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Abstract

Hyperkähler Analogues of Kähler Quotients

by

Nicholas James Proudfoot

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Allen Knutson, Chair

Let X be a Kähler manifold that is presented as a Kähler quotient of Cn by the linear action

of a compact groupG. We define the hyperkähler analogue M of X as a hyperkähler quotient

of the cotangent bundle T ∗Cn by the inducedG-action. Special instances of this construction

include hypertoric varieties [BD, K1, HS, HP1] and quiver varieties [N1, N2, N3]. One of

our aims is to provide a unified treatment of these two previously studied examples.

The hyperkähler analogue M is noncompact, but this noncompactness is often

“controlled” by an action of C× descending from the scalar action on the fibers of T ∗Cn.
Specifically, we are interested in the case where the moment map for the action of the circle

S1 ⊆ C× is proper. In such cases, we define the core of M, a reducible, compact subvariety

onto which M admits a circle-equivariant deformation retraction. One of the components

of the core is isomorphic to the original Kähler manifold X. When X is a moduli space of

polygons in R3, we interpret each of the other core components of M as related polygonal

moduli spaces.

Using the circle action with proper moment map, we define an integration theory on

the circle-equivariant cohomology of M, motivated by the well-known localization theorem

of [AB] and [BV]. This allows us to prove a hyperkähler analogue of Martin’s theorem

[Ma], which describes the cohomology ring of an arbitrary Kähler quotient in terms of

the cohomology of the quotient by a maximal torus. This theorem, along with a direct

analysis of the equivariant cohomology ring of a hypertoric variety, gives us a method for

computing the equivariant cohomology ring of many hyperkähler analogues, including all
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quiver varieties.

Professor Allen Knutson
Dissertation Committee Chair
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Chapter 1. Introduction 1

Chapter 1

Introduction

We begin with a quick overview of some of the structures that we will consider in

this thesis, and the types of questions that we will be asking. Detailed definitions will be

deferred until the next chapter.

LetG be a compact Lie group acting linearly on Cn, with moment map µ : Cn → g∗,

and suppose we are given a central (i.e. G-fixed) regular value α ∈ g∗ of µ. From this data,

we may define the Kähler quotient

X := Cn//G = µ−1(α)/G,

which itself inherits the structure of a Kähler manifold. (We may also think of X as the

geometric invariant theory quotient of Cn by GC in the sense of Mumford [MFK, §8];

see Proposition 2.3.) A hyperkähler manifold is a riemannian manifold (M, g) equipped

with three orthogonal complex structures J1, J2, J3 and three compatible symplectic forms

ω1, ω2, ω3 such that J1J2 = −J2J1 = J3 for i = 1, 2, and 3. The cotangent bundle T ∗Cn
has a natural hyperkähler structure, and this structure is preserved by the induced action

of G. Furthermore, there exist maps µi : T ∗Cn → g∗ for i = 1, 2, 3 such that µi is a moment

map for the action of G with respect to the symplectic form ωi. We define the hyperkähler

analogue of X to be the hyperkähler quotient

M := T ∗Cn////G =
(
µ−1

1 (α) ∩ µ−1
2 (0) ∩ µ−1

3 (0)
)/

G.

(The set µ−1
2 (0)∩µ−1

3 (0) ⊆ T ∗Cn is a complex subvariety with respect to J1, and M may be

thought of as the geometric invariant theory quotient of this variety by GC.) The quotient

M is a complete hyperkähler manifold [HKLR], containing T ∗X as a dense open subset
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(see Proposition 2.4). The following is a description of some well-known classes of Kähler

quotients, along with their hyperkähler analogues.

Toric and hypertoric varieties. These examples comprise the case where G is abelian.

The geometry of toric varieties is deeply related to the combinatorics of polytopes; for

example, Stanley [St] used the hard Lefschetz theorem for toric varieties to prove certain

inequalities for the h-numbers of a simplicial polytope. Hypertoric varieties, introduced

by Bielawski and Dancer [BD], interact in a similar way with the combinatorics of real

hyperplane arrangements. Following Stanley’s work, Hausel and Sturmfels [HS] used the

hard Lefschetz theorem on a hypertoric variety to give a geometric interpretation of some

previously-known inequalities for the h-numbers of a rationally representable matroid. In

Chapter 3 we will explore further combinatorial properties of the various equivariant coho-

mology rings of a hypertoric variety.

Quiver varieties. For any directed graph, Nakajima [N1, N2, N3] defined a quiver variety

to be the hyperkähler analogue of the moduli space of framed representations of that graph

(see Section 5.1). Examples include the Hilbert scheme of n points in C2 [N4], the moduli

space of instantons on an ALE space [N1], and Konno’s hyperpolygon spaces [K2, HP2],

which are the hyperkähler analogues of the moduli spaces of n-sided polygons in R3 with

fixed edge lengths. Quiver varieties have received much attention from representation theo-

rists due to the actions of various infinite-dimensional Lie algebras on the cohomology and

K-theory of a quiver variety (see, for example, [N3, N5]).

Moduli spaces of bundles and connections. Narasimhan and Seshadri [NS] defined

a notion of stability for a vector bundle on a Riemann surface Σ, and proved that the

moduli space of stable holomorphic bundles on Σ may be identified with the moduli space

of irreducible, flat, unitary connections. Atiyah and Bott presented this space as a Kähler

quotient of the affine space of all connections on a fixed bundle E by the gauge group of

automorphisms of E. This picture can be complexified by replacing holomorphic bundles

with Higgs bundles, and unitary connections with arbitrary ones [Hi]. The correspondence

between Higgs bundles, flat connections, and representations of the fundamental group

is known as nonabelian Hodge theory, and has been studied and generalized extensively

by Simpson [Si] in addition to many other authors. These constructions involve taking

a quotient of an infinite dimensional affine space by an infinite dimensional group, and

therefore lie it is beyond the scope of this work. Many of our techniques, however, can be
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applied in this context. See for example [H1, HT1, HT2].

Consider the action of the multiplicative group C× on T ∗Cn given by scalar mul-

tiplication of the fibers. The action of the compact subgroup S1 ⊆ C× is hamiltonian with

respect to the first symplectic form ω1, and descends to a circle action on M with moment

map Φ : M → R, which is a Morse-Bott function. The geometry and topology associated

with this action will be our main object of study. In Chapter 2 we give a detailed discussion

of the construction of M, along with the action of C×. In the case where Φ is proper,

we describe a reducible subvariety L ⊆ M called the core of M, onto which M retracts

S1-equivariantly. The core L has X as one of its components, and if M is smooth, then L

is equidimensional of dimension dimX = 1
2 dimM. In particular, the fundamental classes

of the components of L provide a natural basis for the top degree cohomology of M. This

fact is exploited for hypertoric varieties in [HS], and for quiver varieties in various papers

of Nakajima. Building on [HP1], this thesis is the first unified treatment of hyperkähler

analogues and their cores, encompassing both hypertoric varieties and quiver varieties.

The geometry of the core of M will be one of two major themes that we consider. In

the case where M is a hypertoric variety, each of the components of the core L is itself a toric

variety (Lemma 3.8), as first shown in [BD]. In section 3.2, we give an explicit description of

the action of C× and the gradient flow of Φ on each piece. The case of hyperpolygon spaces

is more interesting. The ordinary polygon space X is the moduli space of n-sided polygons

in R3 with fixed edge lengths. In Section 5.2, we show that the other core components are

smooth, and may themselves be interpreted as moduli spaces of polygons in R3 satisfying

certain conditions (Theorem 5.11). Thus, for the special case of hyperpolygon spaces, we

have solved the following general problem:

Problem 1.1 Given any moduli space X that can be constructed as a Kähler reduction (or

GIT quotient) of complex affine space, is it possible to interpret the core of the hyperkähler

analogue X as a union of moduli spaces corresponding to other, related moduli problems?

Our second major theme will be the circle-equivariant cohomology ring of M. In

Chapter 3 we compute the circle-equivariant cohomology ring of a hypertoric variety, and as

an application compute the Z2 = Gal(C/R) equivariant cohomology ring of the complement

of a complex hyperplane arrangement defined over R. The purpose of Chapter 4 is to extend

to the hyperkähler setting a theorem of Martin [Ma], which describes how to compute the
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cohomology ring of a Kähler quotient X//G in terms of the cohomology ring of the abelian

quotient X//T , where T ⊆ G is a maximal torus. The main technical difficulty arises from

the fact that Martin’s theorem relies heavily on computing integrals, which is not possible

on the noncompact hyperkähler analogues that we have defined. Our approach is to make

use of the localization theorem of [AB, BV], which allows us to define an integration theory

in the circle-equivariant cohomology of S1-manifolds with compact, oriented fixed point

set. This is perhaps the single most important reason for considering the circle action on

a hyperkähler analogue. In Section 5.17 we combine the results of Chapters 3 and 4 to

compute the equivariant cohomology ring of a hyperpolygon space, and of each of its core

components.

Most of Chapter 3 (with the exception of Section 3.5) appeared first in [HP1], and

Chapter 4 is a reproduction of [HP]. Chapter 5 is taken primarily from [HP2], with the

exception of Section 5.3, which comes from [HP].
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Chapter 2

Hyperkähler analogues

Our plan for this chapter is to provide a unified approach to the constructions of

hypertoric varieties and quiver varieties, which are the two major classes of examples of

hyperkähler analogues of familiar Kähler varieties that appear in the literature. In Section

2.1 we give the basic construction of the hyperkähler analogue M of a Kähler quotient

X = Cn//G, and show that M may be understood as a partial compactification of the

cotangent bundle to X (Proposition 2.4). In Section 2.2, we define a natural action of the

group C× on M, which is holomorphic with respect to one of the complex structures. This

action will be our main tool for studying the geometry of M in future chapters. Some of

this material appeared first in [HP1, §1].

2.1 Hyperkähler and holomorphic symplectic reduction

A hyperkähler manifold is a Riemannian manifold (M, g) along with three orthogonal, par-

allel complex structures, J1, J2, J3, satisfying the usual quaternionic relations. These three

complex structures allow us to define three symplectic forms

ω1(v, w) = g(J1v, w), ω2(v, w) = g(J2v, w), ω3(v, w) = g(J3v, w),

so that (g, Ji, ωi) is a Kähler structure on M for i = 1, 2, 3. The complex-valued two-form

ω2+iω3 is closed, nondegenerate, and holomorphic with respect to the complex structure J1.

Any hyperkähler manifold can therefore be considered as a holomorphic symplectic manifold

with complex structure J1, real symplectic form ωR := ω1, and holomorphic symplectic form

ωC := ω2 + iω3. This is the point of view that we will adopt.



Chapter 2. Hyperkähler analogues 6

We will refer to an action of G on a hyperkähler manifold M as hyperhamiltonian

if it is hamiltonian with respect to ωR and holomorphic hamiltonian with respect to ωC,

with G-equivariant moment map

µHK := µR ⊕ µC : M → g∗ ⊕ g∗C.
The following theorem describes the hyperkähler quotient construction, a quaternionic ana-

logue of the Kähler quotient.

Theorem 2.1 [HKLR] Let M be a hyperkähler manifold equipped with a hyperhamiltonian

action of a compact Lie group G, with moment maps µ1, µ2, µ3. Suppose ξ = ξR ⊕ ξC
is a central regular value of µHK, with G acting freely on µ−1

HK
(ξ). Then there is a unique

hyperkähler structure on the hyperkähler quotient M = M////ξG := µ−1
HK

(ξ)/G, with associated

symplectic and holomorphic symplectic forms ωξR and ωξC, such that ωξR and ωξC pull back to

the restrictions of ωR and ωC to µ−1
HK

(ξ).

For a general regular value ξ, the action of G on µ−1
HK(ξ) will not be free, but only

locally free. To deal with this situation we must introduce the notion of a hyperkähler

orbifold.

An orbifold is a topological spaceM locally modeled on finite quotients of euclidean

space. More precisely, M is a Hausdorff topological space, equipped with an atlas U of

uniformizing charts. This consists of a collection of quadruples (Ũ ,Γ, U, φ), where Ũ is an

open subset of euclidean space, Γ is a finite group acting on Ũ and fixing a set of codimension

at least 2, U is an open subset of M , and φ is a homeomorphism from Ũ/Γ to U . The sets U

are required to cover M , and the quadruples must satisfy a list of compatibility conditions,

as in [LT].

Given a point p ∈ M , the orbifold group at p is the isotropy group Γp ⊆ Γ of a

point p̃ ∈ φ−1(p) ⊆ Ũ for any quadruple (Ũ,Γ, U, φ) such that U contains p. The orbifold

tangent space TpM = Tp̃Ũp̃ should be thought of not as a vector space, but rather as

a representation of Γp (see Proposition 2.8). A differential form on an orbifold may be

thought of as a collection of Γ-invariant differential forms on the open sets Ũ , subject to

certain compatibility conditions. We may define riemannian metrics, complex structures,

vector bundles, Kähler structures, and hyperkähler structures on orbifolds in a similar

manner.
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Example 2.2 Let Z be a smooth manifold, and let G be a compact Lie group acting locally

freely on Z. Then Z/G inherits the structure of an orbifold. The orbifold group of an orbit

of a point z ∈ Z is simply the stabilizer Gz ⊆ G. Any G-invariant tensor on Z descends

to an orbifold tensor on Z/G. Any G-equivariant vector bundle on Z descends to a vector

bundle on Z/G. All of the orbifolds that we consider will be of this form (and it is not

known whether any other examples exist).

These definitions allow for a straightforward extension of Theorem 2.1 to the case

where ξ is an arbitrary regular value of µHK. This implies, by the moment map condition,

that G acts locally freely on µ−1
HK(0), and that the quotient µ−1

HK(0)/G inherits the structure

of a hyperkähler orbifold.

Orbifolds are in many ways just as nice as manifolds; for example, it is possible to

adapt Morse theory to the orbifold case, as in [LT], which we will use in the next section.

When we say that a certain Kähler or hyperkähler quotient is an orbifold, we wish to express

the opinion that it is relatively well behaved, rather than the opinion that it is nasty and

singular. For this reason, we will use the positively connoted adjective Q-smooth to refer to

orbifolds.

We now specialize to the case where M = T ∗Cn, and the action of G on T ∗Cn
is induced from a linear action of G on Cn with moment map µ : Cn → g∗. Choose an

identification of Hn with T ∗Cn such that the complex structure J1 on Hn given by right

multiplication by i corresponds to the natural complex structure on T ∗Cn. Then T ∗Cn
inherits a hyperkähler structure. The real symplectic form ωR is given by adding the

pullbacks of the standard forms on Cn and (Cn)∗, and the holomorphic symplectic form

ωC = dη, where η is the canonical holomorphic 1-form on T ∗Cn.
We note that G acts H-linearly on T ∗Cn ∼= Hn (where n × n matrices act on the

left on the space of column vectors Hn, and scalar multiplication by H is on the right). This

action is hyperhamiltonian with moment map µHK = µC ⊕ µR, where

µR(z, w) = µ(z) − µ(w) and µC(z, w)(v) = w(v̂z)

for w ∈ T ∗
z Cn, v ∈ gC, and v̂z the element of TzCn induced by v. Given a central element

α ∈ g∗, we refer to the hyperkähler quotient

M = T ∗Cn////(α,0)G
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as the hyperkähler analogue of the corresponding Kähler quotient

X = Cn//αG := µ−1(α)/G.

In future sections we will often fix a parameter α and drop it from the notation.

At times it will be convenient to think of Kähler quotients in terms of geometric

invariant theory, as follows. Let GC be an algebraic group acting on an affine variety V ,

and let χ : GC → C× be a character of GC. This defines a lift of the action of GC to the

trivial line bundle V × C by the formula

g · (v, z) = (g · v, χ(g)−1z).

The semistable locus V s with respect to χ is defined to be the set of points v ∈ V such

that for z 6= 0, the closure of the orbit GC(v, z) ⊆ V × C is disjoint from the zero section

V × {0} (see [MFK] or [N4]). The geometric invariant theory (GIT) quotient V//χGC of V

by GC at χ is an algebraic variety with underlying space V ss/∼, where v ∼ w if and only

if the closures GCv and GCw intersect in V ss. The stable locus V st with respect to χ is

the set of points v ∈ V ss such that the GC orbit through v is closed in V ss. Clearly the

geometric quotient V st/GC is an open set inside of the categorical quotient V//χGC. The

following theorem is due to Kirwan in the projective case [Ki]; our formulation of it is taken

from [N4, §3] and [MFK, §8].

Theorem 2.3 Let G be a compact Lie group acting linearly on a complex vector space V

with moment map µ : V → g∗. Let GC be the complexification of G, with its induced action

on V . Let χ be a character of G, and let dχ be the associated element of 5 center of g∗.

Then v ∈ V ss if and only if GCv ∩ µ−1(dχ) 6= ∅, and the inclusion µ−1(dχ) ⊆ V ss induces

a homeomorphism from V//dχG to V//χGC. Furthermore, dχ is a regular value of µ if and

only if V ss = V st.

Given a regular value α ∈ g∗, Theorem 2.3 tells us that we may interpret V//αG as

a GIT quotient only in the case where α comes from a character of G. We note, however,

that the stability and semistability conditions are unchanged when χ is replaced by a high

power of itself, hence we may apply Theorem 2.3 whenever some multiple of α comes from

a character. Furthermore, the GIT stability condition is locally constant as a function of

χ. Hence for any central regular value α ∈ g∗, we may perturb α to a “rational” point,

thereby interpret V//αG as a GIT quotient. Accordingly, we will call an element of V stable
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with respect to α ∈ g∗ if and only if it is stable with respect to χ for all χ such that dχ is

close to a multiple of α, and we will write V//αGC = V ss/∼.

