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Abstract. A central question in the theory of hyperplane arrangements is when the complement

of a complex arrangement is K(π, 1). Barkley and Speyer introduced a class of real arrangements

that are called “clean”, and Yoshinaga proved that every real arrangement whose complexifica-

tion is K(π, 1) is clean. We show that cleanliness is equivalent to a natural statement about the

Varchenko–Gelfand ring, which in practice allows for fast calculation. We conclude with an in-

vestigation of the relationships between various properties of arrangements, including cleanliness

and the K(π, 1) property.

1 Introduction

It is a long-standing open problem to determine which complex hyperplane arrangement comple-

ments are K(π, 1), meaning that their higher homotopy groups vanish. In the case where the

hyperplane arrangement is the complexification of a real hyperplane arrangement, the homotopy

type of the complement is determined by the associated oriented matroid [Sal87, Theorem 1], there-

fore the K(π, 1) problem must have a combinatorial answer. See [FR00, FR87a, Yos24b] for surveys

and partial results.

Recently, Yoshinaga proved that, if A is a real hyperplane arrangement and the complement of

the complexification of A is K(π, 1), then A is clean in the sense of Barkley and Speyer [BS23,

Yos24a]. In the first part of this paper, we give an algebraic reformulation of cleanliness, which we

now describe.

Let A be a finite set of hyperplanes in a real vector space V , and let F be any field. The

Varchenko–Gelfand algebra VG(A,F) is by definition the ring of locally constant F-valued

functions on the complement of the union of hyperplanes. This is a boring ring (it is isomorphic to

a direct sum of one copy of F for each chamber), but it admits an interesting presentation whose

generators are the Heaviside functions: there are two such functions for each hyperplane, taking

the value 1 on one side of the hyperplane and 0 on the other side. The ring VG(A,F) is filtered,

with the pth filtered piece consisting as functions that can be expressed as polynomials of degree at

most p in the Heaviside functions. The associated graded algebra, which is also called the Cordovil
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algebra, is isomorphic to the cohomology ring of the complement of the union of the subspaces

H ⊗R3 ⊂ V ⊗R3 [Mos17, DBPW24]. We say that the Varchenko–Gelfand algebra is quadratic if

all relations among the Heaviside functions are generated by those of degree at most 2. Similarly,

we say that the Cordovil algebra is quadratic if all relations among the corresponding generators

are generated by those of degree 2. Our main results (Theorem 2.5 and Corollary 2.6) say that the

following implications hold:

C(A,F) is quadratic =⇒ VG(A,F) is quadratic ⇐⇒ A is clean.

Remark 1.1. At first sight, cleanliness (which is formulated combinatorially) might seem easier

to work with than the condition that VG(A,F) is quadratic. In fact, our experience is that the

algebraic condition is much faster to check, since computers are very good at using Gröbner bases

to determine whether or not two ideals are equal. For example, let A be the arrangement whose

normal vectors are given by the columns of the following matrix:
3 3 3 3 3 9 7 5 7 2 0 0 6 3 4 8 6 2 9 5

8 1 7 1 2 8 2 6 1 8 5 9 2 8 3 0 1 0 8 9

1 9 1 9 5 2 5 9 3 7 7 3 6 6 4 0 9 1 5 9

1 0 1 4 1 1 7 2 4 1 3 9 2 8 0 8 7 1 2 3


It took about 1.65 seconds for Macaulay2 to determine that the Varchenko–Gelfand ideal is not

quadratic. On the other hand, it took 3 days, 23 hours, 21 minutes, and 22 seconds for Sage to

check cleanliness directly.4

Our primary motivation for Theorem 2.5 is to be able to perform fast calculations, and in

particular to probe the question of how close cleanliness is to the K(π, 1) property. The following

examples illustrate the type of calculations that are made possible by our result.

Example 1.2. Let A be the arrangement in R6 consisting of all hyperplanes of the from xi = xj

for 1 ≤ i < j ≤ 6, together with the hyperplanes xi + xj = 0 whenever j − i is prime. (This is

an intentionally unmotivated condition that is meant to produce a somewhat random arrangement

lying in between the Coxeter arrangements of type A5 and D6.) The ring VG(A,Q) is not quadratic,

and therefore A is not K(π, 1). This can be checked in Macaualy2 in about 30 seconds.

