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Abstract. We study q-analogues of uniform matroids, which we call q-niform matroids. While

uniform matroids admit actions of symmetric groups, q-niform matroids admit actions of finite

general linear groups. We show that the equivariant Kazhdan–Lusztig polynomial of a q-

niform matroid is the unipotent q-analogue of the equivariant Kazhdan–Lusztig polynomial of

the corresponding uniform matroid, thus providing evidence for the positivity conjecture for

equivariant Kazhdan–Lusztig polynomials.

1 Introduction

For any matroid M , the Kazhdan–Lusztig polynomial PM (t) ∈ Z[t] was introduced in [EPW16].

In the case where the matroid M admits the action of a finite group W , one can define the equiv-

ariant Kazhdan–Lusztig polynomial PWM (t) [GPY17]; this is a polynomial whose coefficients

are virtual representations of W (in characteristic zero) with dimensions equal to the coefficients of

PM (t).

Though these polynomials admit elementary recursive definitions, there are not many families

of matroids for which explicit formulas are known. Non-equivariant formulas exist for thagomizer

matroids [Ged17] and fan, wheel, and whirl matroids [LXY]. Kazhdan–Lusztig polynomials of braid

matroids have been studied extensively, both in the equivariant [PY17] and non-equivariant [KW]

settings, though no simple formulas have been obtained.

The most interesting explicit formulas that we have are for uniform matroids. Let Un,m be the

uniform matroid of rank n−m on a set of cardinality n, which admits an action of the symmetric

group Sn. For any partition λ of n, let V [λ] be the associated irreducible representation of Sn. The

following theorem was proved in [GPY17, Theorem 3.1]; an independent proof of the non-equivariant

statement was later given in [GLX+, Theorem 1.2].

Theorem 1.1. Let Cin,m be the coefficient of ti in the Sn-equivariant Kazhdan–Lusztig polynomial

of Un,m, and let cin,m := dimCin,m be the corresponding non-equivariant coefficient.

• C0
n,m = V [n], and for all i > 0,

Cin,m =

min(m,n−m−2i)∑
b=1

V [n− 2i− b+ 1, b+ 1, 2i−1].
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• c0n,m = 1, and for all i > 0,

cin,m =

min(m,n−m−2i)∑
b=1

(n− 2i− 2b+ 1)n!

(n− i− b)(n− i− b+ 1)(i+ b)(i+ b− 1)(n− 2i− b)!(b− 1)!i!(i− 1)!
.

The purpose of this note is to obtain a q-analogue of Theorem 1.1. Let q be a prime power, and

let Un,0(q) be the rank n matroid associated with the collection of all hyperplanes in the vector

space Fnq , which we regard as a q-analogue of the Boolean matroid of rank n. For any natural

number m ≤ n, let Un,m(q) be the truncation of Un,0(q) to rank n−m. More concretely, a basis for

Un,m(q) is a set of n−m hyperplanes whose intersection has dimension m. The matroid Un,m(q) is

a q-analogue of the uniform matroid Un,m, and we will therefore refer to it as a q-niform matroid.

This matroid was also studied in [HRS], where the authors computed the Hilbert series of its Chow

ring. The q-niform matroid Un,m(q) admits a natural action of the group GLn(q) of invertible n× n
matrices with coefficients in Fq, which is a q-analogue of Sn.

The representation theory of GLn(q) is much more complicated than the representation theory of

Sn. However, there is a certain subset of irreducible representations of GLn(q), known as irreducible

unipotent representations, that correspond bijectively to the irreducible representations of Sn.

For any partition λ of n, let V (q)[λ] be the associated irreducible unipotent representation of GLn(q),

which we will refer to as the unipotent q-analogue of V [λ]. For any positive integer k, we use

the standard notation

[k]q := 1 + q + · · ·+ qk−1 and [k]q! := [k]q[k − 1]q · · · [1]q.