We may also use this theorem to formulate the hyperkähler quotient construction

purely in terms of algebraic geometry. Theorem 2.3 says that, for α a regular value of µR,

T ∗Cn//αG ∼= T ∗Cn//αGC ∼= (T ∗Cn)st/GC.
Since µC : T ∗Cn → g∗C is equivariant, we may take its vanishing locus on both sides of the

above equation, and we obtain the identity

T ∗Cn////(α,0)G
∼= µ−1C (0)//αGC ∼= µ−1C (0)st/GC.

The following proposition is proven for the case where G is a torus in [BD, 7.1].

Proposition 2.4 Suppose that α and (α, 0) are regular values for µ and µHK, respectively.

The cotangent bundle T ∗X is isomorphic to an open subset of M, and is dense if it is

nonempty.

Proof: Let Y = {(z, w) ∈ µ−1C (0)st | z ∈ (Cn)st}, where we ask z to be semistable with

respect to α for the action of GC on Cn, so that X ∼= (Cn)st/GC. Let [z] denote the element

of X represented by z. The tangent space T[z]X is equal to the quotient of TzCn by the

tangent space to the GC orbit through z, hence

T ∗
[z]X

∼= {w ∈ T ∗
zCn | w(v̂z) = 0 for all v ∈ gC} = {w ∈ (Cn)∗ | µC(z, w) = 0}.

Then

T ∗X ∼= {(z, w) | z ∈ (Cn)st and µC(z, w) = 0}/GC = Y/GC.
By the definition of semistability, Y is an open subset of µ−1C (0), and is dense if nonempty.

This completes the proof. 2

Remark 2.5 We may significantly generalize the construction of hyperkähler analogues as

follows. Replace Cn by a smooth complex varietyX , equipped with an action of an algebraic

group GC, an ample line bundle L, and a lift of the action to L. Then the cotangent bundle

T ∗X is holomorphic symplectic, and carries a natural holomorphic hamiltonian action of

GC, along with a lift of this action to the pullback of L. We may then define the holomorphic

symplectic analogue of the GIT quotient X = X//GC to be the GIT quotient of the zero
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level of the holomorphic moment map in T ∗X , where the semistable sets are defined by the

action of GC on L. Theorem 2.3 tells us that this agrees with our construction if X = Cn,
and Proposition 2.4 generalizes to say that the holomorphic symplectic analogue of X is a

partial compactification of its cotangent bundle.

The reason for relegating this definition to a remark is that when X is not equal toCn, its cotangent bundle T ∗X may not be the best holomorphic symplectic manifold with

which to replace it. For example, if X is itself a Kähler quotient, then the holomorphic

symplectic analogue of X modulo the trivial group, in the sense of the previous paragraph,

would simply be the cotangent bundle to X . But this would (usually) not agree with the

hyperkähler analogue of X .

2.2 The C× action and the core

Consider the action of C× on T ∗Cn given by scalar multiplication on the fibers, that is

τ · (z, w) = (z, τw). The holomorphic moment map µC : T ∗Cn → g∗C is C×-equivariant

with respect to the scalar action on g∗C, hence C× acts on µ−1C (0). Linearity of the action

of G on Cn implies that the actions of GC and C× on T ∗Cn commute, therefore we obtain

a J1-holomorphic action of C× on M = µ−1C (0)//GC. Note that the C× action does not

preserve the holomorphic symplectic form or the hyperkähler structure on M; rather we

have τ∗ωC = τωC for τ ∈ C×.

If M is Q-smooth, then the action of the compact subgroup S1 ⊆ C× is hamiltonian

with respect to the real symplectic structure ωR, with moment map Φ[z, w]R = 1
2 |w|2. This

map is an orbifold Morse-Bott function1 with image contained in the non-negative real

numbers, and Φ−1(0) = X ⊆ M.

Proposition 2.6 If the original moment map µ : Cn → g∗ is proper, then so is Φ : M → R.

Proof: We must show that Φ−1[0, R] is compact for any R ∈ R. We have

Φ−1[0, R] = {(z, w) | µR(z, w) = α, µC(z, w) = 0, Φ(z, w) ≤ R}
/
G

and G is compact, hence it is sufficient to show that {(z, w) | µR(z, w) = α, Φ(z, w) ≤ R}
1For a detailed discussion of hamiltonian circle actions and Morse theory on orbifolds, see [LT].
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is compact. Since µR(z, w) = µ(z) − µ(w), this set is a closed subset of

µ−1

{
α+ µ(w)

∣∣∣∣∣
1

2
|w|2 ≤ R

}
×
{
w

∣∣∣∣∣
1

2
|w|2 ≤ R

}
,

which is compact by the properness of µ. 2

Remark 2.7 In the case where G is abelian and X is a nonempty toric variety, properness

of µ (and therefore of Φ) is equivalent to compactness of X.

Suppose that M is Q-smooth and Φ is proper. We define the core L ⊆ M to be the

union of those C× orbits whose closures are compact. Properness of Φ implies that lim
τ→0

τ · p
exists for all p ∈ M, hence we may write

L = {p ∈ M | lim
τ→∞

τ · p exists}.

For F a connected component of MS1
= MC×, let UF be the closure of the set of points

p ∈ M such that lim
τ→∞

τ · p ∈ F . In Morse-theoretic language, U(F ) is the closure of the

unstable orbifold of the critical set F . We may then write L as a finite union of irreducible,

compact varieties as follows:

L =
⋃

F⊆MC× UF .
Proposition 2.8 The core of M has the following properties:

1. L is an S1-equivariant deformation retract of M

2. UF is isotropic with respect to ωC
3. If M is smooth at F , then dimUF = 1

2 dim M.

Proof: Let f : M → [0, 1] be a smooth, S1-invariant function with f−1(0) = L. For all

p ∈ M and t ≥ 0, let ρt(p) = ef(p)t · p. This defines a smooth family of S1-equivariant maps

ρt : M → M, fixing L, with ρ0 = id. The limit ρ∞ = lim
t→∞

ρt is a well-defined smooth map

from M to L, hence (1) is proved.

Suppose that M is smooth at F and consider a point p ∈ F . Since p is a fixed

point, S1 acts on TpM, and we may write

TpM =
⊕

s∈ZHs,
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where Hs is the s weight space for the circle action. Since τ∗ωC = τωC and ωC is a

nondegenerate bilinear form on TpM, ωC restricts to a perfect pairing Hs ×H1−s → C for

all s ∈ Z. In particular,

TpUF =
⊕

s≤0

Hs

is a maximal isotropic subspace of TpM, thus proving (2) and (3).

Now suppose that M is only Q-smooth at F , and let Γp be the orbifold group at p.

A circle action on the orbifold tangent space TpM is an action of a group Γ̂p, where Γ̂p is an

extension of S1 by Γp. Let Γ̂p̊ be the connected component of the identity in Γ̂p. Then Γ̂p̊ is

itself isomorphic to a circle, and maps to the original circle S1 with some degree d ≥ 1. We

now decompose TpM =
⊕
Hs into Γ̂p̊ weight spaces. Again ωC is nondegenerate on TpM,

but now τ̂∗ωC = τ̂dωC for τ̂ ∈ Γ̂p̊∼= S1, hence ωC restricts to a perfect pairingHs×Hd−s → C
for all s ∈ Z. It follows that TpUF =

⊕
s≤0 Hs is isotropic (though not necessarily max-

imally isotropic2) with respect to ωC. This completes the proof of (2) in the orbifold case. 2

Remark 2.9 Proposition 2.8 provides a new way to understand Proposition 2.4 in the

case where M is Q-smooth and Φ is proper. The Kähler quotient X is an ωC-lagrangian

suborbifold of M, hence ωC identifies the normal bundle to X in M with the cotangent

bundle of X. The Proposition 2.4 follows from the fact that the normal bundle to X in M

can be identified with the dense open set of points in M that flow down to X = Φ−1(0)

along the gradient of Φ. This also demonstrates that the C× action on M restricts to scalar

multiplication on the fibers of T ∗X.

Given a space M equipped with the action of a group G, we say that M is equivari-

antly formal if the equivariant cohomology ring H∗
G(M) is a free module over H∗

G(pt). We

end the section with the statement of a fundamental theorem which we will use repeatedly

throughout the paper. Theorem 2.10 is proven in the compact case in [Ki], and the proof

goes through in the noncompact case as long as Φ is proper (see, for example, [H1, §2.2] or

[TW, 4.2]).

Proposition 2.10 Let M be a symplectic orbifold with a hamiltonian circle action such

that the moment map Φ : M → R is proper and bounded below, and has finitely many

critical values. Then H∗
S1(M) is a free module over H∗

S1(pt). Moreover, if the action of

2See Example 3.14.
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S1 commutes with the action of another torus T , then H∗
T×S1(M) is a free module over

H∗
S1(pt).
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Chapter 3

Hypertoric varieties

In this chapter we give a detailed analysis of the construction described in Chapter

2 in the special case where the group G is abelian. In this case the Kähler quotient X is

called a toric variety, and its hyperkähler analogue M is called a hypertoric variety.1 These

latter spaces were first studied systematically in [BD]; other references include [K1], [HS],

and [HP1].

Just as there is a strong relationship between the geometry of toric varieties and

the combinatorics of polytopes (see, for example, [St]), the geometry of hypertoric varieties

interacts with the combinatorics of real hyperplane arrangements. Hausel and Sturmfels

[HS] gave an interpretation of the cohomology ring of a hypertoric variety as the Stanley-

Reisner ring of the matroid associated to the corresponding arrangement of hyperplanes

(Theorem 3.16). In Section 3.3 we interpret the S1-equivariant cohomology ring as an

invariant of the oriented matroid, a richer combinatorial structure that can be associated to

a hyperplane arrangement that is defined over the real numbers (Theorem 3.18 and Remark

3.19). This result is applied in Section 3.4 to obtain a combinatorial presentation of the Z2-

equivariant cohomology ring of the complement of an arrangment of complex hyperplanes

defined over R, thus enhancing the classical result of Orlik and Solomon [OS]. In Section 3.5,

we use the cogenerator approach of [HS] to explore an aspect of the relationship between

the cohomology rings of toric and hypertoric varieties. Most of the material presented here,

with the exception of the entirety of Section 3.5, has been taken from [HP1] in a modified

form.

1Also known as a toric hyperkähler variety.
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3.1 Hypertoric varieties and hyperplane arrangements

Let tn and td be real vector spaces of dimensions n and d, respectively, with integer lattices

tnZ ⊆ tn and tdZ ⊆ td. Let {x1, . . . , xn} be an integer basis for tnZ, and let {∂1, . . . , ∂n} be

the dual basis for the dual lattice (tnZ)∗ ⊆ (tn)∗. Suppose given n nonzero integer vectors

{α1, . . . , αn} ⊆ tdZ that span td over the real numbers.2 Define π : tn → td by π(xi) = ai,

and let tk be the kernel of π, so that we have an exact sequence

0 −→ tk
ι−→ tn

π−→ td −→ 0.

This sequence exponentiates to an exact sequence of abelian groups

0 −→ T k
ι−→ T n

π−→ T d −→ 0,

where

T n = tn/tnZ, T d = td/tdZ, and T k = Ker(π : T n → T d).

Thus T k is a compact abelian group with Lie algebra tk, which is connected if and only if

the vectors {ai} span the lattice tdZ over the integers. It is clear that every closed subgroup

of T n arises in this way.

The restriction to T k of the standard action of T n on T ∗Cn is hyperhamiltonian

with hyperkähler moment map

µR ⊕ µC : T ∗Cn → (tk)∗ ⊕ (tkC)∗,

where

µR(z, w) = ι∗

(
1

2

n∑

i=1

(|zi|2 − |wi|2)∂i
)

and µC(z, w) = ι∗C( n∑

i=1

(ziwi)∂i

)
.

Given an element α ∈ (tk)∗ with lift r = (r1, . . . , rn) ∈ (tn)∗, the Kähler quotient

X = Cn//T k = µ−1(α)/T k

is called a toric variety, and its hyperkähler analogue

M = T ∗Cn////T k =
(
µ−1R (α) ∩ µ−1C (0)

)/
T k

2In each of [BD, K1, HS, HP1], some additional assumption is placed on the vectors {ai}. Sometimes they
are assumed to be primitive, and sometimes they are assumed to generate the lattice tdZ over the integers.
Here we make neither assumption.
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is called a hypertoric variety. Both of these spaces admit an effective residual action of the

torus T d = T n/T k which is hamiltonian in the case of X, and hyperhamiltonian in the case

of M, with hyperkähler moment map

µ̄R[z, w]R⊕ µ̄C[z, w]R =
1

2

n∑

i=1

(|zi|2 − |wi|2 − ri) ∂i ⊕
n∑

i=1

(ziwi) ∂i

∈ Ker(ι∗) ⊕ Ker(ι∗C) = (td)∗ ⊕ (tdC)∗.

In fact, this property may be used to give intrinsic definitions of toric and hypertoric varieties

in certain categories, as demonstrated by the following two theorems.

Theorem 3.1 [De, LT] Any connected symplectic orbifold of real dimension 2d which ad-

mits an effective, hamiltonian T d action with proper moment map is T d-equivariantly sym-

plectomorphic to a toric variety.

Theorem 3.2 [Bi] Any complete, connected, hyperkähler manifold of real dimension 4d

which admits an effective, hyperhamiltonian T d action is T d-equivariantly diffeomorphic,

and Taub-NUT deformation equivalent, to a hypertoric variety.

The data that were used to construct X and M consist of a collection of nonzero

vectors ai ∈ tdZ and an element α ∈ (tk)∗. It is convenient to encode in terms of an

arrangement of affine hyperplanes in (td)∗ with some additional structure. A rational,

weighted, cooriented, affine hyperplane H ⊆ (td)∗ is an affine hyperplane along with a

choice of nonzero normal vector a ∈ tdZ. The word rational refers to integrality of a, and

weighted means that a is not required to be primitive. Consider the rational, weighted,

cooriented hyperplane

Hi = {v ∈ (td)∗ | v · ai + ri = 0}

with normal vector ai ∈ tdZ, along with the two half-spaces

Fi = {v ∈ (td)∗ | v · ai + ri ≥ 0} and Gi = {v ∈ (td)∗ | v · ai + ri ≤ 0}. (3.1)

Let

∆ =

n⋂

i=1

Fi = {v | v · ai + ri ≥ 0 for all i ≤ n}

be the (possibly empty) weighted polyhedron in (td)∗ defined by the weighted, cooriented,

affine, hyperplane arrangement A = {H1, . . . , Hn}. Choosing a different lift r′ of α corre-

sponds combinatorially to translating A inside of (td)∗, and geometrically to shifting the
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Kähler and hyperkähler moment maps for the residual T d actions by r′−r ∈ Ker ι∗ = (td)∗.

Our picture-drawing convention will be to encode the coorientations of the hyperplanes by

shading ∆, as in Figure 3.1. In every example that we consider, all hyperplanes will have

weight 1; in other words we will choose the primitive integer normal vector inducing the

indicated coorientation.

3

4

1

2

Figure 3.1: A cooriented arrangement representing a toric variety of complex dimension 2,

or a hypertoric variety of complex dimension 4, obtained from an action of T 2 on C4.

We call the arrangement A simple if every subset of m hyperplanes with nonempty

intersection intersects in codimension m. We call A smooth if every collection of d linearly

independent vectors {ai1, . . . , aid} spans (td)∗. An element r ∈ (tn)∗ or α ∈ (tk)∗ will be

called simple if the corresponding arrangement A is simple.

Theorem 3.3 [BD, 3.2,3.3] The hypertoric variety M is Q-smooth if and only if A is

simple, and smooth if and only if A is smooth.

Let us pause to point out the different ways in which X and M depend on the

arrangement A. The toric variety X is in fact determined by the weighted polyhedron ∆

[LT], and is therefore oblivious to any hyperplane Hi such that ∆ is contained in the interior

of Fi. Thus the toric variety corresponding to Figure 3.1 is CP 2, the toric variety associated

to a triangle. This is not the case for M; we will see, in fact, that the hypertoric variety of

Figure 3.1 is topologically distinct from the one that we would obtain by deleting the third

hyperplane. For this reason, it is slightly misleading to call M the hyperkähler analogue of

X; more precisely, it is the hyperkähler analogue of a given presentation of X as a Kähler

quotient of a complex vector space.

Just as the toric variety X fails to retain all of the data of the arrangement A,

there is some data that goes unnoticed by the hypertoric variety M, as evidenced by the
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two following results.

Lemma 3.4 The hypertoric variety M is independent, up to T d-equivariant diffeomor-

phism,3 of the choice of a simple element α ∈ (tk)∗.

Lemma 3.5 The hypertoric variety M is independent, up to T d-equivariant isometry, of

the coorientations of the hyperplanes {Hi}.

Proof of 3.4: The set of nonregular values for µR⊕µC has codimension 3 inside of (tk)∗⊕
(tkC)∗ [BD], hence we may choose a path connecting the two regular values (α, 0) and (α′, 0)

for any simple α, α′ ∈ (tk)∗, and this path is unique up to homotopy. Since the moment map

µR⊕µC is not proper, we must take some care in showing that two fibers are diffeomorphic.

To this end, we note that the norm-square function ψ(z, w) = ‖z‖2 + ‖w‖2 is T n-invariant

and proper on T ∗Cn. Let (T ∗Cn)reg denote the open submanifold of T ∗Cn consisting of

the preimages of the regular values of µR ⊕ µC. By a direct computation, it is easy to see

that the kernels of dψ and dµR ⊕ dµC intersect transversely at any point p ∈ (T ∗Cn)reg.
Using the T n-invariant hyperkähler metric on T ∗Cn, we define an Ehresmann connection

on (T ∗Cn)reg with respect to µR ⊕ µC such that the horizontal subspaces are contained in

the kernel of dψ.