Example 1.3. For t ∈ R, let At be the arrangement with hyperplanes

x1 − x2 = 0, x1 − x3 = 0, x2 − x3 = 0, x1 = 0, x2 = 0, x3 = 0,

x1 − t x2 = 0, x1 − t x3 = 0, x2 − t x3 = 0 .

When t ∈ {−1, 0, 1}, these arrangements have quadratic Varchenko–Gelfand algebras, and are

therefore clean. Edelman–Reiner, however, show that these arrangements are not K(π, 1) [ER95,

4Our Sage implementation could admit many improvements; but, even with considerable effort, it is unlikely that
we could beat the time of the easy Macaulay2 calculation.
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Theorem 2.1].

Example 1.4. Let A be the bracelet arrangement with hyperplanes

x1 = 0, x2 = 0, x3 = 0, x1 + x4 = 0, x2 + x4 = 0, x3 + x4 = 0,

x1 + x2 + x4 = 0, x1 + x3 + x4 = 0, x2 + x3 + x4 = 0 .

This is the smallest known non-tame arrangement (see [Abe25] for background). Then VG(A;Q) is

quadratic, thus A is clean. It is not known to the authors whether or not A is K(π, 1). Yoshinaga’s

theorem gives supporting evidence that it could be.

Section 3 is devoted to relating cleanliness to other algebraic, topological, and combinatorial

conditions. We define what it means for a matroid to be chordal, generalizing the notion of a

chordal graph. We then say that A is chordal if its underlying matroid is chordal. We prove that

every real, chordal arrangement is clean (Theorem 3.2). We also provide a proof (communicated to

us by Paul Mücksch) that every clean arrangement is formal. The converses to these two theorems

are false (Example 3.3 and Remark 3.8), but for graphical arrangements, chordality, formality,

cleanliness, and the K(π, 1) property are all equivalent (Corollary 3.7). Finally, we provide a chart

that illustrates the implications between various properties known to be related to the K(π, 1)

property, including chordality, formality, cleanliness, and more.

Acknowledgements

The authors would like to thank Nick Addington, Grant Barkley, Mike Falk, and Paul Mücksch for

their valuable contributions.

2 Cleanliness and the Varchenko–Gelfand algebra

The main purpose of this section is to state and prove Theorem 2.5 and Corollary 2.6. Let V be

a real vector space of dimension r, A a finite set of distinct hyperplanes in V intersecting only

at the origin (a central, essential arrangement), and Md(A) the complement of the union of the

subspaces H ⊗Rd ⊂ V ⊗Rd for all H ∈ A. In particular, M1(A) is the complement of A (a union

of contractible chambers), M2(A) is the complement of the complexification of A, and M3(A) is a

space with cohomology ring isomorphic to the Cordovil algebra. Let C(A) be the set of chambers

of A, that is, the connected components of M1(A).

2.1 Cleanliness

We begin by choosing coorientations of each element of A. That is, for each H ∈ A, we write H+ to

denote one of the two connected components of V \H, and H− to denote the other one. To match

the conventions in [BS23], we choose our coorientations in such a way so that the intersection of all
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of the positive half-spaces is nonempty. For any sign vector ε ∈ {±}A and any subset S ⊂ A, let

Hε
S :=

⋂
H∈S

HεH .

We say that ε is k-consistent if, for any subset S of cardinality at most k + 1, we have Hε
S 6= ∅.

Let Σk = Σk(A) denote the set of k-consistent sign vectors, and let σk := |Σk|. All sign vectors lie

in Σ1, and Σr is naturally in bijection with C(A), hence we have

2|A| = σ1 ≥ σ2 ≥ · · · ≥ σr−1 ≥ σr = |C(A)| .

We say that A is clean if σ2 = σr.

Remark 2.1. Our assumption that the intersection of all of the positive half spaces are nonempty

implies that, if ε is a sign vector and S ⊂ A is a set of cardinality 3 with Hε
S = ∅, then the restriction

of ε to S either takes the value + twice and − once, or vice-versa. In the terminology of [BS23,

Section 2.1], the sign vector ε is closed if there does not exist such an S such that the restriction

of ε to S takes the value + twice, and it is coclosed if there does not exist such an S such that

the restriction of ε to S takes the value − twice. The sign vector ε is biclosed if it is both closed

and coclosed, which means that there is no set S of cardinality 3 with Hε
S = ∅, or equivalently that

ε ∈ Σ2(A). Finally, ε is separable if Hε
A 6= ∅, or equivalently if ε ∈ Σr(A). Thus cleanliness is

precisely the statement that every biclosed sign vector is separable.