The following theorem, which is our main result, says that the equivariant Kazhdan–Lusztig

coefficients of Un,m(q) are precisely the unipotent q-analogues of the equivariant Kazhdan–Lusztig

coefficients of Un,m.

Theorem 1.2. Let Cin,m(q) be the coefficient of ti in the GLn(q)-equivariant Kazhdan–Lusztig poly-

nomial of Un,m(q), and let cin,m(q) := dimCin,m(q) be the corresponding non-equivariant coefficient.

• C0
n,m(q) = V (q)[n], and for all i > 0,

Cin,m(q) =

min(m,n−m−2i)∑
b=1

V (q)[n− 2i− b+ 1, b+ 1, 2i−1].

• c0n,m(q) = 1, and for all i > 0, cin,m(q) is equal to

min(m,n−m−2i)∑
b=1

qb−1+i(i+1) [n− 2i− 2b+ 1]q[n]q!

[n− i− b]q[n− i− b+ 1]q[i+ b]q[i+ b− 1]q[n− 2i− b]q![b− 1]q![i]q![i− 1]q!
.

Remark 1.3. For any matroid M , the coefficients of PM (t) are conjectured to be non-negative

[EPW16, Conjecture 2.3]. More generally, the coefficients of PWM (t) are conjectured to be honest
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(rather than virtual) representations of W [GPY17, Conjecture 2.13]. These conjectures are

proved when M is realizable [EPW16, Theorem 3.10] (respectively equivariantly realizable [GPY17,

Corollary 2.12]), but no proof exists in the general case. The matroid Un,m is always realizable, but

it is not equivariantly realizable unless m ∈ {0, 1, n − 1, n} (of these, only the m = 1 case yields

nontrivial Kazhdan–Lusztig coefficients). Similarly, the matroid Un,m(q) is always realizable, but

it is typically not equivariantly realizable. Thus Theorems 1.1 and 1.2 both provide significant

evidence for the equivariant non-negativity conjecture.

Remark 1.4. Theorem 1.1 implies that {Cin,m | n ≥ m} admits the structure of a finitely generated

FI-module [CEF15, Theorem 1.13], while Theorem 1.2 implies that {Cin,m(q) | n ≥ m} admits the

structure of a finitely generated VI-module [GW18, Theorem 1.6]. In order to define these structures

in a natural way, we would need need to be able to define Cin,m and Cin,m(q) as actual vector spaces

rather than as isomorphism classes of vector spaces. The matroid Un,1 is equivariantly realizable,

which means that we have a cohomological interpretation of Cin,1, and we obtain a canonical FIop-

module structure from [PY17, Theorem 3.3(1)]; dualizing then gives a canonical finitely generated

FI-module. In joint work with Braden, Huh, Matherne, and Wang, the author is working to construct

a canonical vector space isomorphic to the coefficient of ti in PM (t) for any matroid M . When this

goal is achieved, we believe that this construction will induce a canonical FIop-module structure on

{Cin,m | n ≥ m} and a canonical VIop-module structure on {Cin,m(q) | n ≥ m}, each with finitely

generated duals.

Our proof of Theorem 1.2 relies heavily on Theorem 1.1 along with the Comparison Theorem

(Theorem 2.1), which roughly says that calculations involving Harish-Chandra induction of unipotent

representations of finite general linear groups are essentially equivalent to the analogous calculations

for symmetric groups. The only additional ingredients in the proof are to check that the Orlik–

Solomon algebra of Un,m(q) is the unipotent q-analogue of the Orlik–Solomon algebra of Un,m

(Example 3.4) and that the recursive formula for Cin,m(q) is essentially the same as the recursive

formula for Cin,m (Equations (7) and (8)).

Acknowledgments: The author is indebted to June Huh for help with formulating the main result

and to Olivier Dudas for help with proving it. The author is supported by NSF grant DMS-1565036.

2 Unipotent representations and the Comparison Theorem

Given a pair of natural numbers k ≤ n and a pair of representations V of Sk and V ′ of Sn−k, we

define

V ∗ V ′ := IndSn
Sk×Sn−k

(
V � V ′

)
.