This connection allows us to lift a path connecting the two regular values to a

horizontal vector field on its preimage in (T ∗Cn)reg. Since the horizontal subspaces are

tangent to the kernel of dψ, the flow preserves level sets of ψ. Note that the function

µR ⊕ µC ⊕ ψ : T ∗Cn → (tk)∗ ⊕ (tkC)∗ ⊕ R
is proper. By a theorem of Ehresmann [BJ, 8.12], the properness of this map implies that

the flow of this vector field exists for all time, and identifies the inverse image of (α, 0)

with that of (α′, 0). Since the metric, ψ, and µR ⊕ µC are all T n-invariant, the Ehresmann

connection is also T n-invariant, therefore the diffeomorphism identifying the fibers is T n-

equivariant, and the reduced spaces are T d-equivariantly diffeomorphic. 2

Proof of 3.5: It suffices to consider the case when we change the orientation of a single hy-

perplane within the arrangement. Changing the coorientation of a hyperplane Hm is equiv-

alent to defining a new map π′ : tn → td, with π′(xi) = ai for i 6= m, and π′(xm) = −am.

3Bielawski and Dancer [BD] prove a weaker version of this statement, involving the (nonequivariant)
homeomorphism type of M.
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This map exponentiates to a map π′ : T n → T d, with Ker(π′) conjugate to Ker(π) inside

of GLn(H) (the group of quaternion-linear automorphisms of T ∗Cn ∼= Hn) by the element

(1, . . . , 1, j, 1, . . . , 1) ∈ GL1(H)n ⊆ GLn(H), where the j appears in the mth slot. Hence the

hyperkähler quotient by Ker(π′) is isomorphic to the hyperkähler quotient by Ker(π). 2

Example 3.6 The three cooriented arrangements of Figure 2 all specify the same hy-

perkähler variety M up to equivariant diffeomorphism. The first has X ∼= C̃P 2 (the blow-up

of CP 2 at a point), and the second and the third have X ∼= CP 2. Note that if we reversed

the coorientation of H3 in Figure 2(a) or 2(c), then we would get a noncompact X ∼= C̃2.

If we reversed the coorientation of H3 in Figure 2(b), then X would be empty, but the

topology of M would not change.

4

1 1

2 2

3 3

4
( a ) ( b ) ( c )

1

2

3

4

Figure 3.2: Three arrangements related by reversing coorientations and translating
hyperplanes.

Our purpose is to study not just the geometry of M, but the geometry of M along

with the hamiltonian circle action defined in Section 2.2. In order to define this action, we

used the fact that we were reducing at a regular value of the form (α, 0) ∈ (td)∗ ⊕ (tdC)∗.

Although the set of regular values of µR ⊕ µC is simply connected, the set of regular values

of the form (α, 0) is disconnected, therefore the diffeomorphism of Lemma 3.4 is not circle-

equivariant. Furthermore, left multiplication by the diagonal matrix (1, . . . , 1, j, 1, . . . , 1) ∈
GLn(H) is not an S1-equivariant automorphism of T ∗Cn ∼= Hn, therefore the topological

type of M along with a S1 action may depend nontrivially on both the locations and the

coorientations of the hyperplanes in A. Indeed it must, because we can recover X from

M by taking the minimum Φ−1(0) of the moment map Φ : M → R, and we know that

X depends in an essential way on the combinatorial type of the polyhedron ∆. In this
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sense, the structure of a hypertoric variety M along with a hamiltonian circle action may

be regarded as the universal geometric object associated to A from which both M and X

can be recovered.

3.2 Geometry of the core

In this section we give a combinatorial description of the fixed point set MC× = MS1
and

the core L of a Q-smooth hypertoric variety M. We will assume that Φ is proper. (If ∆ is

nonempty, this is equivalent to asking that ∆ be bounded, or that X be compact.) First,

we note that the holomorphic moment map µ̄C : M → (tdC)∗ is C×-equivariant with respect

to the scalar action on (tdC)∗, hence both MC× and L will be contained in

E = µ̄−1C (0) =
{
[z, w] ∈ M

∣∣∣ ziwi = 0 for all i
}
,

which we call the extended core of M. It is clear from the defining equations that the

restriction of µ̄R from E to (td)∗ is surjective. The extended core naturally breaks into

components

EA =
{

[z, w] ∈ M

∣∣∣ wi = 0 for all i ∈ A and zi = 0 for all i ∈ Ac
}
,

indexed by subsets A ⊆ {1, . . . , n}. When A = ∅, EA = X ⊆ M. More generally, the variety

EA ⊆ M is a d-dimensional Kähler subvariety of M with an effective hamiltonian T d-action,

and is therefore itself a toric variety. (It is the Kähler quotient by T k of an n-dimensional

coordinate subspace of T ∗Cn, contained in µ−1C (0).) The hyperplanes {Hi} divide (td)∗ into

a union of closed, (possibly empty) convex polyhedra

∆A =
⋂

i∈A

Fi ∩
⋂

i∈Ac

Gi.

Lemma 3.7 If wi = 0, then µ̄R[z, w]R ∈ Fi. If zi = 0, then µ̄R[z, w]R ∈ Gi.

Proof: We have

µ̄R[z, w]R · ai + ri = µR(z, w) · xi =
1

2

(
|zi|2 − |wi|2

)
,

hence the statement follows from Equation (3.1). 2

Lemma 3.8 [BD] The core component EA is isomorphic to the toric variety corresponding

to the weighted polytope ∆A.
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Proof: Lemma 3.7 tells us that µ̄R(EA) ⊆ ∆A, and surjectivity of µ̄R|E says that this inclu-

sion is an equality. The lemma then follows from the classification theorems of [De, LT]. 2

Although C× does not act on M as a subtorus of T dC, we show below that when

restricted to any single component EA of the extended core, C× does act as a subtorus

of T dC, with the subtorus depending combinatorially on A. This will allow us to give a

combinatorial analysis of the gradient flow of Φ on the extended core.

Suppose that [z, w] ∈ EA. Then for τ ∈ C×,

τ [z, w] = [z, τw] = [τ1z1, . . . τnzn, τ
−1
1 w1, . . . τ

−1
n wn], where τi =




τ−1 if i ∈ A,

1 if i /∈ A.

In other words, the C× action on EA is given by the one dimensional subtorus (τ1, . . . , τn)

of the original torus T nC×, hence the moment map Φ|EA
for the action of S1 ⊆ C× is given by

Φ[z, w] =

〈
µR[z, w],

∑

i∈A

ai

〉
.

This formula allows us to compute the fixed points of the circle action. For any subset

B ⊆ {1, . . . , n}, let EBA be the toric subvariety of EA defined by the conditions zi = wi = 0

for all i ∈ B. Geometrically, EBA is defined by the (possibly empty) intersection of the

hyperplanes {Hi | i ∈ B} with ∆A.

Proposition 3.9 The fixed point set of the action of S1 on EA is the union of those toric

subvarieties EBA such that
∑

i∈A ai ∈ tdB := Spanj∈B aj.

Proof: The moment map Φ|EB
A

will be constant if and only if
∑

i∈A ai is perpendicular to

the face Φ(EBA ), i.e. if
∑

i∈A ai lies in the kernel of the projection td։td/tdB. 2

Corollary 3.10 Every vertex v ∈ (td)∗ of the polyhedral complex |A| given by our arrange-

ment is the image of an S1-fixed point in M. Every component of MS1
maps to a face of

|A|.

Proposition 3.11 The core L of M is equal to the union of those subvarieties EA such

that ∆A is bounded.
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Proof: Because C× acts on EA as a subtorus of the complex torus T dC, the set

{p ∈ EA | lim
τ→∞

τ · p exists}

is a (possibly reducible) toric subvariety of EA, i.e. a union of subvarieties of the form EBA .

Fix a subset B ⊆ {1, . . . , n}. The variety EBA is stable under the C× action, hence if EBA
is compact, then EBA ⊆ L. On the other hand if EBA is noncompact, then properness of Φ

precludes it from being part of the core, hence

L = {p ∈ E | Φ(p) lies on a bounded face of |A|}.

By [HS, 6.7], the bounded complex of |A| has pure dimension d, and is therefore equal to

the union of those polyhedra ∆A that are bounded. 2

Corollary 3.12 There is a natural injection from the set of bounded regions {∆A | A ∈ I}
to the set of connected components of MC×. If A is smooth, this map is a bijection.

Proof: To each A ∈ I , we associate the fixed subvariety EBA corresponding to the face of

∆A on which the linear functional
∑

i∈A ai is minimized, so that EA = U(EBA ). Proposi-

tion 2.8 (3) tells us that if A is smooth and F is a component of MC×, then we will have

U(F ) = EA for some A ⊆ {1, . . . , n}. 2

Example 3.13 In Figure 3, representing a reduction of T ∗C5 by T 3, we choose a metric

on (t2)∗ in order to draw the linear functional
∑

i∈A ai as a vector in each region ∆A. We

see that MS1
has three components, one of them X ∼= C̃P 2

, one of them a projective line

with another C̃P 2
as its associated core component, and one of them a point with core

component CP 2.

Example 3.14 The hypertoric variety represented by Figure 4 has a fixed point set with

four connected components (three points and a CP 2), but only three components in its core.

This phenomenon can be blamed on the orbifold point p represented by the intersection

of H3 and H4, which has only a one-dimensional unstable orbifold (to its northwest). In

other words, this example illustrates the necessity of the smoothness assumption to obtain

a bijection in Corollary 3.12.
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Figure 3.3: The gradient flow of Φ : M → R.

1

3

4

2
p��

Figure 3.4: A singular example.

3.3 Cohomology rings

In this section we compute the S1 and T d×S1-equivariant cohomology rings of of a Q-smooth

hypertoric variety M, extending the computations of the ordinary and T d-equivariant rings

given in [K1] and [HS]. For the sake of simplicity, and with an eye toward the applications

in Chapter 4, we will restrict our attention to the case where Φ is proper (see Remark 2.7).

This assumption will be necessary for the application of Proposition 2.10 and the proof of

Theorem 3.24.

Remark 3.15 Because we wish to treat the smooth and Q-smooth cases simultaneously,

we will work with cohomology over the rational numbers. We note, however, that Konno

proves Theorem 3.16 over the integers in the smooth case, and therefore our Theorem 3.18

holds over the integers when A is smooth. This fact will be significant in Section 3.4, when

we will need to reduce our coefficients modulo 2.
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Consider the hyperkähler Kirwan maps

κT d : H∗
Tn(T ∗Cn) → H∗

T d(M) and κ : H∗
T k(T

∗Cn) → H∗(M)

induced by the T n-equivariant inclusion of µ−1R (α) ∩ µ−1C (0) into T ∗Cn. Because the vector

space T ∗Cn is T n-equivariantly contractible, we have

H∗
Tn(T ∗Cn) = Sym(tn)∗ ∼= Q[∂1, . . . , ∂n]

and

H∗
T k(T

∗Cn) = Sym(tk)∗ ∼= Q[∂1, . . . , ∂n]/Ker(ι∗).

Theorem 3.16 [K1, HS] The Kirwan maps κT d and κ are surjective, and the kernels of

both are generated by the elements

∏

i∈S

∂i for all S ⊆ {1, . . . , n} such that
⋂

i∈S

Hi = ∅.

Remark 3.17 The kernel of κT d is precisely the Stanley-Reisner ideal of the matroid of

linear dependencies among the vectors {ai} [HS] (see Remark 3.19).

The inclusion of µ−1R (α) ∩ µ−1C (0) into T ∗Cn is also S1-equivariant, hence we may

consider the analogous circle-equivariant Kirwan maps

κT d×S1 : H∗
Tn×S1 (T

∗Cn) → H∗
T d×S1(M) and κ : H∗

T k×S1(T
∗Cn) → H∗

S1(M),

where

H∗
Tn×S1(T

∗Cn) ∼= Q[∂1, . . . , ∂n, x]

and

H∗
T k(T

∗Cn) ∼= Q[∂1, . . . , ∂n, x]/Ker(ι∗).

The remainder of this section will be devoted to proving the following theorem.

Theorem 3.18 The circle-equivariant Kirwan maps κT d×S1 and κS1 are surjective, and

the kernels of both are generated by the elements

∏

i∈S1

∂i ×
∏

j∈S2

(x− ∂j) for all disjoint pairs S1, S2 ⊆ {1, . . . , n}

such that
⋂

i∈S1

Gi ∩
⋂

j∈S2

Fj = ∅.
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Remark 3.19 For all i ∈ {1, . . . , n}, let bi = ai ⊕ 0 ∈ td ⊕ R, and let b0 = 0 ⊕ 1. The

pointed matroid associated to A is a combinatorial object that tells us which subsets of

{b0, . . . , bn} are linearly dependent. By simplicity of A, this is equivalent to knowing which

subsets S ⊆ {1, . . . , n} have the property that

⋂

i∈S

Hi = ∅,

which is in turn equivalent to knowing the dependence relations among the vectors {ai}. In

particular, it does not depend on the relative positions of the hyperplanes, encoded by the

parameter α ∈ (tk)∗.

The pointed oriented matroid associated to A encodes the data of which subsets

of {±b0, . . . ,±bn} are linearly dependent over the positive real numbers. This is equivalent

to knowing which pairs of subsets S1, S2 ⊆ {1, . . . , n} have the property that

⋂

i∈S1

Gi ∩
⋂

j∈S2

Fj = ∅,

which does indeed depend on α. Hence Theorem 3.16 shows that H∗
T d(M) is an invariant of

the pointed matroid of A, and Theorem 3.18 demonstrates that H∗
T d×S1(M) is an invariant

of the pointed oriented matroid of A. For more on this perspective, see [H3] and [Pr].

Consider the following commuting square of maps, where φ and ψ are each given

by setting the image of x ∈ H∗
S1(pt) ∼= Q[x] to zero.

H∗
Tn×S1(T

∗Cn) κ
Td×S1−−−−−→ H∗

T d×S1(M)

φ

y
yψ

H∗
Tn(T ∗Cn) κ

Td−−−−→ H∗
T d(M)

Lemma 3.20 The equivariant Kirwan map κT d×S1 is surjective.

Proof: Suppose that γ ∈ H∗
T d×S1(M) is a homogeneous class of minimal degree that is

not in the image of κT d×S1 . By Theorem 3.16 κT d is surjective, hence we may choose a

class η ∈ φ−1κ−1
T dψ(γ). Theorem 2.10 tells us that the kernel of ψ is generated by x, hence

κT d×S1(η)− γ = xδ for some δ ∈ H∗
T d×S1(M). Then δ is a class of lower degree that is not

in the image of κT d×S1 . 2

Lemma 3.21 If I ⊆ Ker κT d×S1 and φ(I) = Ker κT d, then I = Ker κT d×S1 .
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Proof: Suppose that a ∈ Ker κT d×S1 r I is a homogeneous class of minimal degree, and

choose b ∈ I such that φ(a − b) = 0. Then a − b = cx for some c ∈ H∗
Tn×S1(T

∗Cn). By

Proposition 2.10, cx ∈ Ker κT d×S1 ⇒ c ∈ Ker κT d×S1 , hence c ∈ Ker κT d×S1 r I is a class

of lower degree than a. 2

Proof of 3.18: For any element

h ∈ H2
Tn×S1(T

∗Cn) ∼= Q{∂1, . . . , ∂n, x},

let L̃h = T ∗Cn×Ch be the T n×S1-equivariant line bundle on T ∗Cn with equivariant Euler

class h. Let

Lh = L̃h

∣∣∣
µ−1R (α)∩µ−1C (0)

/
T k

be the quotient T d×S1-equivariant line bundle on M. We will write L̃i = L̃∂i
and K̃ = L̃x,

with quotients Li and K. Since the T d × S1-equivariant Euler class e(Li) is the image

of ∂i under the hyperkähler Kirwan map H∗
Tn×S1(T

∗Cn) → H∗
T d×S1(M), we will abuse

notation and denote it by ∂i. Similarly, we will denote e(K) by x. Lemma 3.20 tells us that

H∗
T d×S1(M) is generated by ∂1, . . . , ∂n, x.

Consider the T n×S1-equivariant section s̃i of L̃i given by the function s̃i(z, w) = zi.

This descends to a T d × S1-equivariant section si of Li with zero-set

Zi := {[z, w] ∈ M | zi = 0}.

Similarly, the function t̃i(z, w) = wi defines a T d × S1-equivariant section of L∗
i ⊗K with

zero set

Wi := {[z, w] ∈ M | wi = 0}.

Thus the divisor Zi represents the cohomology class ∂i, and Wi represents x − ∂i. Note,

that by Lemma 3.7, we have µR(Zi) ⊆ Gi and µR(Wi) ⊆ Fi for all i ∈ {1, . . . , n}.
Let S1 and S2 be a pair of subsets of {1, . . .n} such that

(
∩i∈S1Gi

)
∩
(
∩j∈S2Fj

)
= ∅,

and hence

(
∩i∈S1 Zi

)
∩
(
∩j∈S2 Wj

)
⊆ µ−1R (( ∩i∈S1 Gi

)
∩
(
∩j∈S2 Fj

))
= ∅.

Now consider the vector bundle E =
⊕

i∈S1

Li ⊕
⊕

j∈S2

L∗
j ⊗K with equivariant Euler class

e(E) =
∏

i∈S1

∂i ×
∏

j∈S2

(x− ∂j).



