈Sc

ξj. Requiring that ξ is a regular value of the

hyperkähler moment map is equivalent to requiring that for every S ⊆ {1, . . . , n}, either S or Sc is

short [K2]. Applying [HP1, 4.5], we have

H∗
S1 (N) ∼= Q[a1, b1, . . . , an, bn, α, x]

/〈
ai − bi − α, aibi

∣∣∣ i ≤ n
〉

+
〈
AS, BS

∣∣∣ S short
〉
,

where

AS =
∏

i∈S

(x− ai)
∏

j∈Sc

bj and BS =
∏

i∈S

(x− bi)
∏

j∈Sc

aj.

Here α is the image in H∗
S1 (N) of the unique positive root of SU(2). The Weyl group W of SU(2),

isomorphic to Z/2Z, acts on this ring by fixing x and switching ai and bi for all i. Let ci = ai + bi,

and let CS = AS + BS. Let

P = Q[c1, . . . , cn, α, x]
/〈

c2i − α2
∣∣∣ i ≤ n

〉

and

Q = PW = Q[c1, . . . , cn, α
2, x]

/〈
c2i − α2

∣∣∣ i ≤ n
〉
.

Let

I =
〈
AS , BS

∣∣∣ S short
〉
⊆ P and J =

〈
CS

∣∣∣ S short
〉
⊆ Q,

so that

H∗
S1(N) ∼= P/I and H∗

S1(N)W ∼= Q/J .

Note that all odd powers of α in the expression for CS = AS +BS cancel out.
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Then by Theorem 2.4 and Remark 2.5,

H∗
S1(M) ∼=

H∗
S1 (N)W

ann(e)
∼=

Q

(e : J )
,

where e = α2(x2 − α2), and (e : J ) is the ideal of elements of Q whose product with e lies in J .

If S is a nonempty short subset, let mS be the smallest element of S, nS the smallest element

of Sc, and

DS =
∏

mS 6=i∈S

(ci − x) ·
∏

nS 6=j∈Sc

(cnS
+ cj) ∈ Q.

Proposition 4.4 The equivariant cohomology ring H∗
S1(M) is isomorphic to2

Q
/〈
DS | ∅ 6= S short

〉
.

Proof: We begin by proving that e · DS ∈ J for all nonempty short subsets S ⊆ {1, . . . , n}. We

will in fact prove the slightly stronger statement

e ·DS ∈
〈
CT

∣∣∣ T ⊆ S short
〉
⊆ J ,

proceeding by induction on |S|. We will assume, without loss of generality, that n ∈ S. The base

case occurs when S = {n}, and in this case we observe that

e ·DS = 2n−3 · (x+ cn) ·
(
(2x− cn) · C∅ − cn · CS

)
.

We now proceed to the inductive step, assuming that the proposition is proved for all short subsets

of size less than |S|, and all values of n. For all T ⊆ S r {n}, we have

1

2

(
CT −CT∪{n}

)
= (cn − x) ·C′

T ,

where C′
T is the polynomial in the variables {c1, . . . , cn−1, α

2} corresponding to the short subset

T ⊆ {1, . . . , n− 1}. Since S r {n} is a short subset of {1, . . . , n − 1} of size strictly smaller than

S, our inductive hypothesis tells us that e ·DS/(cn − x) can be written as a linear combination of

polynomials C′
T , where the coefficients are quadratic polynomials in {c1, . . . , cn−1, α

2}. Replacing

C′
T with 1

2

(
CT − CT∪{n}

)
= (cn − x) · C′

T , we have expressed e · DS in terms of the appropriate

polynomials. This completes the induction.

Suppose that F ∈ Q is an element of degree less than n− 2 such that e ·F ∈ J . By the second

isomorphism of Theorem 2.4, this implies that e′ ·F ∈ I ⊆ P , where e′ = α(x2 −α2). Consider the

quotient ring R of P obtained by setting a2
i = b2i = x = 0 for all i. (Recall that ai = 1

2(ci + α) and

bi = 1
2(ci − α).) Then element e′ maps to zero in R, while the generators {AS, BS} of I descend

to a basis for the nth degree part of R. This means that we must have e′ · F = 0 ∈ P . Using the

additive basis for P consisting of monomials that are squarefree in the variables c1, . . . , cn, it is

easy to check that e′ is not a zero divisor in P , and therefore that F = 0.