Irreducible representations of the symmetric group Sn are classified by partitions of n. Given a

partition λ, let V [λ] be the associated representation. For each cell (i, j) in the Young diagram for
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λ, let hλ(i, j) be the corresponding hook length; then the dimension of V [λ] is equal to

n!∏
hλ(i, j)

.

We now review some analogous statements and constructions in the representation theory

of finite general linear groups. Given a pair of natural numbers k ≤ n, let Pk,n(q) ⊂ GLn(q)

denote the parabolic subgroup associated with the Levi GLk(q) × GLn−k(q). Given a pair of

representations V (q) of GLk(q) and V ′(q) of GLn−k(q), we obtain a representation V (q) � V ′(q)

of GLk(q) × GLn−k(q), and we may interpret this as a representation of Pk,n(q) via the natural

surjection Pk,n(q)→ GLk(q)×GLn−k(q). We then define

V (q) ∗ V ′(q) := Ind
GLn(q)
Pk,n(q)

(
V (q) � V ′(q)

)
.

This operation is called Harish-Chandra induction.

Let Bn(q) ⊂ GLn(q) be the subgroup of upper triangular matrices. An irreducible representation

of GLn(q) is called unipotent if it appears as a direct summand of the representation

C
[

GLn(q)/Bn(q)
]

= Ind
GLn(q)
Bn(q)

(
trivGLn(q)

)
.

(We note that the definition of unipotent representations of finite groups of Lie type outside of type

A is more complicated.) An arbitrary representation is called unipotent if it is isomorphic to a

direct sum of irreducible unipotent representations.

Theorem 2.1. Let q be a prime power and n a natural number.

1. Irreducible unipotent representations of GLn(q) are in canonical bijection with partitions of n.

2. The irreducible unipotent representation V (q)[λ] associated with the partition λ has dimension

q
∑

(k−1)λk [n]q!∏
[hλ(i, j)]q

.

3. If k ≤ n, V (q) is a unipotent representation of GLk(q), and V ′(q) is a unipotent representation

of GLn−k(q), then V (q) ∗ V ′(q) is a unipotent representation of GLn(q).

4. Let λ, µ, and ν be partitions of n, k, and n− k, respectively. The multiplicity of V (q)[λ] in

V (q)[µ] ∗ V (q)[ν] is equal to the multiplicity of V [λ] in V [µ] ∗ V [ν].

Proof. Statements 1 and 4 appear in [Cur75, Theorem B]. The fact that the dimension of V (q)[λ]

is polynomial in q appears in [BC72, Theorem 2.6]. For an explicit calculation of this polynomial,

see [DJ04, Equation (1.1)]. Finally, Statement 3 follows from the fact that C
[

GLk(q)/Bk(q)
]
∗

C
[

GLn−k(q)/Bn−k(q)
] ∼= C

[
GLn(q)/Bn(q)

]
.

Remark 2.2. The standard proof of Theorem 2.1(1) is very far from constructive. One proves

that the endomorphism algebra of C
[

GLn(q)/Bn(q)
]

is isomorphic to the Hecke algebra of Sn;
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this implies that the irreducible constituents of C
[

GLn(q)/Bn(q)
]

are in canonical bijection with

irreducible modules over the Hecke algebra, which are in turn in canonical bijection with irreducible

representations of Sn. However, a recent paper of Andrews [And18] gives a construction of V (q)[λ]

modeled on tableaux, which is analogous to the usual construction of V [λ].

Remark 2.3. A generalization of Statement 4 due to Howlett and Lehrer [HL83, Theorem 5.9] is

commonly referred to as the Comparison Theorem. For the purposes of this paper, we will use this

terminology to refer to the entirety of Theorem 2.1.