Chapter 3. Hypertoric varieties 27

The section (⊕i∈S1si) ⊕ (⊕i∈S2ti) is a nonvanishing equivariant global section of E, hence

e(E) is trivial in H∗
T d×S1(M). Theorem 3.16 and Lemma 3.21 tell us that we have found

all of the relations. The proofs of the analogous statements for H∗
S1(M) are identical. 2

How sensitive are the invariantsH∗
T d×S1(M) andH∗

S1(M)? We can recoverH∗
T d(M)

and H∗(M) by setting x to zero, hence they are at least as fine as the ordinary or T d-

equivariant cohomology rings. The ring H∗
T d×S1(M) does not depend on coorientations, for

if M′ is related to M by flipping the coorientation of the lth hyperplane Hk, then the map

taking ∂l to x − ∂l is an isomorphism between H∗
T d×S1(M) and H∗

T d×S1(M
′).4 The ring

does, however, depend on α, as we see in Example 3.22.

Example 3.22 We compute the equivariant cohomology ring H∗
T d×S1(M) for the hyper-

toric varieties Ma, Mb, and Mc defined by the arrangements in Figure 3.2(a), (b), and (c),

respectively. Note that each of these arrangements is smooth, hence Theorem 3.18 holds

over the integers, as in Remark 3.15.

H∗
T d×S1(Ma) = Z[∂1, . . . , ∂4, x]

/
〈∂2∂3, ∂1(x− ∂2)∂4, ∂1∂3∂4〉 ,

H∗
T d×S1(Mb) = Z[∂1, . . . , ∂4, x]

/
〈(x− ∂2)∂3, ∂1∂2∂4, ∂1∂3∂4〉 ,

H∗
T d×S1(Mc) = Z[∂1, . . . , ∂4, x]

/
〈∂2∂3, (x− ∂1)∂2(x− ∂4), ∂1∂3∂4〉 .

As we have already observed, the rings H∗
T d×S1(Ma) and H∗

T d×S1(Mb) are isomorphic by

interchanging ∂2 with x − ∂2. One can check that the annihilator of ∂2 in H∗
T d×S1(Ma) is

the principal ideal generated by ∂3, while the ring H∗
T d×S1(Mc) has no degree 2 element

whose annihilator is generated by a single element of degree 2. Hence H∗
T d×S1(Mc) is not

isomorphic to the other two rings.

The ring H∗
S1(M), on the other hand, is sensitive to coorientations as well as the

parameter α, as we see in Example 3.23.

Example 3.23 We now compute the ring H∗
S1(M) for Ma, Mb, and Mc of Figure 2. The-

orem 3.18 tells us that we need only to quotient the ring H∗
T d×S1(M) by Ker(ι∗). For Ma,

4The oriented matroid of a collection of nonzero vectors in a real vector space does not change when one
of the vectors is negated, hence the independence of H

∗
Td×S1(M) on coorientations can be deduced from

Remark 3.19.
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the kernel of ι∗a is generated by ∂1 + ∂2 − ∂3 and ∂1 − ∂4, hence we have

H∗
S1(Ma) = Z[∂2, ∂3, x]

/〈
∂2∂3, (∂3 − ∂2)

2(x− ∂2), (∂3 − ∂2)
2∂3

〉

∼= Z[∂2, ∂3, x]
/〈
∂2∂3, (∂3 − ∂2)

2(x− ∂2), ∂
3
3

〉
.

Since the hyperplanes of 2(c) have the same coorientations as those of 2(a), we have Ker ι∗b =

Ker ι∗a, hence

H∗
S1(Mc) = Z[∂2, ∂3, x]

/〈
∂2∂3, (x− ∂3 + ∂2)

2∂2, (∂3 − ∂2)
2∂3

〉

∼= Z[∂2, ∂3, x]
/〈
∂2∂3, (x− ∂3 + ∂2)

2∂2, ∂
3
3

〉
.

Finally, since Figure 2(b) is obtained from 2(a) by flipping the coorientation of H2, we find

that Ker(ι∗b) is generated by ∂1 − ∂2 − ∂3 and ∂1 − ∂4, therefore

H∗
S1(Mb) = Z[∂2, ∂3, x]

/〈
(x− ∂2)∂3, (∂2 + ∂3)

2∂2, (∂2 + ∂3)
2∂3

〉
.

As in Example 3.22, H∗
S1(Ma) and H∗

S1(Mc) can be distinguished by the fact that the

annihilator of ∂2 ∈ H∗
S1(Ma) is generated by a single element of degree 2, and no element

of H∗
S1(Mc) has this property. On the other hand, H∗

S1(Mb) is distinguished from H∗
S1(Ma)

and H∗
S1(Mc) by the fact that neither x− ∂2 nor ∂3 cubes to zero.

3.4 The equivariant Orlik-Solomon algebra

In this section we restrict our attention to smooth arrangements. When A is smooth, all of

the computations of Section 3.3 hold over the integers (see Remark 3.15). Since the rings

in question are torsion-free, the presentations are also valid when the coefficients are taken

in the field field Z2.

Let MR ⊆ M be the real locus {[z, w] ∈ M | z, w real} of M with respect to

the complex structure J1. The full group T d × S1 does not act on MR, but the subgroup

T dR×Z2 does act, where T dR := Zd2 ⊆ T d is the fixed point set of the involution of T d given by

complex conjugation.5 In this section we will study the geometry of the real locus, focusing

5It is interesting to note that the real locus with respect to the complex structure J1 is in fact a complex
submanifold with respect to J3, on which T

dR acts holomorphically and Z2 acts anti-holomorphically.
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in particular on the properties of the Z2 action. The following theorem is an extension of

the results of [BGH] and [Sc] to the noncompact case of hypertoric varieties.

Theorem 3.24 [HH] Let G = T d × S1 or T d, and GR = T dR × Z2 or T dR, respectively.

Then we have H∗
G(M;Z2) ∼= H∗

GR(MR;Z2) by an isomorphism that halves the grading.6

Furthermore, this isomorphism takes the cohomology classes represented by the G-stable

submanifolds Zi and Wi to those represented by the GR-stable submanifolds Zi ∩ MR and

Wi ∩ MR.
Consider the restriction Ψ of the hyperkähler moment map µR⊕ µC to MR. Since

z and w are real for every [z, w] ∈ MR, the map µC takes values in tdR ⊆ tdC, which we will

identify with iRd, so that Ψ takes values in Rd ⊕ iRd ∼= Cd. Note that Ψ is Z2-equivariant,

with Z2 acting on Cn by complex conjugation.

Lemma 3.25 The map Ψ : MR → Cd is surjective, and the fibers are the orbits of T dR.
The stabilizer of a point p ∈ MR has order 2r, where r is the number of hyperplanes in the

complexified arrangement AC containing the point Ψ(p).

Proof: For any point a + bi ∈ Cd, choose a point [z, w] ∈ M such that µR[z, w] = a and

µC[z, w] = b. After moving [z, w] by an element of T d we may assume that z and w are

real, hence we may assume that [z, w] ∈ MR. Then

Ψ−1(a+ bi) = µ−1R (a) ∩ µ−1C (b) ∩ MR = T d[z, w]∩ MR = T dR[z, w].

The second statement follows easily from [BD, 3.1]. 2

Let Y ⊆ MR be the locus of points on which T dR acts freely, i.e. the preimage

under Ψ of the space M(A) := Cd \ ∪ni=1H
C
i . The inclusion map Y →֒MR induces maps

backward on cohomology, which we will denote

φ : H∗
T dR(MR;Z2) → H∗

T dR(Y ;Z2) and φ2 : H∗
T dR×Z2

(MR;Z2) → H∗
T dR×Z2

(Y ;Z2).

By Theorem 3.24, we have

H∗
T dR(MR;Z2) ∼= H∗

T d(M;Z2) and H∗
T dR×Z2

(MR;Z2) ∼= H∗
T d×S1(M;Z2).

6In particular, H
∗
G(M;Z2) is concentrated in even degree.
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Furthermore, since T dR acts freely on Y with quotient M(A), we have

H∗
T dR(Y ;Z2) ∼= H∗(M(A);Z2) and H∗

T dR×Z2
(Y ;Z2) ∼= H∗Z2

(M(A);Z2),

hence we may write

φ : H∗
T d(M;Z2) → H∗(M(A);Z2) and φ2 : H∗

T d×S1(M;Z2) → H∗Z2
(M(A);Z2).

The ring H∗(M(A);Z2) is a classical invariant of the arrangement A known as the Orlik-

Solomon algebra (with coefficients in Z2), and is denoted by A(A;Z2) [OT]. The ring

H∗Z2
(M(A);Z2) was introduced in [HP1] and further studied in [Pr]. We call it the equiv-

ariant Orlik-Solomon algebra and denote it by A2(M(A);Z2).

Proposition 3.26 [Pr, 2.4] The space M(A) is Z2-equivariantly formal, i.e. A2(A;Z2) is

a free module over Z2[x] = H∗Z2
(pt).

Theorem 3.27 Both φ and φ2 are surjective, with kernels

Ker φ =
〈
∂2
i

∣∣∣ i ∈ {1, . . . , n}
〉

and Ker φ2 =
〈
∂i (x− ∂i)

∣∣∣ i ∈ {1, . . . , n}
〉
.

Proof: Theorem 3.24 tells us that φ2(∂i) is represented in H∗
T dR×Z2

(Y ;Z2) by the submani-

fold Zi ∩ Y , and likewise φ2(x− ∂i) by the submanifold Wi ∩ Y . Since µR(Zi ∩Wi) ⊆ Hi,

we have Zi ∩Wi ∩ Y = ∅, hence ∂i(x− ∂i) lies in the kernel of φ2 (and therefore ∂2
i lies in

the kernel of φ).

By Proposition 3.26 and a pair of formal arguments identical to those of Lemmas

3.20 and 3.21, it is sufficient to prove Theorem 3.27 only for φ. Quotienting Zi ∩ Y by T dR,

we find that φ(∂i) is represented in A(A;Z2) by the submanifold

{v ∈ M(A) | v · ai + ri ∈ R−}.

The standard presentation of A(A;Z2) (see, for example, [OT]) says that these classes gen-

erate the ring, and that all relations between them are generated by the monomials of

Theorem 3.16 and ∂2
i for all i. 2

Remark 3.28 Theorems 3.18 and 3.27 combine to give a presentation of the equivariant

Orlik-Solomon algebra A2(A;Z2) in the case where A is rational, simple, and smooth. This

presentation first appeared in [HP1]. In [Pr], we generalize this presentation to arbitrary

real hyperplane arrangements, and in fact to arbitrary pointed oriented matroids.
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Remark 3.29 The ring A2(A;Z2) is a deformation over the affine line SpecZ2[x] from

the ordinary Orlik-Solomon algebra A(A;Z2) to the Varchenko-Gel′fand ring V G(A;Z2)

of locally constant Z2-valued functions on the real points of M(A) [Pr]. While the rings

A(A;Z2) and V G(A;Z2) depend only on the matroid associated to A, the deformation

A2(A;Z2) depends on the richer structure of the pointed oriented matroid (see Remark

3.19).

Example 3.30 Consider the arrangementsAa and Ac in Figure 2(a) and 2(c). By Theorem

3.27 and Example 3.22 we have

H∗Z2
(M(Aa);Z2) ∼= Z2[∂1, . . . , ∂4, x]

/〈
∂1(x− ∂1), ∂2(x− ∂2), ∂3(x− ∂3), ∂4(x− ∂4),

∂2∂3, ∂1(x− ∂2)∂4, ∂1∂3∂4

〉

and

H∗Z2
(M(Ac);Z2) ∼= Z2[∂1, . . . , ∂4, x]

/〈
∂1(x− ∂1), ∂2(x− ∂2), ∂3(x− ∂3), ∂4(x− ∂4),

∂2∂3, (x− ∂1)∂2(x− ∂4), ∂1∂3∂4

〉
.

The map f : H∗Z2
(M(Aa);Z2) → H∗Z2

(M(Ab);Z2) given by

f(∂1) = ∂1 + ∂2, f(∂2) = ∂2 + ∂3 + x, f(∂3) = ∂3, f(∂4) = ∂2 + ∂4, and f(x) = x

is an isomorphism of graded Z2[x]-algebras, despite the fact that the oriented matroids of

the two arrangements differ.7

Example 3.31 Now consider the arrangements A′
a and A′

c obtained from Aa and Ac by

adding a vertical line on the far left, as shown in Figure 3.5. Again by Theorem 3.27, we

have

H∗Z2
(M(A′

a);Z2) ∼= Z2[∂1, . . . , ∂4, x]

/〈 ∂1(x− ∂1), ∂2(x− ∂2), ∂3(x− ∂3), ∂4(x− ∂4),

∂5(x− ∂5), ∂2∂3, (x− ∂1)∂5, ∂1(x− ∂2)∂4,

∂1∂3∂4, (x− ∂2)∂4∂5, ∂3∂4∂5

〉

and

H∗Z2
(M(A′

c);Z2) ∼= Z2[∂1, . . . , ∂4, x]

/〈 ∂1(x− ∂1), ∂2(x− ∂2), ∂3(x− ∂3), ∂4(x− ∂4),

∂5(x− ∂5), ∂2∂3, (x− ∂1)∂5, (x− ∂1)∂2(x− ∂4),

∂1∂3∂4, (x− ∂2)∂4∂5, ∂3∂4∂5

〉
.

7We thank Graham Denham for finding this isomorphism.
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Figure 3.5: Adding a vertical line to Aa and Ac.

We have used Macaulay 2 [M2] to check that the annihilator of the element ∂2 ∈ H∗Z2
(M(A′

a);Z2)

is generated by two linear elements (namely ∂3 and x− ∂2) and nothing else, while there is

no element of H∗Z2
(M(A′

c);Z2) with this property. Hence the two rings are not isomorphic.

3.5 Cogenerators

Consider the Kähler Kirwan map

Kα : Sym(tk)∗ ∼= H∗
T k(Cn) → H∗(Xα)

induced by the T k-equivariant inclusion of µ−1(α) into Cn. In this section we would like to

consider simultaneously the Kirwan maps Kα for many different values of α, so almost all

of the notation that we use will have a subscript or superscript indicating the parameter

α ∈ (tk)∗ or a lift r ∈ (tn)∗. An exception to this rule will be the hyperkähler Kirwan map

κ : Sym(tk)∗ → H∗(Mα),

which, by Lemma 3.4 or Theorem 3.16, is independent of our choice of simple α ∈ (tk)∗.

The main result of this section is the following.

Theorem 3.32 The kernel of the hyperkähler Kirwan map κ is equal to the intersection

over all simple α of the kernels of the Kähler Kirwan maps Kα.

Remark 3.33 Konno [K2, 7.6] proves an analogous theorem about the kernels of the Kir-

wan maps to the cohomology rings of polygon and hyperpolygon spaces. We may therefore
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conjecture a generalization of Theorem 3.32 in which T k is replaced by an arbitrary com-

pact group G. Note that our proof of Theorem 3.32 depends strongly on the combinatorics

associated to hypertoric varieties.

We approach Theorem 3.32 by describing the kernels of κ and Kα not in terms

of generators, but rather in terms of cogenerators. Given an ideal I ⊆ Sym(tk)∗, a set of

cogenerators for I is a collection of polynomials {fi} ⊆ Sym tk such that

I = {∂ ∈ Sym(tk)∗ | ∂ · fi = 0 for all i}.

The volume function Vol ∆r is locally polynomial in r. More precisely, for every

simple r ∈ (tn)∗, there exists a degree d polynomial P r ∈ Symd tn such that for every simple

s ∈ (tn)∗ lying in the same connected component of the set of simple elements as r, we have

Vol∆s = P r(s).

We will refer to P r as the volume polynomial of ∆r. The fact that the volume of a polytope is

translation invariant tells us that P r lies in the image of the inclusion ι : Symd tk →֒Symd tn.

Theorem 3.34 [GS, KP] Let r ∈ (tn)∗ be a simple element with ι∗(r) = α. Then

KerKα = Ann{ι−1P r} =
{
∂ ∈ Sym(tk)∗ | ∂ · (ι−1P r) = 0

}
.

A similar description of the cohomology ring of a hypertoric variety is given in

[HS]. For any subset A ⊆ {1, . . . , n}, consider the polyhedron ∆r
A introduced in Section

3.2. If ∆r
A is nonempty, then it is bounded if and only if the vectors {ε1(A)a1, . . . , εn(A)an}

span td over the non-negative real numbers, where εi(A) = (−1)|A∩{i}|. We call such an

A admissible. For all admissible A, there exists a degree d polynomial P rA ∈ Symd tn such

that for every simple s ∈ (tn)∗ lying in the same connected component of the set of simple

elements as r, we have

Vol∆s
A = P rA (s).

Once again, the translation invariance of volume implies that P rA lies in the image of the

inclusion ι : Symd tk →֒Symd tn. Consider the linear span

U r = Q{P rA | A admissible
}
.
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Theorem 3.35 [HS] Let r ∈ (tn)∗ be a simple element with ι∗(r) = α. Then

Ker κ = Ann ι−1U r =
{
∂ ∈ Sym(tk)∗ | ∂ · ι−1P = 0 for all P ∈ U r

}
.

Remark 3.36 It is clear from the statement of Theorem 3.35 that H∗(M) does not depend

on the coorientations of the hyperplanes {Hr
1 , . . . , H

r
n}, as has been observed in Lemma 3.5

and throughout Section 3.3. Indeed, the polynomials P rA for A admissible are simply the

volume polynomials of the maximal regions of |A|. What is not clear from this presentation

is the independence of H∗(M) on α. In other words, it is a nontrivial fact that the vector

space U r is independent of the parameter r ∈ (tn)∗.

Proof of 3.32: The statement of Theorem 3.32 equates the kernel of κ, which is cogenerated

by the vector space ι−1U r, with the intersection of the kernels of the mapsKα, each of which

is cogenerated by the element ι−1P r . Intersection of ideals corresponds to linear span on

the level of cogenerators, hence we have

⋂

α simple

KerKα = Ann ι−1V, where V = Q{P r | r simple}.