Our interest in clean arrangements comes from the following result [Yos24a, Theorem 5.1(2)].

Theorem 2.2. If M2(A) is K(π, 1), then A is clean.

Note that the converse to Theorem 2.2 is false [Yos24a, Example 5.5].

2.2 The Varchenko–Gelfand algebra

Fix a field F. The Varchenko–Gelfand algebra VG(A,F) is defined to be the ring of locally

constant functions from M1(A) to F. This is simply a direct sum of σd copies of F, one for each

chamber of A. However, this boring ring has an interesting presentation, which we now describe.

Consider the commutative F-algebra

R := F[e+H | H ∈ A]
/ 〈

(e+H)2 − e+H | H ∈ A
〉

generated by one idempotent class for each hyperplane. We will also define e−H := 1 − e+H ∈ R, so

that e−He
+
H = 0 and e−H + e+H = 1. Given a sign vector ε ∈ {±}A and a subset S ⊂ A, let

f εS :=
∏
H∈S

eεHH ∈ R.

Then {f εA | ε a sign vector} is an additive basis of pairwise orthogonal idempotents in R.
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There is a surjective F-algebra homomorphism ϕ : R→ VG(A,F) taking e±H to the Heaviside

function that takes the value 1 on H± and 0 on H∓. Let us try to understand the kernel of ϕ.

Hε
S = ∅, then f εS lies in the kernel of ϕ. If −ε is the opposite sign vector, then H−εS = −Hε

S = ∅, so

f−εS also lies in the kernel of ϕ. Let gεS := f εS − f
−ε
S , which has the property that

f εS = eεHH gεS and f−εS = −e−εHH gεS

for any H ∈ S. The following theorem of Varchenko and Gelfand [VG87, Theorem 6] says that

these classes generate the kernel.

Theorem 2.3. The kernel of ϕ is generated by the classes gεS for all ε and S such that Hε
S = ∅.

In order to relate cleanliness to the Varchenko–Gelfand ring, we introduce a family of smaller

ideals that sit inside the kernel of ϕ. For any k, we define the kth intermediate Varchenko–

Gelfand ideal

Ik := 〈gεS | Hε
S = ∅ and |S| ≤ k + 1〉 ⊂ R,

and the kth intermediate Varchenko–Gelfand algebra VGk(A,F) := R/Ik. We have contain-

ments

0 = I1 ⊂ I2 ⊂ · · · ⊂ Ir−1 ⊂ Ir = ker(ϕ),

along with quotients

R = VG1(A,F) � VG2(A,F) � · · ·� VGr−1(A,F) � VGr(A,F) = VG(A,F).

The following lemma gives an additive basis for the ideal Ik.

Lemma 2.4. We have Ik = F{f εA | ε /∈ Σk}.

Proof. If ε /∈ Σk, then there is a subset S ⊂ A of cardinality k+ 1 such that Hε
S = ∅, and therefore

gεS ∈ Ik. We have already observed that f εS is a multiple of gεS , and f εA is by definition a multiple

of f εS , so we also have f εA ∈ Ik. This proves that F{f εA | ε /∈ Σk} ⊂ Ik.
Next, we prove the opposite inclusion. Since {f εA | ε a sign vector} is an additive basis of

pairwise orthogonal idempotents in R, F{f εA | ε /∈ Σk} is an ideal, and therefore it is sufficient to

show that the generators of Ik are contained in F{f εA | ε /∈ Σk}.
Let S be a set of cardinality at most k + 1 and δ a sign vector such that Hδ

S = ∅. We have

f δS =
∑

δ|S=ε|S

f εA.

For all ε such that δ|S = ε|S , we have Hε
S = Hδ

S = ∅, and therefore ε /∈ Σk. Thus we have

established that f δS ∈ F{f εA | ε /∈ Σk}. By symmetry, we also have f−δS ∈ F{f εA | ε /∈ Σk}, and

therefore gδS = f δS − f
−δ
S ∈ F{f εA | ε /∈ Σk}. This completes the proof.