2The class denoted by ci in [HP2] differs from our ci by a sign, hence to recover the presentation of [HP2] we must
replace ci − x with ci + x in the expression for DS.
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Finally, we must show that {DS | ∅ 6= S short} generates all elements of (e : J ) of degree

at least n − 2. Let F be an element of minimal degree k ≥ n − 2 that is in (e : J ) but not

〈DS | ∅ 6= S short〉. In the proof of [HP2, 3.2] it is shown that {DS | ∅ 6= S short} descends to

a basis for the degree n − 2 part of the quotient ring Q/〈x〉, hence F differs from an element of

〈DS | ∅ 6= S short〉 by x · F ′ for some F ′ of degree k − 1. By equivariant formality of H∗
S1(M),

x · F ′ = F ∈ (e : J ) ⇒ F ′ ∈ (e : J ),

which contradicts the minimality of k = degF . Hence 〈DS | ∅ 6= S short〉 = (e : J ), and the

proposition is proved. 2

Corollary 4.5 The ordinary cohomology ring H∗(M) is isomorphic to

Q[c1, . . . , cn]
/〈
c2i − c2j | i, j ≤ n

〉
+ 〈all monomials of degree n − 2〉.

Proof: This follows from the fact that H∗(M) ∼= H∗
S1(M)/〈x〉 for any equivariantly formal space

M , and the observation in [HP2] that {DS | ∅ 6= S short} descends to a basis for the degree n − 2

part of Q/〈x〉. 2
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J. 50 (1983), no. 2, 539–549.

[BD] R. Bielawski and A. Dancer. The geometry and topology of toric hyperkähler manifolds. Comm. Anal. Geom.

8 (2000), 727–760.

[ES] G. Ellingsrud and S.A. Strømme. On the Chow ring of a geometric quotient. Ann. of Math. (2) 130 (1989), no.

1, 159–187.

[Fu] W. Fulton. Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Amer. Math. Soc. 37

(2000), no. 3, 209–249 .

[HP1] M. Harada and N. Proudfoot. Properties of the residual circle action on a hypertoric variety. To appear in

the Pacific J. of Math. arXiv: math.DG/0207012.

[HP2] M. Harada and N. Proudfoot. Hyperpolygon spaces and their cores,. To appear in Transactions of the A.M.S.

arXiv: math.AG/0308218

[HS] T. Hausel and B. Sturmfels. Toric hyperkähler varieties. Documenta Mathematica 7 (2002), 495–534, arXiv:

math.AG/0203096.

[HT1] T. Hausel and M. Thaddeus. Generators for the cohomology ring of the moduli space of rank 2 Higgs bundles.

To appear in Proc. London Mat. Soc., arXiv: math.AG/0003093.

[HT2] T. Hausel and M. Thaddeus. Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles,

J. Amer. Math. Soc., 16 (2003), 303–329 arXiv: math.AG/0003094.

[HK] J-C. Hausmann and A. Knutson. The cohomology ring of polygon spaces. Ann. Inst. Fourier, Grenoble 48

(1998), no. 1, 281-321.

[HKLR] N. Hitchin, A. Karlhede, U. Lindström, M. Rocek. Hyperkähler metrics and supersymmetry. Comm. Math.

Phys. 108 (1987), 535-589.

17



[Ki] F.C. Kirwan. Cohomology of quotients in symplectic and algebraic geometry. Mathematical Notes 31, Princeton

University Press, 1984.

[KT] A. Knutson and T. Tao. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture.

Journal of the A.M.S. 12 (1999), no. 4, 1055–1090.

[K1] H. Konno. Cohomology rings of toric hyperkähler manifolds. Internat. J. Math. 11 (2000), no. 8, 1001–1026.

[K2] H. Konno. On the cohomology ring of the HyperKähler analogue of the Polygon Spaces. Integrable systems,

topology, and physics (Tokyo, 2000), 129–149, Contemp. Math., 309, Amer. Math. Soc., Providence, RI, 2002.

[L] E. Lerman. Symplectic cuts. Math. Res. Lett. 2 (1995), no. 3, 247–258.

[LQW] W-P. Li, Z. Qin, W. Wang. Ideals of the cohomology rings of Hilbert schemes and their applications. arXiv:

math.AG/0208070.

[LS] M. Lehn and C. Sorger. Symmetric groups and the cup product on the cohomology of Hilbert schemes. Duke

Math. J. 110 (2001), 345-357.

[Ma] E. Markman. Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces. J. Reine

Angew. Math. 544 (2002), 61–82.

[M] S. Martin. Symplectic quotients by a nonabelian group and by its maximal torus. To appear in the Ann. of

Math. arXiv: math.SG/0001002.

[MNS] G. Moore, N. Nekrasov, S. Shatashvili. Integrating over Higgs branches. Comm. Math. Phys. 209 (2000),

no. 1, 97–121.

[N1] H. Nakajima. Varieties associated with quivers. Canadian Math. Soc. Conf. Proc. 19 (1996), 139–157.

[N2] H. Nakajima. Quiver varieties and finite dimensional representations of quantum affine algebras. J. Amer.

Math. Soc. 14 (2001), 145–238. arXiv: math.QA/9912158.

[P] P. Paradan. The moment map and equivariant cohomology with generalized coefficients. Topology 39 (2000),

no. 2, 401–444.

[T] M. Thaddeus. private communication.

18