Our plan is to show that V = U r for any simple r. Recall that the assignment of P r to r is

locally constant on the set of simple elements of (tn)∗, hence V is finite-dimensional. Since

P r ∈ U r and U r does not depend on r (see Remark 3.36), it is clear that V ⊆ U r. Thus to

prove Theorem 3.32, it will suffice to prove the opposite inclusion, as stated below.

Proposition 3.37 We have P rA ∈ V for every admissible A ⊆ {1, . . . , n}.

Let F be the infinite dimensional vector space consisting of all real-valued functions

on (td)∗, and let F bd be the subspace consisting of functions with bounded support. For all

subsets A ⊆ {1, . . . , n}, let

WA = Q{1∆r
A
| r simple

}

be the subspace of F consisting of finite linear combinations of characteristic functions of

polyhedra ∆r
A, and let

W bd
A = WA ∩ F bd.

Note that W bd
A = WA if and only if A is admissible.

Lemma 3.38 For all A,A′ ⊆ {1, . . . , n}, W bd
A = W bd

A′ .
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Proof: We may immediately reduce to the case where A′ = A∪{j}. Fix a simple r ∈ (tn)∗.

Let r̃ ∈ (tn)∗ be another simple element obtained from r by putting r̃i = ri for all i 6= j,

and r̃j = N for some N ≫ 0. Then ∆r
A ⊆ ∆r̃

A, and

∆r̃
A r ∆r

A =
{
v ∈ (td)∗ | εi(A′)(v · ai + ri) ≥ 0 for all i ≤ n and v · aj +N ≥ 0}

= ∆r
A′ ∩GNj .

Suppose that f ∈ F bd can be written as a linear combination of functions of the form 1∆r
A′

.

Choosing N large enough that the support of f is contained in GNj , the above computation

shows that f can be written as a linear combination of functions of the form 1∆r
A
, hence

W bd
A′ ⊆W bd

A . The reverse inclusion is obtained by an identical argument. 2

Example 3.39 Suppose that we want to write the characteristic function for the upper

triangle ∆{1,4} in Figure 3.2(c) as linear combination of characteristic functions of the

shaded regions obtained by translating the hyperplanes in any possible way. Since {1, 4}
has two elements, the procedure described in Lemma 3.38 must be iterated twice, and the

result will have a total of 22 = 4 terms, as illustrated in Figure 3.6. The first iteration

exhibits 1∆{1,4}
as an element of W bd

{4} by expressing it as the difference of the characteristic

functions of two (unbounded) regions. With the second iteration, we attempt to express

each of these two characteristic functions as elements of W bd
{1,4} = W{1,4}. This attempt

must fail, because each of the two functions that we try to express has unbounded support.

But the failures cancel out, and we succeed in expressing the difference as an element of

W{1,4}.

Proof of 3.37: By Lemma 3.38, we may write

1∆r
A

=

m∑

j=1

ηj1∆r(j)

for any simple r and admissible A, where ηj ∈ Z and r(j) is a simple element of (tn)∗ for

all j ≤ m. Taking volumes of both sides of the equation, we have

P rA (r) =

m∑

j=1

ηjP
r(j)
(
r(j)

)
. (3.2)

Furthermore, we observe from the proof of Lemma 3.38 that for all j ≤ m and all i ≤ n, the

ith coordinate ri(j) of r(j) is either equal to ri, or to some large number number N ≫ 0. The
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Equation (3.2) still holds if we wiggle these large numbers a little bit, hence the polynomial

P r(j) must be independent of the variable ri(j) whenever ri(j) 6= ri. Thus we may substitute

r for each r(j) on the right-hand side, and we obtain the equation

P rA(r) =

m∑

j=1

ηjP
r(j)(r).

This equation clearly holds in a neighborhood of r, hence we obtain an equation of polyno-

mials

P rA =

m∑

j=1

ηjP
r(j).

This completes the proof of Proposition 3.37, and therefore also of Theorem 3.32. 2

Example 3.40 Let’s see what happens when we take volume polynomials in the equation

of Figure 3.6. The two polytopes on the top line have different volumes, but the same

volume polynomial, hence these two terms cancel. We are left with the equation

P
(0,1,1,0)
{1,4} = P (0,1,1,0) − P (N,1,1,0),

which translates as

1

2
(−x1 + x2 − x4)

2 =
1

2
(x1 + x3 + x4)

2 − (x2 + x3)

(
x1 + x4 +

1

2
x3 −

1

2
x2

)
.
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Figure 3.6: An equation of characteristic functions. We write two numbers next to each
hyperplane: the first is the index i ∈ {1, . . . , 4}, and the second is the parameter ri specifying

the distance from the origin (denoted by a black dot) to Hi. The two iterations of Lemma
3.38 have produced two undetermined large numbers, which we call N and N ′.
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Chapter 4

Abelianization

Let X be a symplectic manifold equipped with a hamiltonian action of a compact

Lie group G. Let T ⊆ G be a maximal torus, let ∆ ⊂ t∗ be the set of roots1 of G, and let

W = N (T )/T be the Weyl group of G. If µ : X → g∗ is a moment map for the action of

G, then pr ◦ µ : X → t∗ is a moment map for the action of T , where pr : g∗ → t∗ is the

standard projection. Suppose that 0 ∈ g∗ and 0 ∈ t∗ are regular values for the two moment

maps. If the symplectic quotients

X//G = µ−1(0)/G and X//T = (pr ◦ µ)−1(0)/T

are both compact, then Martin’s theorem [Ma, Theorem A] relates the cohomology of X//G

to the cohomology of X//T . Specifically, it says that

H∗(X//G) ∼= H∗(X//T )W

ann(e0)
,

where

e0 =
∏

α∈∆

α ∈ (Sym t∗)W ∼= H∗
T (pt)W ,

which acts naturally on H∗(X//T )W ∼= H∗
T (µ−1

T (0))W . In the case where X is a complex

vector space and G acts linearly on X , a similar result was obtained by Ellingsrud and

Strømme [ES] using different techniques.

Our goal is to state and prove an analogue of this theorem for hyperkähler quo-

tients. There are two main obstacles to this goal. First, hyperkähler quotients are rarely

compact. The assumption of compactness in Martin’s theorem is crucial because his proof

1Not to be confused with the polyhedron ∆ of Chapter 3.
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involves integration. Our answer to this problem is to work with equivariant cohomology

of circle compact manifolds, by which we mean oriented manifolds with an action of S1

such that the fixed point set is oriented and compact. Using the localization theorem of

Atiyah-Bott [AB] and Berline-Vergne [BV], as motivation, we show that integration in ra-

tionalized S1-equivariant cohomology of circle compact manifolds can be defined in terms of

integration on their fixed point sets. Section 4.1 is devoted to making this statement precise

by defining a well-behaved push forward in the rationalized S1-equivariant cohomology of

circle compact manifolds.

The second obstacle is that Martin’s result uses surjectivity of the Kähler Kirwan

map from H∗
G(X) to H∗(X//G) [Ki]. The analogous map for circle compact hyperkähler

quotients is conjecturally surjective, but only a few special cases are known (see Theorems

3.16 and 5.14, and Remarks 5.3 and 5.16). Our approach is to assume that the ratio-

nalized Kirwan map is surjective, which is equivalent to saying that the cokernel of the

non-rationalized Kirwan map

κG : H∗
S1×G(M) → H∗

S1(M////G)

is torsion as a module over H∗
S1(pt). This is a weaker assumption than surjectivity of κG;

in particular, we show in Section 5.1 that this assumption holds for quiver varieties, as a

consequence of the work of Nakajima.

Under this assumption, Theorem 4.10 computes the rationalized equivariant co-

homology of M////G in terms of that of M////T . We show that, at regular values of the

hyperkähler moment maps,

Ĥ∗
S1(M////G) ∼=

Ĥ∗
S1(M////T )W

ann(e)
,

where Ĥ∗
S1 denotes rationalized equivariant cohomology (see Definition 4.1), and

e =
∏

α∈∆

α(x− α) ∈ (Sym t∗)W ⊗ Q[x] ∼= H∗
S1×T (pt)W ⊆ Ĥ∗

S1×T (pt)W .

Theorem 4.11 describes the image of the non-rationalized Kirwan map in a similar way:

H∗
S1(M////G) ⊇ Im(κG) ∼= (Im κT )W

ann(e)
,

where κT : H∗
S1×T (M) → H∗

S1(M////T ) is the Kirwan map for the abelian quotient. In many

situations, such as when M = T ∗Cn, κT is known to be surjective (Theorem 3.16).

This Chapter is a reproduction of [HP, §1-3].
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4.1 Integration

The localization theorem of Atiyah-Bott [AB] and Berline-Vergne [BV] says that given a

manifoldM with a circle action, the restriction map from the circle-equivariant cohomology

ofM to the circle-equivariant cohomology of the fixed point set F is an isomorphism modulo

torsion. In particular, integrals on M can be computed in terms of integrals on F . If F is

compact, it is possible to use the Atiyah-Bott-Berline-Vergne formula to define integrals on

M .

We will work in the category of circle compact manifolds, by which we mean

oriented S1-manifolds with compact and oriented fixed point sets. Maps between circle

compact manifolds are required to be equivariant.

Definition 4.1 Let K = Q(x), the rational function field of H∗
S1(pt) ∼= Q[x]. For a circle

compact manifold M , let Ĥ∗
S1(M) = H∗

S1(M) ⊗ K, where the tensor product is taken over

the ring H∗
S1(pt). We call Ĥ∗

S1(M) the rationalized S1-equivariant cohomology of M . Note

that because deg(x) = 2, Ĥ∗
S1(M) is supergraded, and supercommutative with respect to

this supergrading.

An immediate consequence of [AB] is that restriction gives an isomorphism

Ĥ∗
S1(M) ∼= Ĥ∗

S1(F ) ∼= H∗(F ) ⊗Q K, (4.1)

where F = MS1
denotes the compact fixed point set of M . In particular Ĥ∗

S1(M) is a finite

dimensional vector space over K, and trivial if and only if F is empty.

Let i : N →֒M be a closed embedding. There is a standard notion of proper

pushforward

i∗ : H∗
S1(N ) → H∗

S1(M)

given by the formula i∗ = r ◦ Φ, where r : H∗
S1(M,M \ N ) → H∗

S1(M) is the restriction

map, and Φ : H∗
S1(N ) → H∗

S1(M,M \ N ) is the Thom isomorphism. We will also denote

the induced map Ĥ∗
S1(N ) → Ĥ∗

S1(M) by i∗. Geometrically, i∗ can be understood as the

inclusion of cycles in Borel-Moore homology.

This map satisfies two important formal properties [AB]:

Functoriality: (i ◦ j)∗ = i∗ ◦ j∗ (4.2)

Module homomorphism: i∗(γ · i∗α) = iγ · α for all α ∈ Ĥ∗
S1(M), γ ∈ Ĥ∗

S1(N ). (4.3)
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We will denote the Euler class i∗i∗(1) ∈ Ĥ∗
S1(N ) by e(N ). If a class γ ∈ Ĥ∗

S1(N ) is in

the image of i∗, then property (4.3) tells us that i∗i∗γ = e(N )γ. Since the pushforward

construction is local in a neighborhood of N in M , we may assume that i∗ is surjective,

hence this identity holds for all γ ∈ Ĥ∗
S1(N ).

Let F = MS1
be the fixed point set of M . Since M and F are each oriented, so is

the normal bundle to F inside of M . The following result is standard, see e.g. [Ki].

Lemma 4.2 The Euler class e(F ) ∈ Ĥ∗
S1(F ) of the normal bundle to F in M is invertible.

Proof: Let {F1, . . . , Fd} be the connected components of F . Since Ĥ∗
S1(F ) ∼=

⊕
Ĥ∗
S1(Fi)

and e(F ) = ⊕e(Fi), our statement is equivalent to showing that e(Fi) is invertible for all i.

Since S1 acts trivially on Fi, Ĥ
∗
S1(Fi) ∼= H∗(Fi)⊗QK. We have e(Fi) = 1⊗axk+nil, where

k = codim(Fi), a is the product of the weights of the S1 action on any fiber of the normal

bundle, and nil consists of terms of positive degree in H∗(Fi). Since Fi is a component

of the fixed point set, S1 acts freely on the complement of the zero section of the normal

bundle, therefore a 6= 0. Since axk is invertible and nil is nilpotent, we are done. 2

Definition 4.3 For α ∈ Ĥ∗
S1(M), let

∫

M
α =

∫

F

α|F
e(F )

∈ K.
Note that this definition does not depend on our choice of orientation of F . Indeed,

reversing the orientation of F has the effect of negating e(F ), and introducing a second factor

of −1 coming from the change in fundamental class. These two effects cancel.

For this definition to be satisfactory, we must be able to prove the following lemma,

which is standard in the setting of ordinary cohomology of compact manifolds.

Lemma 4.4 Let i : N →֒M be a closed immersion. Then for any α ∈ Ĥ∗
S1(M), γ ∈ Ĥ∗

S1(N ),

we have
∫
M α · i∗γ =

∫
N i

∗α · γ.

Proof: Let G = NS1
, let j : G → F denote the restriction of i to G, and let φ : F → M

and ψ : G→ N denote the inclusions of F and G into M and N , respectively.

N
i−−−−→ M

ψ

x
xφ

G
j−−−−→ F



Chapter 4. Abelianization 42

Then ∫

M
α · i∗γ =

∫

F

φ∗α · φ∗i∗γ
e(F )

,

and ∫

N
i∗α · γ =

∫

G

ψ∗i∗α · ψ∗γ

e(G)
=

∫

G

j∗φ∗α · ψ∗γ

e(G)
=

∫

F
φ∗α · j∗

(
ψ∗γ

e(G)

)
,

where the last equality is simply the integration formula applied to the map j : G → F of

compact manifolds [AB]. Hence it will be sufficient to prove that

φ∗i∗γ = e(F ) · j∗
(
ψ∗γ

e(G)

)
∈ Ĥ∗

S1(F ).

To do this, we will show that the difference of the two classes lies in the kernel of φ∗, which

we know is trivial because the composition φ∗φ∗ is given by multiplication by the invertible

class e(F ) ∈ Ĥ∗
S1(F ). On the left hand side we get

φ∗φ
∗i∗γ = φ∗(1) · i∗γ by (4.3),

and on the right hand side we get

φ∗

(
e(F ) · j∗

(
ψ∗γ

e(G)

))
= φ∗

(
φ∗φ∗(1) · j∗

(
ψ∗γ

e(G)

))

= φ∗(1) · φ∗j∗
(
ψ∗γ

e(G)

)
by (4.3)

= φ∗(1) · i∗ψ∗

(
ψ∗γ

e(G)

)
by (4.2).

It thus remains only to show that γ = ψ∗

(
ψ∗γ
e(G)

)
. This is seen by applying ψ∗ to both sides,

which is an isomorphism (working over the field K) by [AB]. 2

For α1, α2 ∈ Ĥ∗
S1(M), consider the symmetric, bilinear, K-valued pairing

〈α1, α2〉M =

∫

M
α1α2.

Lemma 4.5 (Poincaré Duality) This pairing is nondegenerate.

Proof: Suppose that α ∈ Ĥ∗
S1(M) is nonzero, and therefore φ∗α 6= 0. Since F is compact,

there must exist a class γ ∈ Ĥ∗
S1(F ) such that 0 6=

∫
F φ

∗α · γ =
∫
M α · φ∗γ = 〈α, φ∗γ〉M . 2
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Definition 4.6 For an arbitrary equivariant map f : N → M , we may now define the

pushforward

f∗ : Ĥ∗
S1(N ) → Ĥ∗

S1(M)

to be the adjoint of f∗ with respect to the pairings 〈·, ·〉N and 〈·, ·〉M . This is well defined

because, according to (4.1), Ĥ∗
S1(M) and Ĥ∗

S1(N ) are finite dimensional vector spaces over

the field K. Lemma 4.4 tells us that this definition generalizes the definition for closed

immersions. Furthermore, properties (4.2) and (4.3) for pushforwards along arbitrary maps

are immediate corollaries of the definition. If f is a projection, then f∗ will be given by

integration along the fibers. Using the fact that every map factors through its graph as

a closed immersion and a projection, we always have a geometric interpretation of the

pushforward.

As an application, let us consider the manifold M ×M , along with the two pro-

jections π1 and π2, and the diagonal map Diag : M → M × M . Suppose that we can

write

Diag∗(1) =
∑

π∗1ai · π∗2bi

for a finite collection of classes ai, bi ∈ Ĥ∗
S1(M). The following Proposition will be used in

Section 5.1.

Proposition 4.7 The set {bi} is an additive spanning set for Ĥ∗
S1(M).

Proof: For any α ∈ Ĥ∗
S1(M), we have

α = id∗ id∗ α

= (π2 ◦ Diag)∗(π1 ◦ Diag)∗α

= π2∗

(
Diag∗ (1 · Diag∗ π∗1α)

)

= π2∗

(
π∗1α · Diag∗(1)

)

= π2∗

(∑
π∗1(aiα) · π∗2bi

)

=
∑

π2∗π
∗
1(aiα) · bi

=
∑

〈ai, α〉 · bi,

hence α is in the span of {bi}. 2
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4.2 Hyperkähler abelianization

Let M be a hyperkähler manifold with a circle action, and suppose that a compact Lie

group G acts hyperhamiltonianly on M with hyperkähler moment map

µG = µR ⊕ µC : M → g∗ ⊕ g∗C,
where µC is holomorphic with respect to the distinguished complex structure I . We require

that the action of G commute with the action of S1, that µR is S1-invariant, and that µC
is S1-equivariant with respect to the action of S1 on g∗C by complex multiplication.