3 Orlik–Solomon algebras

For any matroid M on the ground set E, let OS∗M be the Orlik–Solomon algebra of M [OS80],

and let

χM (t) :=
rkM∑
i=0

(−1)i dimOSiM t
rkM−i

be the characteristic polynomial of M . The Orlik–Solomon algebra is a quotient of the exterior

algebra over the complex numbers with generators {xe | e ∈ E}. Let OS
∗
M be the reduced Orlik–

Solomon algebra ofM , which is defined as the subalgebra ofOS∗M generated by {xe−xe′ | e, e′ ∈ E}.
If rkM > 0, then we have a graded algebra isomorphism

OS∗M
∼= OS

∗
M ⊗ C[x]/〈x2〉 (1)

and therefore a vector space isomorphism

OSiM
∼= OS

i
M ⊕OS

i−1
M . (2)

If a finite group W acts on M , we obtain induced actions on OS∗M and OS
∗
M , and the isomorphisms

of Equations (1) and (2) are W -equivariant.

Example 3.1. Suppose that V is a vector space over Fq, and that {He | e ∈ E} is a collection of

hyperplanes with associated matroid M . Fix a prime ` that does not divide q, and fix an embedding

of Q` into C. Let

X := V (Fq) r
⋃
e∈E

He(Fq) and PX := PV (Fq) r
⋃
e∈E

PHe(Fq).

Then we have canonical isomorphisms

OS∗M
∼= H∗(X;Q`)⊗Q`

C and OS
∗
M
∼= H∗(PX;Q`)⊗Q`

C,

where the cohomology rings are `-adic étale cohomology. If rkM > 0, then X ∼= PX ×Gm(Fq), and

Equation (1) is simply the Kunneth formula. If W acts on V by linear automorphisms preserving
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the collection of hyperplanes, we obtain an induced action on M , and these isomorphisms are

W -equivariant.

Example 3.2. The Boolean matroid Un,0 is Sn-equivariantly realized by the coordinate hyperplanes

in Fnq . Its Orlik–Solomon algebra OS∗n,0 is equal to the exterior algebra on n generators, which is

isomorphic to the cohomology of Xn,0
∼= Gn

m(Fq). As a representation of Sn, we have

OS∗n,0
∼= Λ∗

(
V [n− 1, 1]⊕ V [n]

)
and OS

∗
n,0
∼= Λ∗

(
V [n− 1, 1]

)
,

In particular, this implies that

OS
i
n,0
∼= V [n− i, 1i] (3)

for all i < n.

Example 3.3. The matroid Un,0(q) is (by definition) GLn(q)-equivariantly realized by the collection

of all hyperplanes in Fnq . The variety PXn,0(q) is an example of a Deligne–Lusztig variety for the

group GLn(q). The techniques developed by Lusztig [Lus77] imply that the action of GLn(q) on

the cohomology group of PXn,0(q) is given by the unipotent q-analogue of Equation (3):

OS
i
n,0(q)

∼= V (q)[n− i, 1i] (4)

for all i < n. See [Dud18, Examples 6.1 and 6.4] for a concise and explicit statement of this result.

Example 3.4. Let M be any matroid, let d ≤ rkM be a natural number, and let M ′ be the

truncation of M to rank d. Then OS
∗
M ′ is the truncation of OS

∗
M to degree d− 1. That is, we have

a canonical isomorphism OS
i
M ′
∼= OS

i
M for all i ≤ d− 1, and OS

i
M ′ = 0 for all i ≥ d. In the case of

Example 3.1, this reflects the fact that PX ′ is a generic hyperplane section of PX. In particular, we

have

OS
i
n,m
∼= V [n− i, 1i] and OS

i
n,m(q) ∼= V (q)[n− i, 1i] (5)

when i < n−m, and both groups are zero otherwise.

4 Kazhdan–Lusztig polynomials

Let M be a matroid on the ground set E with lattice of flats L. For any F ∈ L, let MF denote

the localization of M at F ; this is the matroid on the ground set F whose bases are maximal

independent sets of F . Let MF denote the contraction of M at F . If B is a basis for MF , then

MF is obtained from M by contracting each element of B and deleting each element of F r B.

