Let M be a matroid. The Kazhdan-Lusztig polynomial $P_{M}(t) \in \mathbb{Z}[t]$ was introduced in [EPW16], and the closely related Z-polynomial $Z_{M}(t) \in \mathbb{Z}[t]$ was introduced in PXY18. Kazhdan-Lusztig polynomials of matroids are neither special cases nor generalizations of classical Kazhdan-Lusztig polynomials. Rather, both classes of polynomials are special cases of Kazhdan-Lusztig-Stanley polynomials; see [Pro18] for more details. The following conjecture appears in [GPY17b, 3.2] and [PXY18, 5.1].

Conjecture 1. The polynomials $P_{M}(t)$ and $Z_{M}(t)$ are real rooted.
Remark 2. We also have various conjectures that say that the roots of the Kazhdan-Lusztig polynomials or Z-polynomials of various matroids should interlace. For the conjectural statement about Kazhdan-Lusztig polynomials, see [GPY17b, 3.4 and 3.5]. The Z-polynomial statement should roughly say that $Z_{M}(t)$ and $Z_{M / e}(t)$ have interlacing roots, but one has to rule out degenerate examples. For example, if M is the thagomizer matroid of rank 4 and e is the distinguished element of the ground set, then M / e is Boolean, thus $Z_{M / e}(t)=(1+t)^{3}$. But this does not interlace with $Z_{M}(t)=1+11 t+21 t^{2}+11 t^{3}+t^{4}$.

Remark 3. If there is a finite group W acting on M, then these polynomials have equivariant analogues $P_{M}^{W}(t)$ GPY17a] and $Z_{M}^{W}(t)$ PXY18], whose coefficients isomorphism classes of representations of W. I've made various attempt to formulate equivariant versions of Conjecture 1 (involving minors of the Toeplitz matrix) and Remark 2 (involving minors of the Bézout matrix), but I keep finding counterexamples. For instance, $Z_{U_{n-1, n}}^{S_{n}}(t)$ fails to be real rooted or to equivariantly interlace with $Z_{U_{n, n+1}}^{S_{n}}(t)$ when n is large.

References

[EPW16] Ben Elias, Nicholas Proudfoot, and Max Wakefield, The Kazhdan-Lusztig polynomial of a matroid, Adv. Math. 299 (2016), 36-70.
[GPY17a] Katie Gedeon, Nicholas Proudfoot, and Benjamin Young, The equivariant KazhdanLusztig polynomial of a matroid, J. Combin. Theory Ser. A 150 (2017), 267-294.
[GPY17b] , Kazhdan-Lusztig polynomials of matroids: a survey of results and conjectures, Sém. Lothar. Combin. 78B (2017), Art. 80, 12.
[Pro18] Nicholas Proudfoot, The algebraic geometry of Kazhdan-Lusztig-Stanley polynomials, EMS Surv. Math. Sci. 5 (2018), no. 1, 99-127.
[PXY18] Nicholas Proudfoot, Yuan Xu, and Ben Young, The Z-polynomial of a matroid, Electron. J. Combin. 25 (2018), no. 1, Paper 1.26, 21.