Let T ⊆ G be a maximal torus, and let pr : g∗ → t∗ be the natural projection.

Then T acts on M with hyperkähler moment map

µT = pr◦µR ⊕ prC◦µC : M → t∗ ⊕ t∗C.
Let ξ ∈ g∗ be a central element such that (ξ, 0) is a regular value of µG and (pr(ξ), 0) is a

regular value of µT . Assume further that G acts freely on µ−1
G (ξ, 0), and T acts freely on

µ−1
T (pr(ξ), 0).2 Let

M////G = µ−1
G (ξ, 0)/G and M////T = µ−1

T (pr(ξ), 0)/T

be the hyperkähler quotients of M by G and T , respectively. Because µG and µT are circle-

equivariant, the action of S1 on M descends to actions on the hyperkähler quotients. Note

that M////T also inherits an action of the Weyl group W of G.

Example 4.8 The main example to keep in mind is M = T ∗Cn, where S1 acts on M by

scalar multiplication on the fibers and the action of G on M is induced by a linear action

of G on Cn, as in Chapter 2.

Consider the Kirwan maps

κG : H∗
S1×G(M) → H∗

S1(M////G) and κT : H∗
S1×T (M) → H∗

S1(M////T ),

induced by the inclusions of µ−1
G (ξ, 0) and µ−1

T (pr(ξ), 0) into M , along with their rational-

izations

κ̂G : Ĥ∗
S1×G(M) → Ĥ∗

S1(M////G) and κ̂T : Ĥ∗
S1×T (M) → Ĥ∗

S1(M////T ).

2We make this simplifying assumption in order to talk about manifolds, rather than orbifolds, which
makes the integration formulae easier to state. In fact, Theorems 4.10 and 4.11 generalize easily to the
orbifold case, as in [Ma, §6].
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Let

rGT : Ĥ∗
S1×G(M) → Ĥ∗

S1×T (M)W

be the standard isomorphism.

Let ∆ = ∆+ ⊔ ∆− ⊂ t∗ be the set of roots of G. Let

e =
∏

α∈∆

α(x− α) ∈ (Sym t∗)W ⊗ Q[x] ∼= HS1×G(pt) ⊆ ĤS1×G(pt),

and

e′ =
∏

α∈∆−

α ·
∏

α∈∆

(x− α) ∈ Sym t∗ ⊗ Q[x] ∼= HS1×T (pt) ⊆ ĤS1×T (pt).

The following two theorems are analogues of Theorems B and A of [Ma], adapted to circle

compact hyperkähler quotients. Our proofs follow closely those of Martin.

Theorem 4.9 Suppose that M////G and M////T are both circle compact. If γ ∈ Ĥ∗
S1×G(X),

then ∫

X////G
κ̂G(γ) =

1

|W |

∫

X////T
κ̂T ◦ rGT (γ) · e.

Theorem 4.10 Suppose that M////G and M////T are both circle compact, and that the ratio-

nalized Kirwan map κ̂G is surjective. Then

Ĥ∗
S1(M////G) ∼=

Ĥ∗
S1(M////T )W

ann(e)
∼=
(
Ĥ∗
S1(M////T )

ann(e′)

)W
.

Proof of 4.9: Consider the following pair of maps:

µ−1
G (ξ, 0)/T

i−−−−→ µ−1
T (pr(ξ), 0)/T ∼= M////T

π

y

µ−1
G (ξ, 0)/G∼= M////G.

Each of these spaces is a complex S1-manifold with a compact, complex fixed point set, and

therefore satisfies the hypotheses of Section 4.1. Let

b =
∏

α∈∆+

α ∈ H∗
S1×T (pt)
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be the product of the positive roots of G, which we will think of as an element of Ĥ∗
S1(X////T ).

Martin shows that π∗i
∗b = |W |, and that i∗ ◦ κ̂T ◦ rGT = π∗κ̂G [Ma], hence we have

∫

X////G

κ̂G(γ) =
1

|W |

∫

X////G

κ̂G(γ) · π∗i∗b

=
1

|W |

∫

µ−1
G (ξ,0)/T

π∗κ̂G(γ) · i∗b by Definition 4.6

=
1

|W |

∫

µ−1
G (ξ,0)/T

i∗ ◦ κ̂T ◦ rGT (γ) · i∗b

=
1

|W |

∫

X////T
κ̂T ◦ rGT (γ) · b · i∗(1) by Lemma 4.4.

It remains to compute i∗(1) ∈ Ĥ∗
S1(X////T ). For α ∈ ∆, let

Lα = µ−1
T ((pr(ξ), 0)×T Cα

be the line bundle on M////T with S1-equivariant Euler class α. Similarly, let Lx be the

(topologically trivial) line bundle with S1-equivariant Euler class x. Following the idea

of [Ma, 1.2.1], we observe that the restriction of µG − (ξ, 0) to µ−1
T (pr(ξ), 0) defines an

S1 × T -equivariant map

s : µ−1
T (pr(ξ), 0) → V ⊕ VC,

where V = pr−1(0) and VC = pr−1C (0). This descends to an S1-equivariant section of the

bundle

E = µ−1
T (pr(ξ), 0)×T (V ⊕ VC)

with zero locus µ−1
G (ξ, 0)/T . The fact that (ξ, 0) is a regular value implies that this section

is generic, hence the equivariant Euler class e(E) ∈ Ĥ∗
S1(X////T ) is equal to i∗(1).

The vector space V is isomorphic as a T -representation to
⊕

α∈∆− Cα, with S1

acting trivially. Similarly, VC is isomorphic to V ⊗ C ∼= V ⊕ V ∗, with S1 acting diagonally

by scalars. Hence

E ∼=
⊕

α∈∆−

Lα ⊕
⊕

α∈∆−

(Lx ⊗ Lα) ⊕ (Lx ⊗ L−α)

∼=
⊕

α∈∆−

Lα ⊕
⊕

α∈∆

Lx ⊗ L−α,

and therefore

i∗(1) = e(E) =
∏

α∈∆−

α ·
∏

α∈∆

(x− α) = e′.
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Multiplying by b we obtain e, and the theorem is proved. 2

Proof of 4.10: Observe that the restriction of π∗ to the Weyl-invariant part Ĥ∗
S1

(
µ−1
G (ξ, 0)/T

)W

is given by the composition of isomorphisms

Ĥ∗
S1

(
µ−1
G (ξ, 0)/T

)W ∼= Ĥ∗
S1×T

(
µ−1
G (ξ, 0)

)W ∼= Ĥ∗
S1×G

(
µ−1
G (ξ, 0)

) ∼= Ĥ∗
S1(X////G),

hence we may define

i∗W := (π∗)−1 ◦ i∗ : Ĥ∗
S1(X////T )W → Ĥ∗

S1

(
µ−1
G (ξ, 0)/T

)W
.

Furthermore, we have κ̂G = i∗W ◦ κ̂T ◦ rGT , hence i∗W is surjective. As in [Ma, §3],

i∗W (a) = 0 ⇔ ∀c ∈ Ĥ∗
S1(X////T )W ,

∫

X////G
i∗W (c) · i∗W (a) = 0 by 4.5 and surjectivity of i∗W

⇔ ∀c ∈ Ĥ∗
S1(X////T )W ,

∫

X////T
c · a · e = 0 by Theorem 4.9

⇔ ∀d ∈ Ĥ∗
S1(X////T ),

∫

X////T
d · a · e = 0 by using W to average d

⇔ a · e = 0 by Lemma 4.5,

hence Ker i∗W = ann(e). By surjectivity of i∗W ,

Ĥ∗
S1(M////G) ∼=

Ĥ∗
S1(X////T )W

Ker i∗W

∼=
Ĥ∗
S1(X////T )W

ann(e)
.

By a second application of Lemma 4.5, for any a ∈ Ĥ∗
S1(X////T ), we have

i∗(a) = 0 ⇒ ∀f ∈ Ĥ∗
S1(µ

−1
G (ξ, 0)/T ),

∫

µ−1
G (ξ,0)/T

f · i∗(a) = 0

⇒ ∀c ∈ Ĥ∗
S1(X////T ),

∫

µ−1
G (ξ,0)/T

i∗(c) · i∗(a) = 0

⇒ ∀c ∈ Ĥ∗
S1(X////T ),

∫

X////T
c · a · i∗(1) = 0 by Lemma 4.4

⇒ a · e′ = a · i∗(1) = 0 by Lemma 4.5,

hence Ker i∗ ⊆ ann(e′). This gives us a natural surjection

Ĥ∗
S1(X////T )W

ann(e)
=
Ĥ∗
S1(X////T )W

Ker i∗W

∼=
(
Ĥ∗
S1(X////T )

Ker i∗

)W
→
(
Ĥ∗
S1(X////T )

ann(e′)

)W
,

which is also injective because e′ divides e. This completes the proof of Theorem 4.10. 2



Chapter 4. Abelianization 48

For the non-rationalized version of Theorem 4.10, we make the additional assump-

tion that M////G and M////T are equivariantly formal S1-manifolds, i.e. that H∗
S1(X////G)

and H∗
S1(X////T ) are free modules over H∗

S1(pt). Proposition 2.10 tells us that this is the

case whenever the circle action is hamiltonian and its moment map is proper and bounded

below.

Theorem 4.11 Suppose that M////G and M////T are equivariantly formal, circle compact,

and that the rationalized Kirwan map κ̂G is surjective. Then

H∗
S1(M////G) ⊇ Im(κG) ∼= (ImκT )W

ann(e)
∼=
(

Im κT
ann(e′)

)W
.

Remark 4.12 In the context of Example 4.8 with pr ◦ µ proper, M////G and M////T are

both circle compact and equivariantly formal (Proposition 2.10) and κT is always surjective

(Theorem 3.16).

Proof of 4.11: Consider the following exact commutative diagram

0 // A //

��

H∗
S1(X////T )W

i∗W
//

��

H∗
S1(X////G)

��

0 // Â // Ĥ∗
S1(X////T )W

i∗
W

// Ĥ∗
S1(X////G).

Equivariant formality implies that the downward maps in the above diagram are inclusions,

hence the map on top labeled i∗W is simply the restriction of the map on the bottom to the

subring H∗
S1(X////T ) ⊆ Ĥ∗

S1(X////T ). We therefore have

A = Â ∩H∗
S1(X////T )W = ann(e).

Just as in the rationalized case, we have κG = i∗W ◦ κT ◦ rGT , hence

Im(κG) ∼= i∗W
(
Im κT ◦ rGT

) ∼= (ImκT )W

ann(e)
.

Now consider the analogous diagram

0 // B //

��

H∗
S1(X////T ) i∗

//

��

H∗
S1(µ

−1
G (ξ, 0)/T )

��

0 //
B̂

// Ĥ∗
S1(X////T )

i∗
// H∗

S1(µ
−1
G (ξ, 0)/T ).
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Since we have not assumed that µ−1
G (ξ, 0)/T is equivariantly formal, we only know that the

first two downward arrows are inclusions, and hence can only conclude that B is contained

in the annihilator of e′. Since e′ divides e, we have a series of natural surjections

(Im κT )W

ann(e)
∼= (Im κT )W

A
∼=
(

Im κT
B

)W
→
(

Im κT
ann(e′)

)W
→
(

Im κT
ann(e)

)W
.

The composition of these maps is an isomorphism, hence so is each one. 2
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Chapter 5

Hyperpolygon spaces

A hyperpolygon space is the hyperkähler analogue of a polygon space, which pa-

rameterizes n-sided polygons in R3 with fixed edge lengths. It is also an example of a quiver

variety, introduced by Nakajima [N1, N2], and since studied by many authors. In Section

5.1 we give the basic constructions of quiver varieties and hyperpolygon spaces, and show

that they satisfy all of the hypotheses of Chapter 4. Section 5.2 is devoted to understanding

the components of the core of a hyperpolygon space; in particular, we show that they are all

smooth (Theorem 5.7), and interpret them as moduli spaces of spatial polygons with certain

properties (Theorem 5.11). Sections 5.3 and 5.4 contain computations of the S1-equivariant

cohomology rings of the hyperpolygon space as well as its core components, making use of

the abelianization technique of Chapter 4.

This chapter is taken from [HP2] and [HP]. The reader is warned that our notation

differs significantly from that of [HP2]; most glaring is the fact that our spaces X and M

correspond to the spaces M and X (respectively) in [HP2]. This abrupt switch is necessary

to conform with the conventions of Chapters 2-4.

5.1 Quiver varieties

Let Q be a quiver with vertex set I and edge set E ⊆ I × I , where (i, j) ∈ E means that

Q has an arrow pointing from i to j. We assume that Q is connected and has no oriented

cycles. Suppose given two collections of vector spaces {Vi} and {Wi}, each indexed by I ,
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and consider the affine space

Rep(Q) =
⊕

(i,j)∈E

Hom(Vi, Vj) ⊕
⊕

i∈I

Hom(Vi, Wi).

The group U(V ) =
∏
i∈I U(Vi) acts on Rep(Q) by conjugation, and this action is hamilto-

nian. Given an element

(B, J) =
⊕

(i,j)∈E

Bij ⊕
⊕

i∈I

Ji

of Rep(Q), the u(Vi)
∗ component of the moment map is

µi(B, J) = J†
i Ji +

∑

(i,j)∈E

B†
ijBij ,

where † denotes adjoint, and u(Vi)
∗ is identified with with the set of hermitian matri-

ces via the trace form. Given a generic central element ξ ∈ u(V )∗, the Kähler quotient

Rep(Q)//ξU(V ) parameterizes isomorphism classes of ξ-stable, framed representations of Q

of fixed dimension [N2]. If Wi = 0 for all i, then the diagonal circle U(1) in the center of

U(V ) acts trivially, and we instead quotient by PU(V ) = U(V )/U(1).

Consider the hyperkähler quotient

M = T ∗ Rep(Q)////(ξ,0)U(V ),

or, if Wi = 0 for all i,

M = T ∗ Rep(Q)////(ξ,0)PU(V ).

As in Section 2.2, M has a natural action of C× induced from scalar multiplication on

the fibers of T ∗ Rep(Q). We now show that M = T ∗ Rep(Q) satisfies the hypotheses of

Theorems 4.10 and 4.11.

Proposition 5.1 Let T (V ) ⊆ U(V ) be a maximal torus, and let pr : u(V )∗ → t(V )∗ be the

natural projection. The moment maps µ =
⊕

i∈I

µi : Rep(Q) → u(V )∗ and pr ◦µ : Rep(Q) →

t(V )∗ are each proper.

Proof: To show that µ and pr ◦µ is proper, it suffices to find an element t ∈ T (V ) ⊆ U(V )

such that the weights of the action of t on Rep(Q) are all strictly positive. Let λ = {λi |
i ∈ I} be a collection of integers, and let t ∈ T (V ) be the central element of U(V ) that

acts on Vi with weight λi for all i. Then t acts on Hom(Vi, Vj) with weight λj − λi, and on
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Hom(Vi, Wi) with weight −λi. Hence we have reduced the problem to showing that it is

possible to choose λ such that λi < 0 for all i ∈ I and λi < λj for all (i, j) ∈ E.

We proceed by induction on the order of I . Since Q has no oriented cycles, there

must exist a source i ∈ I ; a vertex such that for all j ∈ I , (j, i) /∈ E. Deleting i gives a

smaller (possibly disconnected) quiver with no oriented cycles, and therefore we may choose

{λj | j ∈ I r {i}} such that λj < 0 for all j ∈ I r {i} and λj < λk for all (j, k) ∈ E. We

then choose λi < min{λj | j ∈ I r {i}}, and we are done. 2

Proposition 5.2 The rationalized Kirwan map κ̂U (V ) : Ĥ∗
S1×U (V )

(
T ∗ Rep(Q)

)
→ Ĥ∗

S1(M)

is surjective.

Proof: Nakajima [N2, §7.3] shows that there exist cohomology classes ai, bi in the image of

κ̂U (V ) such that Diag∗(1) =
∑
π∗1ai · π∗2bi. (Nakajima uses a slightly different circle action,

but his proof is easily adapted to the circle action that we have defined.) It follows from

Proposition 4.7 that the classes {bi} generate Ĥ∗
S1(M). 2

Remark 5.3 This Proposition shows that the assumptions of Theorems 4.9, 4.10, and 4.11

are satisfied for Nakajima’s quiver varieties. Thus integration in equivariant cohomology

yields a description of the rationalized S1-equivariant cohomology, and also of the image

of the non-rationalized Kirwan map κG. Therefore if we know that κG is surjective for

a particular quiver variety, then we have a concrete description of the (S1-equivariant)

cohomology ring of that quiver variety. It is known that κG is surjective for Hilbert schemes

of n points on an ALE space, so our theory applies and gives a description of the cohomology

ring of these quiver varieties. More examples of quiver varieties with surjective Kirwan map,

including hyperpolygon spaces, are discussed in Remark 5.16.

Remark 5.4 Another interesting application of Proposition 4.7 is to the moduli space M
of stable rank n and degree 1 Higgs bundles on a genus g > 1 smooth projective algebraic

curve C (see [H2]). It is an easy exercise to write down the cohomology class of the diagonal

in M×M as an expression in a certain set of tautological classes. Proposition 4.7 implies

that the rationalized S1-equivariant cohomology ring Ĥ∗
S1(M) is generated by these classes.

In fact the same result follows from the argument of [HT1]. There M was embedded into

a circle compact manifold M∞, whose cohomology is the free algebra on the tautological
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classes. The argument in [HT1] then goes by showing that the embedding of the S1-

fixed point set of M in that of M∞ induces a surjection on cohomology. This already

implies that Ĥ∗
S1(M∞) surjects onto Ĥ∗

S1(M). In [HT1] it is shown that in the rank 2

case this embedding also implies the surjection on non-rationalized cohomology, and then a

companion paper [HT2] describes the cohomology ring of M explicitly. However for higher

rank this part of the argument of [HT1] breaks down. Later Markman [Mk] used similar

diagonal arguments on certain compactifications of M and Hironaka’s celebrated theorem

on desingularization of algebraic varieties to deduce that the cohomology ring of M is

generated by tautological classes for all n.