Equivalently, MF is a matroid on the ground set E r F , and B′ ⊂ E r F is a basis for MF if and

only if B′ ∪B is a basis for M .

Example 4.1. If F is equal to the ground set of M (the maximal flat), then MF = M and MF is

the matroid of rank zero on the emptyset.
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Example 4.2. Proper (that is, non-maximal) flats of Un,m are subsets of [n] of cardinality less

than n−m. For such an F , (Un,m)F ∼= U|F |,0 is Boolean, while UFn,m
∼= Un−|F |,m.

Example 4.3. Proper flats of Un,m(q) are collections of linearly independent hyperplanes in Fnq of

cardinality less than n−m. For such an F , Un,m(q)F ∼= U|F |,0(q), while Un,m(q)F ∼= Un−|F |,m(q).

The Kazhdan–Lusztig polynomial of M is characterized by the following three conditions

[EPW16, Theorem 2.2]:

1. If rkM = 0, then PM (t) = 1.

2. If rkM > 0, then degPM (t) < 1
2 rkM .

3. For every M , trkMPM (t−1) =
∑
F

χMF
(t)PMF (t).

If M admits the action of a finite group W , the equivariant Kazhdan–Lusztig polynomial is defined

by the three analogous conditions, with the coefficients of the characteristic polynomial replaced by

the graded pieces of the Orlik–Solomon algebra (with corresponding signs), which are now virtual

representations of W rather than integers. For every flat F ∈ L, let WF ⊂W denote the stabilizer

of F . If CiM,W is the coefficient of ti in the W -equivariant Kazhdan–Lusztig polynomial of M and

i < rkM/2, we have the following explicit recursive formula [GPY17, Proposition 2.9]:

CiM,W =
∑

[F ]∈L/W
0≤j≤rkF

(−1)j IndWWF

(
OSjMF

⊗ CcrkF−i+j
MF ,WF

)
, (6)

where we take in the sum one flat from each W -orbit in L.

Example 4.4. Consider the case of the uniform matroid Un,m. Proper flats are subsets of [n] of

cardinality less than n−m, and the Sn-orbit of a flat is determined by its cardinality. The stabilizer

of a flat of cardinality k is isomorphic to the Young subgroup Sk × Sn−k ⊂ Sn. Thus Equation (6)

transforms into the following recursion:

Cin,m = (−1)iOSin−m +
n−m−1∑
k=0

k∑
j=0

(−1)j IndSn
Sk×Sn−k

(
OSjk,0 ⊗ Cn−m−k−i+jn−k,m

)

= (−1)iOSin−m +
n−m−1∑
k=0

k∑
j=0

(−1)j OSjk,0 ∗ C
n−m−k−i+j
n−k,m , (7)

where the first term corresponds to the maximal flat F = [n].

Example 4.5. Consider the case of the q-uniform matroid Un,m(q). Proper flats are collections of

linearly independent hyperplanes in Fnq of cardinality less than n−m, and the GLn(q)-orbit of a

flat is determined by its cardinality. The stabilizer of a flat of cardinality k is isomorphic to the

parabolic subgroup Pn,k(q) ⊂ GLn(q). Thus Equation (6) transforms into the unipotent q-analogue
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of Equation (7):

Cin,m(q) = (−1)iOSin−m(q) +
n−m−1∑
k=0

k∑
j=0

(−1)j Ind
GLn(q)
Pn,k(q)

(
OSjk,0(q)⊗ Cn−m−k−i+jn−k,m (q)

)

= (−1)iOSin−m(q) +
n−m−1∑
k=0

k∑
j=0

(−1)j OSjk,0(q) ∗ C
n−m−k−i+j
n−k,m (q). (8)

Proof of Theorem 1.2: By Equations (2), (3), and (4), Equation (8) is precisely the unipotent

q-analogue of Equation (7). Then by Theorem 2.1, the first part of Theorem 1.2 is equivalent to the

first part of Theorem 1.1. The second part of Theorem 1.2 follows from Theorem 2.1(2).
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