Theorem 2.5. For all k, σk = dim VGk(A,F). In particular, A is clean if and only if I2 = Ir.
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Proof. By Lemma 2.4, the set {f εA | ε ∈ Σk} ⊂ R descends to a basis for VGk(A,F).

2.3 The Cordovil algebra

One reason for studying the Varchenko–Gelfand algebra is that it admits a natural filtration whose

associated graded is of independent interest. Consider the increasing filtration of R whose degree

p piece consists of all classes that can be expressed as polynomials of degree at most p in the

generators e±H , and let

R̄ := F[eH | H ∈ A]
/
〈e2H | H ∈ A〉

be the associated graded algebra with respect to this filtration. For any element g ∈ R, we write

ḡ ∈ R̄ to denote the symbol of f . In concrete terms, this means that we express f as a polynomial

in the classes e+H , take the part of maximal degree, and replace each e+H with eH .

For any ideal I ⊂ R, let Ī := 〈ḡ | g ∈ I〉. Our filtration of R induces a filtration of R/I,

and the associated graded algebra is isomorphic to R̄/Ī. In particular, it induces a filtration of

VG(A,F) ∼= R/Ir, and the associated graded algebra

C(A,F) := gr VG(A,F) ∼= R̄/Īr

is called the Cordovil algebra (or sometimes the graded Varchenko–Gelfand algebra) of A.

It follows from [VG87, Theorem 7] that

Īr =
〈
gεS | H

ε
S = ∅

〉
.

Just as in the filtered case, we can define intermediate versions of the Cordovil ideal. For each

k, we define the kth intermediate Cordovil ideal

Jk :=
〈
gεS | H

ε
S = ∅ and |S| ≤ k + 1

〉
⊂ Īk.

We have J1 = 0 = Ī1 and Jr = Īr, and Jk ⊂ Jr is the sub-ideal generated by elements of degree at

most k. In general, however, the inclusion Jk ⊂ Īk can be proper. That is, we have the following

diagram of ideals:

0 = Ī1 ⊂ Ī2 ⊂ · · · ⊂ Īr−1 ⊂ Īr

0 = J1 ⊂ J2 ⊂ · · · ⊂ Jr−1 ⊂ Jr

= ⊂ ⊂ =

We define the kth intermediate Cordovil algebra Ck(A,F) := R̄/Jk, and we have surjections

Ck(A,F) = R̄/Jk � R̄/Īk � R̄/Īr = R̄/Jr = C(A,F).

Theorem 2.5 has the following corollary.
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Corollary 2.6. If J2 = Jr (that is, if C(A,F) is quadratic), then A is clean.

Proof. From the sequence of surjections above, we see that the condition J2 = Jr implies that

Ī2 = Īr. Since dim Ī = dim I for any ideal I ⊂ R, this implies that I2 = Ir, which is equivalent to

cleanliness by Theorem 2.5.

The converse to Corollary 2.6 is false because the inclusion J2 ⊂ Ī2 need not be an equality.

Example 2.7. The D4 arrangement consists of the 12 hyperplanes in R4 given by equations

xi ± xj = 0 for 1 ≤ i < j ≤ 4. A Macaulay2 [GS] calculation easily shows that I2 = I4, so D4 is

clean. A similar calculation shows that the Cordovil ideal J4 has minimal generators in degrees 2

and 4. That is, we have J2 = J3 ( J4 = Ī4 = Ī3 = Ī2.

3 Connections with other properties of arrangements

In this section, we prove that

chordal =⇒ clean =⇒ formal,

and then collect known relationships between various properties of arrangements.

3.1 Chordality

We define a matroid to be chordal if, for every circuit C of size at least 4, there exist circuits D1

and D2 such that |D1| , |D2| ≥ 3, |D1 ∩D2| = 1, and

C = (D1 ∪D2) \ (D1 ∩D2) .

This definition generalizes the definition of a chordal graph. We say thatA is chordal if its associated

matroid is chordal.

Remark 3.1. The concept of chordality for graphs goes back to Berge [Ber69] and Dirac [Dir61].