A hyperpolygon space, introduced in [K2], is a quiver variety associated to the

following quiver (Figure 5.1), with V0 = C2, Vi = C1 for i ∈ {1, . . . , n}, and Wi = 0 for all

i.
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Figure 5.1: The quiver for a hyperpolygon space.

Let

G := PU(V ) =
(
SU(2)× U(1)n

)/Z2,

and

GC := PGL(V ) =
(
SL(2,C)× (C×)n

)/Z2,

where Z2 acts by multiplying each factor by −1. We represent an element of Rep(Q) ∼= C2n

by an n-tuple of column vectors

q = (q1, . . . , qn).

Following the conventions in [K2], we consider the right action of G ⊆ GC on Rep(Q) given

explicitly by

q[Θ; e1, . . . , en] = (Θ−1q1e1, . . . ,Θ
−1qnen).
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The compact group G acts with moment map µ : C2n → su(2)∗⊕(tn)∗ given by the equation

µ(q) =

n∑

i=1

(qiq
∗
i )0 ⊕

(
1

2
|q1|2, . . . ,

1

2
|qn|2

)
,

where q∗i denotes the conjugate transpose of qi, (qiq
∗
i )0 denotes the traceless part of qiq

∗
i ,

and su(2)∗ is identified with i · su(2) via the trace form. Given an n-tuple of real numbers

(α1, . . . , αn), we define the polygon space

X(α) := C2n//αG,

where α = 0 ⊕ (α1, . . . , αn) ∈ su(2)∗ ⊕ (tn)∗. If we break the reduction into two steps,

reducing first by U(1)n and then by SU(2), we find that

X(α) ∼=
{

(v1, . . . , vn) ∈ (R3)n
∣∣∣∣ ‖vi‖ = αi and

∑
vi = 0

}/
SO(3) (5.1)

(see Remark 5.12 and the proof of Theorem 5.11). Here su(2)∗ is being identified with R3,

and the coadjoint action of SU(2) on su(2)∗ is being replaced by the standard action of

SO(3) on R3 [HK]. This space, therefore, may be thought of as the moduli space of n-sided

polygons in R3, with fixed edge lengths (α1, . . . , αn), up to rotation. In particular, X(α) is

empty unless αi ≥ 0 for all i.

We call α generic if there does not exist a subset S ⊆ {1, . . . , n} such that
∑

i∈S αi =
∑

j∈Sc αj. Geometrically, this means that there is no element of X(α) rep-

resented by a polygon that is contained in a single line in R3. If α is generic, then X(α) is

smooth [HK]. Throughout this paper we will assume that α is generic, and that αi > 0 for

all i.

To define the hyperkähler analogue of X(α), we consider the induced action of G

on T ∗Cn. Explicitly, we write an element of T ∗ Rep(Q) as (p, q), where q = (q1, . . . , qn) is

an n-tuple of column vectors and p = (p1, . . . , pn) an n-tuple of row vectors, and we put

(p, q)[Θ; e1, . . . , en] =
(
(e−1

1 p1Θ, . . . , e
−1
n pnΘ), (Θ−1q1e1, . . . ,Θ

−1qnen)
)
.

The action of G on T ∗ Rep(Q) is hyperhamiltonian with hyperkähler moment map

µR ⊕ µC : T ∗Cn →
(
su(2)∗ ⊕ (tn)∗

)
⊕
(
sl(2,C)∗ ⊕ (u(1)nC)∗)

given by the equations

µR(p, q) =

√−1

2

n∑

i=1

(qiq
∗
i − p∗i pi)0 ⊕

(
1

2

(
|q1|2 − |p1|2

)
, . . . ,

1

2

(
|qn|2 − |pn|2

))
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and

µC (p, q) = −
n∑

i=1

(qipi)0 ⊕
(√

−1p1q1, . . . ,
√
−1pnqn

)
.

We then define the hyperpolygon space to be the hyperkähler quotient

M(α) := T ∗Cn////(α,0)G =
(
µ−1R (α) ∩ µ−1C (0)

)/
G,

a smooth, noncompact hyperkähler manifold of complex dimension 2(n − 3). Recall that

we also have

X(α) ∼=
(C2n

)st/
GC and M(α) ∼= µ−1C (0)st

/
GC,

where st means stable with respect to the weight α in the sense of geometric invariant

theory (see Section 2.1).1 Nakajima gives a stability criterion for general quiver varieties

[N1, N2], which Konno interprets in the special case of hyperpolygon spaces. Call a subset

S ⊆ {1, . . . , n} short if
∑

i∈S αi <
∑

j∈Sc αj, and call it long if its complement is short.

(Assuming that α is generic is equivalent to assuming that every subset is either short or

long.) Given a point (p, q) ∈ T ∗Cn and a subset S ⊆ {1, . . . , n}, we will say that S is

straight in (p, q) if qi is proportional to qj for every i, j ∈ S. The terminology comes from

Kähler polygon spaces, in which this condition is equivalent to asking that the vectors vi

and vj be proportional over R+, or that the edges of lengths αi and αj (if they happen to

be adjacent) line up to make a single edge of length αi + αj , as in Figure 5.2.

α1
α2

α3

α4

α5

α6
α7

α8

Figure 5.2: The subset {1, 2, 3} is straight.

Theorem 5.5 [K2, 4.2] Suppose that α is generic, and αi > 0 for all i. Then a point

(p, q) ∈ T ∗Cn is stable with respect to α if and only if the following two conditions are

1Recall from Theorem 2.3 that the notions of stability and semistability agree for generic α.
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satisfied:

1) qi 6= 0 for all i, and

2) if S is straight and pj = 0 for all j ∈ Sc, then S is short.

As in Chapter 2, we will use the notation [p, q] to denote the GC-equivalence class of a

point (p, q) ∈ µ−1C (0)st, and [p, q]R to denote the G-equivalence class of a point (p, q) ∈
µ−1R (α) ∩ µ−1C (0). Recall that X sits inside of M as the locus of points [p, q] with p = 0.

This observation, along with Theorem 5.5, allows us to recover the stability condition for

the action of G on C2n. A point q ∈ C2n is stable if and only if qi 6= 0 for all i, and no long

subset is straight, as first shown in [Kl]. The polygonally-minded reader is warned that in

the hyperpolygon space M(α), long subsets can be straight.

5.2 Moduli theoretic interpretation of the core

For the rest of the section we fix a generic α = 0⊕ (α1, . . . , αn) ∈ su(2)∗⊕ (tn)∗, with αi > 0

for all i, and write M = M(α), X = X(α). Following Konno, we define

S =
{
S ⊆ {1, . . . , n}

∣∣ S is short
}

and

S ′ =
{
S ∈ S

∣∣ |S| ≥ 2
}
.

Theorem 5.6 [K2] The fixed point set MC× = MS1
= X ∪

⋃

S∈S′

MS, where

MS =
{
[p, q]

∣∣ S and Sc are each straight, and pj = 0 for all j ∈ Sc
}
.

Furthermore, MS is diffeomorphic to CP |S|−2.

For all S ∈ S ′, let US = UXS
be the piece of the core L ⊆ M defined in Section

2.2. A priori we know only that US is an irreducible, isotropic subvariety of dimension at

most n − 3 (Proposition 2.8).

Theorem 5.7 The core component US is smooth of complex dimension n−3, and we have

US =
{
[p, q]

∣∣∣ S is straight, and pj = 0 for all j ∈ Sc
}
.
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Before proving Theorem 5.7, we describe the way in which the various components

of the core fit together. For all S ∈ S ′, let

XS = US ∩ X =
{
[0, q]

∣∣ S is straight
}
.

We call this space the polygon subspace of X corresponding to the short subset S. Note that

XS is itself a polygon space with n − |S| + 1 edges, of lengths {αj | j ∈ Sc} ∪ {∑S αi}. In

particular, it is smooth. Now suppose given two short subsets S, T ∈ S ′, and consider the

intersection US ∩ UT .

• If S ∩ T = ∅, then US ∩ UT = XS ∩XT , a polygon subspace both of XS and of XT .

• If S ∩ T 6= ∅ and S ∪ T is long, then US ∩ UT = ∅.

• If S ∩ T 6= ∅ and S ∪ T is short, then

US ∩ UT =
{
[p, q]

∣∣∣ S ∪ T is straight, and pj = 0 for all j ∈ (S ∩ T )c
}
.

This is a subvariety of US∪T given by taking the closure inside of US∪T of a certain

subbundle of the conormal bundle to XS∪T ⊆ X, defined by setting pj = 0 for all

j ∈ (S ∩ T )c ⊇ (S ∪ T )c.

Each of these descriptions generalizes to higher intersections without modification.

Finally, we compute the fixed point set UC×S . If [p, q] ∈ UC×S , then either p = 0 and

[p, q] ∈ XS, or [p, q] ∈ XT for some T ∈ S ′. If [p, q] ∈ XT then Theorem 5.6 tells us that

T and T c are each straight, hence S ⊆ T or S ⊆ T c. Since p 6= 0, we must have S ⊆ T .

Indeed, US ∩ XT is the linear subspace of XT
∼= CP |T |−2 given by the condition pj = 0 for

all j ∈ T r S. In particular, US ∩ XT is isomorphic to CP |S|−2 for any T ⊇ S.

Example 5.8 Let n = 5, α1 = α2 = 1, and α3 = α4 = α5 = 3, and consider the short

subset S = {1, 2}. The fixed point set of US consists of XS
∼= CP 1, and four points XS,

US ∩XT3, US ∩XT4, and US ∩ XT5, where Tj = {1, 2, j} for j = 3, 4, 5. For each j, US ∩UTj

is isomorphic to CP 1, and touches XS at the point XTj
. In the following picture, an ellipse

represents a copy of CP 1 flowing between two fixed points, where the numbers or pairs of

numbers indicate subsets that are straight on this CP 1. (For example, 12, 45 means that 1

and 2 are straight, as are 4 and 5.) We will revisit this example at the end of Section 5.4.
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123 125

12, 45 12, 34

124

35
12,

MS

MT3 MT4 MT5

XS
XT3

XT4

XT5

Figure 5.3: US , with S = {1, 2}

Proof of 5.7: Consider a point [p, q] ∈ M with S straight, and pj = 0 for all j ∈ Sc. By

applying an element of G, we may assume that qi =
(
1
0

)
for all i ∈ S. Suppose further that

there exists an i ∈ S with pi 6= 0, and that no strict superset of S is straight. In other words,

if qj =
(aj

bj

)
for j ∈ Sc, suppose that bj 6= 0. For t ∈ C×, let Θ(t) =

(
t 0

0 t
−1

)
, let ei(t) = t

for all i ∈ S, and let ej(t) = t−1 for all j ∈ Sc. Then for i ∈ S, we have ei(t)
−1piΘ(t) = t−2pi

and Θ(t)−1qiei = qi. For j ∈ Sc, we have Θ(t)−1qjej =
(t−2aj

bj

)
. Hence

lim
t→∞

t · [p, q] = lim
t→∞

t2 · [p, q]

= lim
t→∞

[t2p, q]

= lim
t→∞

[t2e(t)−1pΘ(t),Θ(t)−1qe(t)]

= [p, q′],

where q′i = qi for i ∈ S, and q′j =
( 0
bj

)
for j ∈ Sc. Since we have assumed that bj 6= 0 for all

j ∈ Sc and that pi 6= 0 for some i ∈ S, (p, q′) is stable, and hence defines an element of MS.

Since US is defined to be the closure of the set of elements that flow up to MS, it includes

all [p, q] with S straight and pj = 0 for all j ∈ Sc. By dimension count, this containment is

an equality, and we have dimUS = n − 3.

To see that US is smooth, it is sufficient to show that US is smooth at [p, q] for

all [p, q] ∈ MC×. First suppose that [p, q] ∈ MT for some T ∈ S ′ containing S. Suppose,

without loss of generality, that T = {1, . . . , l} and S = {1, . . . , m} for some l ≤ m. Konno

computes an explicit local complex chart for M at the point [p, q], with coordinates {zi, wi |
3 ≤ i ≤ n−1} [K2]. With respect to these coordinates, a point [p′, q′] has the property that

S is straight and p′j = 0 for all j ∈ Sc if and only if wi = 0 for all 3 ≤ i ≤ l and zj = 0 for
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all l + 1 ≤ j ≤ n − 1. Hence US is smooth at [p, q].

It remains only to show that US is smooth at XS = US ∩ X. Let

E = {(p, q) | S is straight, pj = 0 for all j ∈ Sc, and µC(p, q) = 0},

and let N = {(p, q) ∈ E | p = 0}. The natural projection from E to N exhibits E

as a vector bundle over N , because the equation µC(p, q) = 0 is linear in p. We have

US = E//G = Est/G, and XS = N//G = N st/G. The set E|Nst/G ⊆ Est/G is an open

neighborhood of XS inside of US, and is isomorphic to a vector bundle over XS. Since XS

is a polygon space it is smooth, hence US is smooth in a neighborhood of XS . 2

Corollary 5.9 US is a compactification of the conormal bundle to XS in X.

Proof: Choose a point [q, 0] ∈ XS, and a decomposition

T[q,0]M = ν1 ⊕ ν2 ⊕ T[q,0]XS ⊕ E,

where ν1 is the normal space to XS inside of US, and ν2 is the normal space to XS inside of

X. Proposition 2.8 tells us that US and X are both ωC-lagrangian submanifolds of M, hence

ωC gives a perfect pairing between T[q,0]XS and E. It follows that ωC also gives a perfect

pairing between ν1 and ν2, and therefore that the normal bundle to XS inside of US is dual

to the normal bundle of XS inside of X. 2

Remark 5.10 This argument generalizes to the smooth intersection of any two lagrangian

submanifolds of a symplectic manifold.

We next describe US in polygon-theoretic terms, as a certain moduli space of pairs

of polygons in R3.

Theorem 5.11 The core component US is homeomorphic to the moduli space of n + 1

vectors

{ui, vj, w ∈ R3 | i ∈ S, j ∈ Sc},
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taken up to rotation, satisfying the following conditions:

1) w+
∑

j∈Sc

vj = 0

2)
∑

i∈S

ui = 0

3) ui ·w = 0 for all i ∈ S

4) ‖vj‖ = αj for all j ∈ Sc

5) ‖w‖ =
∑

i∈S

√
α2
i + ‖ui‖2.

Remark 5.12 In more descriptive terms, a point in US specifies two polygons in R3, as in

Figure 5.4. The first is the n− |S|+ 1 sided polygon consisting of the vectors {vj | j ∈ Sc}

...

...

w

v1

v2

v3

vn−|S|

u1
u2

u|S|

Figure 5.4: An element of US, represented by a spatial polygon with a distinguished edge,
and a planar polygon perpendicular to that edge.

and w. Each vector vj has length αj, and w has a variable length, always greater than

or equal to
∑

i∈S αi. This variable length is determined by the lengths of the edges in

the second polygon, which consists of |S| vectors {ui | i ∈ S}, all contained in the plane

perpendicular to w. Note that this description also applies to the Kähler polygon space X

by taking S = ∅.
By setting ui = 0 for all i we get XS, the minimum of the Morse-Bott function Φ

on US . On the other hand, consider the submanifold of US obtained by imposing the extra

condition that ‖w‖ =
∑

j∈Sc ‖vj‖. Then the first of the two polygons is forced to be linear,

and we are left with |S| vectors {ui} in the perpendicular plane satisfying a certain norm
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condition and adding to zero. Identifying this plane with C and dividing by the circle action

rotating this plane, we obtain CP |S|−2 ∼= MS, the maximum of Φ on US. Other critical

points of Φ occur whenever the first polygon is linear, which is possible for finitely many

values of ‖w‖.

Proof of 5.11: Suppose given a point [p, q]R ∈ US, and let

ui = qipi + p∗i q
∗
i for all i ∈ S,

vj = (qjq
∗
j )0 for all j ∈ Sc,

w =
∑

i∈S

(qiq
∗
i )0 − (p∗i pi)0.

These vectors live in i ·su(2) ∼= su(2)∗ ∼= R3, which is endowed with the metric u ·v = 1
2 truv,

invariant under the coadjoint action. With respect to this metric, we have the equalities

‖(qq∗)0‖ = 1
2 |q|2 and ‖(p∗p)0‖ = 1

2 |p|2, hence conditions (1), (2), and (4) are immediate

consequences of the moment map equations.

To verify condition (3), note that the vectors {qi | i ∈ S} are all proportional

over C, which implies that the vectors (qiq
∗
i )0 are positive scalar multiples of each other.

Furthermore, the moment map equation piqi = 0 implies that (p∗i pi)0 is a non-positive scalar

multiple of (qiq
∗
i )0, therefore w =

∑
(qiq

∗
i )0 − (p∗i pi)0 is proportional over R+ to (qiq

∗
i )0 for

any i ∈ S. Then ui · w = 1
2 truiw is a multiple of

trui(qiq
∗
i )0 = tr uiqiq

∗
i = tr p∗i q

∗
i qiq

∗
i = |qi|2 tr p∗i q

∗
i = 0,

where the first equality comes from the fact that qiq
∗
i − (qiq

∗
i )0 is a scalar multiple of the

identity, and trui = 0.

To check condition (5), we first compute the norm of ui:

‖ui‖2 =
1

2
tru2

i

=
1

2
tr(qipip

∗
i q

∗
i + p∗i q

∗
i qipi)

= |qi|2|pi|2

= |qi|2(|qi|2 − 2αi).