Stanley noticed the connection between chordal graphs and supersolvability [Sta72, Example 2.7,

Proposition 2.8]. Independently, Barhona and Grötschel introduced the notion of a chordal circuit

as a way to characterize the facet-defining hyperplanes of the cycle polytope of a binary matroid

[BG86, p.53]. Ziegler then showed that every binary supersolvable matroid not containing the Fano

matroid is graphical [Zie91, Theorem 2.7]. Later Cordovil, Forge, and Klein showed that every

binary supersovable matroid is chordal [CFK04, Theorem 2.2].

Theorem 3.2. If A is chordal, then A is clean.

Proof. Let A be a chordal arrangement of rank r, and consider a sign vector ε ∈ {±}A such that

ε /∈ Σr. This means that there is a subset S ⊂ A such that Hε
S = ∅. Furthermore, we may take S

to be of smallest possible cardinality with this property. If |S| = 3, then ε /∈ Σ2, which is what we

want to show. Assume now for the sake of contradiction that |S| > 3.
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By chordality, there exist circuits D1 and D2 with D1 ∩D2 = {H} and S = D1 ∪D2 \ {H} for

some H ∈ A. Since D1 and D2 are circuits, there exist sign vectors ε1, ε2 ∈ {±}A such that

Hε1
D1

= ∅ = Hε2
D2
.

We may assume without loss of generality that ε and ε1 agree on at least one element of S ∩ D1

(otherwise, replace ε1 with −ε1). We may also assume without loss of generality that (ε1)H 6= (ε2)H

(otherwise, replace ε2 with −ε2). Then the strong elimination property for oriented matroids implies

that, for i ∈ {1, 2}, εHi = (εi)Hi for any Hi ∈ S ∩Di.

Choose the unique i ∈ {1, 2} such that (εi)H = εH . Then ε agrees with εi on S, so Hεi
Di

= ∅.
But |Di| < |S|, which gives a contradiction.

Example 3.3. The converse to Theorem 3.2 is false, as illustrated by the arrangement X2 of

hyperplanes in R3 given by the following equations:

x1 = 0, x2 = 0, x3 = 0, x2 = x3, x1 = x3, x1 = −x2, x1 + x2 − 2x3 = 0.

We can check with Macaulay2 that I2 = I3, hence Theorem 2.5 implies that A is clean. The

associated matroid are 20 circuits, 5 of which have three elements and 15 of which have four

elements. As there are only 10 pairs of 3-element circuits, A cannot be chordal.

3.2 Formality

For each H ∈ A, choose a linear functional αH ∈ V ∗ that is positive on H+ (this choice is unique

up to positive scaling). Let FA := F{eH | H ∈ A}, and consider the linear map π : FA → V ∗

defined by putting π(eH) = αH for all H ∈ A. This induces a dual inclusion of V into FA. Let

V ⊥ := ker(π) ⊂ FA, which may also be interpreted as the orthogonal complement to V with respect

to the dot product.

For each flat F ⊆ A of the associated matroid, let πF be the restriction of π to the coordinate

subspace FF ⊂ FA, and let V ⊥F := ker(πF ) ⊂ V ⊥. Let

V ⊥2 :=
∑

rkF=2

V ⊥F ⊆ V ⊥,

let V2 ⊂ FA be the orthogonal complement of V ⊥2 , and let π2 : FA → V ∗2 be the projection. Then

we have the following diagram:

0 V ⊥2 FA V ∗2 0

0 V ⊥ FA V ∗ 0.

π2

=

π

An arrangement is formal in the sense of Falk–Randell [FR87a] if V = V2. This is equivalent to

the statement that all linear relations between the linear functionals αH are generated by those
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involving only three hyperplanes. Let A2 denote the arrangement in V2 defined by the linear

functionals π2(H) for H ∈ A; this is called the formal closure of A.

For any flat F , let VF ⊂ V be the intersection of the hyperplanes in V , and let

AF := {H/VF | D ∈ F}

denote the localization of A at V , which is an essential arrangement in the vector space V/VF .

Proposition 3.4. For any arrangement k ≥ 1 and any sign vector ε ∈ {±}A, ε ∈ Σk(A) if and

only if ε|F ∈ σk(AF ) for all flats F of rank k.

Proof. Suppose ε ∈ Σk(A) and F is a flat of rank k. By Helly’s theorem, Hε
F 6= ∅, which means

that ε|F ∈ σk(AF ). Conversely, suppose that ε|F ∈ σk(AF ) for all flats F of rank k, let S ⊂ A be

a subset of cardinality k+ 1, and let F be the smallest flat containing S. If S is independent, then

Hε
S 6= ∅. If S is dependent, then F has rank at most k, and Hε

S ⊇ Hε
F 6= ∅, so ε ∈ Σk(A).

For lack of a reference, we state and prove the following elementary lemma.

Lemma 3.5. Suppose A is an essential arrangement in a real vector space V , V ′ ( V is a linear

subspace that is not contained in any element of A, and

A′ =
{
H ∩ V ′ | H ∈ A

}
.

Then |C(A′)| < |C(A)|.

Proof. It suffices to assume V ′ is a hyperplane in V . Choose α ∈ V ∗ so that V ′ = kerα. Since A
is essential, it contains a Boolean arrangement B of rank r = dimV . The 1-dimensional flats of B
are spanned by basis vectors v1, . . . , vr for V , and we may choose their signs so that α(vi) ≥ 0 for

each i. Then α is strictly positive on the cone R>0 {v1, . . . , vr}, which is a chamber of B. We have

natural maps

C(A′) ↪→ C(A) � C(B).

We showed the composite is not surjective, so neither is the first map.

The following result is due to Paul Mücksch [Mü].

Theorem 3.6. If A is clean, then A is formal.

Proof. Suppose A is not formal. Then V2 ) V , so Lemma 3.5 tells us that A2 has more chambers

than A. Since chambers of A are in bijection with ΣrkA(A), this means that there exists a sign

vector ε ∈ ΣrkA2(A2) \ ΣrkA(A). For every flat of rank 2, we have

ε|F ∈ Σ2((A2)F ) = Σ2(AF ),

so ε ∈ Σ2(A) by Proposition 3.4. But ε 6∈ ΣrkA(A), so A is not clean.
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Figure 1: Ziegler’s pair (in P2)

Corollary 3.7. If A is a graphical arrangement, the following are equivalent:

(1) A is chordal

(2) A is clean

(3) A is formal

(4) A is K(π, 1).

Proof. Theorems 3.2 and 3.6 tell us that (1) implies (2) and (2) implies (3). Tohăneanu [Toh07]

showed that a graphical arrangement is formal if and only if it is chordal, so the first three conditions

are equivalent. Chordal graphical arrangements are supersolvable, hence K(π, 1) [FR87b], so (1)

implies (4). Finally, (4) implies (2) by Theorem 2.2.

Remark 3.8. The converse to Theorem 3.6 is false. Ziegler [Zie89, Ex. 8.7] provided a provided a

pair of combinatorially equivalent rank-3 arrangements, distinguished by whether or not their (six)

triple points lie on a conic, shown in Figure 1. The Varchenko–Gelfand algebras are isomorphic,

and a Macaulay2 [GS] computation shows they are not quadratic. Yuzvinsky noted that the special

arrangement is not formal, while the general one is [Yuz93, Ex. 2.2].

3.3 Relationships

Below are several well-known arrangements, together with a summary of which properties they

satisfy. Here OS refers to the Orlik–Solomon algebra, Cord refers to the Cordovil algebra, and both

quad Cord and quad OS mean that the defining ideals of the correspinding rings are quadratically

generated.

Arrangement K(π,1) free formal clean quad Cordovil quad OS

Falk [Fal95, Example 3.13] × ×
DY [DY02, Example 4.6] ? × × ×

Ziegler1 [Zie89, Example 8.7] × × × × ×
Ziegler2 [Zie89, Example 8.7] × × × × × ×

ER [ER95, Theorem 2.1 (α = −1)] ×
ER [ER95, Theorem 2.1 (α = 0 or 1)] × × ×

D4 (Example 2.7) × ×
X2 (Example 3.3) × ×
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The following diagram summarizes the relationships (and non-relationships) between some of

these properties.

Clean

Quadratic VG

Chordal

Quadratic Cordovil

Quadratic OS

K(π, 1)

Formal

Supersolvable

Free

Koszul OS

Rational K(π, 1)

Thm. 2.5

X2Thm. 3.2

Falk, DY

D4

Thm. 3.6
Cor. 2.6

D4

X2

Thm. 2.2

D4

ER

Ziegler1

Legend:

Tail ⇒ Head

Head ⇔ Tail

Tail 6⇒ Head
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