Since all of the vectors {(qiq∗i )0 − (p∗i pi)0 | i ∈ S} point in the same direction, we have

‖w‖ =
∑

i∈S

‖(qiq∗i )0‖ + ‖(p∗i pi)0‖ =
∑

i∈S

1

2
|qi|2 +

1

2
|pi|2 =

∑

i∈S

|qi|2 − αi =
∑

i∈S

√
α2
i + ‖ui‖2.
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We have defined a continuous map fromUS to the moduli space of vectors {ui, vj, w}
satisfying conditions (1)-(5), and we claim that this map is a homeomorphism. Since the

source of this map is compact and the target is Hausdorff, it is sufficient to show that the

map is bijective.

Suppose given a collection of vectors {ui, vj, w} ⊆ su(2) satisfying conditions (1)-

(5). Using the adjoint action of SU(2), we may assume that w is a positive scalar multiple

of
(

1 0

0 −1

)
. By condition (3), this implies that for all i ∈ S, there exists ti ∈ C with

ui =
(

0 ti

t̄i 0

)
. For j ∈ Sc, we choose qj ∈ C2 with (qjq

∗
j )0 = vj, and observe that qj is

unique up to the action of U(1)n. We know that for all i ∈ S, (qiq
∗
i )0 must be a positive

multiple of w, hence there exist ai, bi ∈ C such that

qi =

(
ai
0

)
and pi = (0 bi)

for all i ∈ S. In order to have ui = qipi + p∗i q
∗
i and 1

2 |qi|2 − 1
2 |pi|2 = αi, we must have

aibi = ti and
1

2
|ai|2 −

1

2
|bi|2 = αi.

These equations uniquely define ai and bi up to the action of U(1)n. It follows from condi-

tions (1)-(5) that (p, q) ∈ µ−1R (α)∩ µ−1C (0) and that w =
∑

i∈S(qiq
∗
i )0 − (p∗i pi)0. This shows

that our map is bijective, and thus completes the proof of Theorem 5.11. 2

Remark 5.13 Suppose that S has only two elements; without loss of generality we will

assume that S = {1, 2}. Then forgetting u1 and u2 gives a diffeomorphism from US to the

“vertical polygon space” VP (α3, . . . , αn, α1+α2) defined in [HK], shown to be diffeomorphic

to a toric variety. More generally with S = {1, . . . , k}, given any two-element subset T ⊆ S,

the subvariety of US given by the equations ui = 0 for all i ∈ S r T is diffeomorphic to

VP (αk+1, . . . , αn,
∑

T αi).

5.3 Cohomology rings

In this section we use Theorem 4.11 to compute the circle-equivariant cohomology of a

hyperpolygon space M, thus reproducing (by different means) the results of [HP2, §3].

Recall that we have

M = T ∗C2n////G,
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where G is a quotient of U(1)n × SU(2) by Z2. We will simplify our computations by

dividing first by the torus U(1)n. We have

M =
(
T ∗C2n

)////
G

∼=
((
T ∗C2

)n////
U(1)n

)////
SU(2)

∼=
n∏

i=1

T ∗CP 1
////
SU(2),

where the action of SU(2) on each copy of T ∗CP 1 is induced by the rotation action onCP 1 ∼= S2.

Proposition 5.14 The non-rationalized Kirwan map κU (V ) : H∗
S1×U (V )

(T ∗C2n) → H∗
S1(M)

is surjective.

Proof: The map κU (V ) factors as a composition

H∗
S1×U (V )(T

∗C2n) → H∗
S1×SU (2)

(
n∏

i=1

T ∗CP 1

)
κSU(2)
=⇒ H∗

S1(M),

where the first map is the Kirwan map for a toric hyperkähler variety, and therefore sur-

jective by [HP1]. Hence it suffices to show that κSU (2) is surjective.

The level set µ−1C (0) for the action of SU(2) on
∏n
i=1 T

∗CP 1 is a subbundle of

the cotangent bundle, given by requiring the n cotangent vectors to add to zero after

being restricted to the diagonal CP 1. In particular this set is smooth, and its S1 × SU(2)-

equivariant cohomology ring is canonically isomorphic to that of
∏n
i=1 T

∗CP 1. Hence κSU (2)

factors as

H∗
S1×SU (2)

(
n∏

i=1

T ∗CP 1

)
∼= H∗

S1×SU (2)

(
µ−1C (0)

)
→ H∗

S1

(
µ−1C (0)

//
SU(2)

)
∼= H∗

S1(M),

where the map in the middle is the Kähler Kirwan map. Surjectivity of this map follows

from the following more general lemma, applied to the manifold µ−1C (0).

Lemma 5.15 Suppose given a hamiltonian action of S1 × G on a symplectic manifold

M , such that the S1 component of the moment map is proper and bounded below with

finitely many critical values. Then the Kähler Kirwan map κ : H∗
S1×G(M) → H∗

S1(M//G)

is surjective.
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Proof: Extend the action of S1 to an action on M × C by letting S1 act only on the

left-hand factor. On the other hand, consider a second copy of the circle, which we will callT to avoid confusion, acting diagonally on M ×C. Choose r ∈ Lie(T)∗ ∼= R greater than the

largest critical value of the T-moment map, and consider the space

Cut(M//G) := (M × C)//rT ×G ∼=
(
(M//G)× C)//rT.

This space, which is called the symplectic cut of M//G [Le], is an S1-equivariant (orbifold)

compactification of M//G. We then have a commutative diagram

H∗
S1×G×T(M × C) −−−−→ H∗

S1×G(M)
y

yκ

H∗
S1(Cut(M//G)) −−−−→ H∗

S1(M//G).

The vertical map on the left is surjective because the G × T moment map is proper, and

the map on the bottom is surjective because the long exact sequence in cohomology for

M//G ⊆ Cut(M//G) splits naturally, hence κ is surjective as well. 2

By applying Lemma 5.15 to M = µ−1C (0), this completes the proof of Proposition 5.14. 2

Remark 5.16 The argument in Proposition 5.14 generalizes immediately to show that the

hyperkähler Kirwan map for the quotient

(
n∏

i=1

T ∗Flag(Ck))////SU(k)

is surjective. This is itself a quiver variety, and like the hyperpolygon space, it has a moduli

theoretic interpretation. The Kähler quotient

(
n∏

i=1

Flag(Ck))//SU(k)

is isomorphic to the space of n-tuples of k × k hermitian matrices with fixed eigenvalues

adding to zero, modulo conjugation. This space has been studied by many authors. The

classical problem, due to Horn, of determining the values of the moment map for which it

is nonempty, has only recently been solved [KT]. For a survey, see [Fu].
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To compute the kernel of the hyperkähler Kirwan map for the hyperpolygon space,

we first need to study the abelian quotient

N :=

n∏

i=1

T ∗CP 1
////
T,

where T ∼= U(1) ⊆ SU(2) is a maximal torus.2 The space
∏n
i=1 T

∗CP 1 is a hypertoric

variety given by an arrangement of 2n hyperplanes in Rn, where the (2i − 1)st and (2i)th

hyperplanes are given by the equations xi = ±ξi. Taking the hyperkähler quotient by T

corresponds on the level of arrangements to restricting this arrangement to the hyperplane

{x ∈ Rn |∑ xi = 0}. By Theorem 3.18, we have

H∗
S1 (N) ∼= Q[a1, b1, . . . , an, bn, δ, x]

/〈
ai − bi − δ, aibi

∣∣∣ i ≤ n
〉

+
〈
AS , BS

∣∣∣ S short
〉
,

where

AS =
∏

i∈S

(x− ai)
∏

j∈Sc

bj and BS =
∏

i∈S

(x− bi)
∏

j∈Sc

aj.

Here δ is the image in H∗
S1 (N) of the unique positive root of SU(2). The Weyl group W of

SU(2), isomorphic to Z/2Z, acts on this ring by fixing x and switching ai and bi for all i.

Let ci = ai + bi, and let CS = AS +BS . Let

P = Q[c1, . . . , cn, δ, x]
/〈

c2i − δ2
∣∣∣ i ≤ n

〉

and

Q = PW = Q[c1, . . . , cn, δ
2, x]

/〈
c2i − δ2

∣∣∣ i ≤ n
〉
.

Let

I =
〈
AS , BS

∣∣∣ S short
〉
⊆ P and J =

〈
CS

∣∣∣ S short
〉
⊆ Q,

so that

H∗
S1(N) ∼= P/I and H∗

S1(N)W ∼= Q/J .

Note that all odd powers of δ in the expression for CS = AS + BS cancel out. Then by

Theorem 4.11 and Remark 4.12,

H∗
S1(M) ∼=

H∗
S1 (N)W

ann(e)
∼= Q

(e : J )
,

2This is the hyperkähler analogue of the abelian polygon space from [HK].
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where e = δ2(x2 − δ2), and (e : J ) is the ideal of elements of Q whose product with e lies

in J .

If S is a nonempty short subset, let mS be the smallest element of S, nS the

smallest element of Sc, and

DS =
∏

mS 6=i∈S

(ci − x) ·
∏

nS 6=j∈Sc

(cnS
+ cj) ∈ Q.

Theorem 5.17 The circle-equivariant cohomology ring of the hyperpolygon space M is

isomorphic to3

Q
/〈
DS | ∅ 6= S short

〉
.

Proof: We begin by proving that e ·DS ∈ J for all nonempty short subsets S ⊆ {1, . . . , n}.
We will in fact prove the slightly stronger statement

e ·DS ∈
〈
CT

∣∣∣ T ⊆ S short
〉
⊆ J ,

proceeding by induction on |S|. We will assume, without loss of generality, that n ∈ S. The

base case occurs when S = {n}, and in this case we observe that

e ·DS = 2n−3 · (x+ cn) ·
(
(2x− cn) · C∅ − cn · CS

)
.

We now proceed to the inductive step, assuming that the proposition is proved for all short

subsets of size less than |S|, and all values of n. For all T ⊆ S r {n}, we have

1

2

(
CT −CT∪{n}

)
= (cn − x) · C′

T ,

where C′
T is the polynomial in the variables {c1, . . . , cn−1, δ

2} corresponding to the short

subset T ⊆ {1, . . . , n− 1}. Since S r {n} is a short subset of {1, . . . , n− 1} of size strictly

smaller than S, our inductive hypothesis tells us that e ·DS/(cn − x) can be written as a

linear combination of polynomials C′
T , where the coefficients are quadratic polynomials in

{c1, . . . , cn−1, δ
2}. Replacing C′

T with 1
2

(
CT −CT∪{n}

)
= (cn − x) · C′

T , we have expressed

e ·DS in terms of the appropriate polynomials. This completes the induction.

Suppose that F ∈ Q is an element of degree less than n − 2 such that e · F ∈ J .

By the second isomorphism of Theorem 4.11, this implies that e′ · F ∈ I ⊆ P , where

e′ = δ(x2 − δ2). Consider the quotient ring R of P obtained by setting a2
i = b2i = x = 0

3The class denoted by ci in [HP2] differs from our ci by a sign, hence to recover the presentation of [HP2]
we must replace ci − x with ci + x in the expression for DS.
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for all i. (Recall that ai = 1
2(ci + δ) and bi = 1

2(ci − δ).) Then element e′ maps to zero

in R, while the generators {AS, BS} of I descend to a basis for the nth degree part of R.

This means that we must have e′ · F = 0 ∈ P . Using the additive basis for P consisting of

monomials that are squarefree in the variables c1, . . . , cn, it is easy to check that e′ is not a

zero divisor in P , and therefore that F = 0.

Finally, we must show that {DS | ∅ 6= S short} generates all elements of (e : J )

of degree at least n− 2. We obtain this fact from the following technical lemma, the proof

of which we defer until the end of the section.

Lemma 5.18 The set {DS | ∅ 6= S short} descends to a basis for the degree n− 2 part of

the quotient ring Q/〈x〉.

Let F be an element of minimal degree k ≥ n − 2 that is in (e : J ) but not

〈DS | ∅ 6= S short〉. By Lemma 5.18, F differs from an element of 〈DS | ∅ 6= S short〉 by

x · F ′ for some F ′ of degree k − 1. By equivariant formality of H∗
S1(M),

x · F ′ = F ∈ (e : J ) ⇒ F ′ ∈ (e : J ),

which contradicts the minimality of k = degF . Hence 〈DS | ∅ 6= S short〉 = (e : J ), and

the proposition is proved. 2

Corollary 5.19 The ordinary cohomology ring H∗(M) is isomorphic toQ[c1, . . . , cn]
/〈
c2i − c2j | i, j ≤ n

〉
+ 〈all monomials of degree n− 2〉.

Proof: This follows from the fact that H∗(M) ∼= H∗
S1(M)/〈x〉 for any equivariantly formal

space M , and the observation in [HP2] that {DS | ∅ 6= S short} descends to a basis for the

degree n− 2 part of Q/〈x〉. 2

Proof of 5.18: Let dk = 1
2(c1 + ck) for all k, so that ck = 2dk − d1. The relations c2k = c21

translate to d2
k = d1dk for all k, and we have

Q/〈x〉 = Q[d1, . . . , dn]
/〈
d2
k − d1dk

∣∣ k ∈ {2, . . . , n}
〉
.

For all short subsets S, put

S̄ = S r {mS} and Sc = Sc r {nS},
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and let

vS = (−1)n
∏

j∈Sc

(dj + dnS
− d1) ×

∏

i∈S̄

(2di − d1).

For all A ⊆ {2, . . . , n}, let

dA = (−1)|A|d
n−2−|A|
1

∏

k∈A

dk

for all A ( {2, . . . , n}. Then {dA} is a basis for the (n − 2)nd graded piece of Q/〈x〉, and

vS is equal to (−1)n · 2−|Sc| times the image of DS in Q/〈x〉. Hence our the statement of

Lemma 5.18 is that for all A, dA may be expressed as a linear combination of the elements

{vS | S ∈ S}.

Notational Convention 5.20 The notation Sc refers to the complement of S inside of

the set {1, . . . , n}, while the notation Ac refers to the complement of A inside of the set

{2, . . . , n}.

Claim 5.21 We have the following expression for vS in terms of the basis {dA}:

vS =





∑

Sc ⊆A
mS /∈A

2|A∩S̄| dA if 1 ∈ Sc;

∑

Sc*A

2|A∩S̄| dA if 1 ∈ S.

Proof: Any degree n−2 monomial in d1, . . . , dn is equal to (−1)|A|dA, where A is the set of

k > 1 such that dk appears in the monomial. Expanding vS, we need to count (with sign)

the occurrence of dA for each A. In most cases we find that there is no cancellation, and

the claim is straightforward. The most difficult case occurs when 1 ∈ S (therefore nS = 1)

and mS ∈ A; in this case the number of times (with multiplicity) that dA occurs in vS is

(−1)n(−1)|A|(−1)|A
c∩S̄| 2|A∩S̄|

∑

E(Ac∩Sc

(−1)|E|

= (−1)n(−1)|A|(−1)|A
c∩S̄| 2|A∩S̄|

(
(1 − 1)|A

c∩Sc| − (−1)|A
c∩Sc|

)

= (−1)n+|A|+|Ac∩S̄|+|Ac∩Sc|+1 2|A∩S̄|

= (−1)2n 2|A∩S̄|

= 2|A∩S̄|.
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We leave the remaining cases to be checked by the reader. 2

Claim 5.22 Suppose that 1 ∈ S. Let S0 = S, and for 1 ≤ k ≤ |S|, let Sk = Sk−1\{mSk−1
}.

(In other words, let Sk consist of the |S| − k largest elements of S). Then

vS +

|S|−1∑

k=1

2k−1 vSk
=
∑

A

2|A∩S̄| dA.

Proof: We proceed by induction to show that

vS +

l∑

k=1

2k−1 vSk
=
∑

A

2|A∩S̄| dA − 2l ·
∑

Sc
l+1⊆A

2|A∩S̄l| dA.

The case l = |S| − 1 is the statement of the claim. The base case l = 0 follows from Claim

5.21, together with the observation that Sc1 = Sc. More generally, for all l ≥ 1, we have

Scl+1 = Sc ∪ {mS1, . . . , mSl
}.

Then

vS +
l+1∑

k=1

2k−1 vSk
= vS +

l∑

k=1

2k−1 vSk
+ 2l vSl+1

=
∑

A

2|A∩S̄| dA − 2l ·
∑

Sc
l+1⊆A

2|A∩S̄l| dA + 2l ·
∑

Sc
l+1⊆A

mSl+1
/∈A

2|A∩S̄l+1| dA

by the inductive hypothesis and Claim 5.21. Using the fact that A ∩ S̄l+1 = A ∩ S̄l when

mSl+1
/∈ A, this is equal to

∑

A

2|A∩S̄| dA − 2l ·
∑

Sc
l+1∪{mSl+1

}⊆A

2|A∩S̄l|.

Finally, since |A ∩ S̄l+1| = |A ∩ S̄l| − 1 when mSl+1
∈ A, this reduces to

∑

A

2|A∩S̄| dA − 2l+1 ·
∑

Sc
l+2⊆A

2|A∩S̄l+1| dA,

thus proving our claim. 2
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For all short subsets T containing 1, let wT =
∑

A

2|A∩T̄ | dA, which by Claim 5.22

is expressible as a linear combination of elements of the set {vS | ∅ 6= S ∈ S}. Let

xS =





∑

1∈T⊆S

(−1)|S|+|T |wT if 1 ∈ S,

vS if 1 ∈ Sc.

Our last task will be to prove that the transition matrix Υ taking the basis {dA} to the

set {xS} is lower triangular with ones on the diagonal, and therefore invertible. In order

to make sense of “the diagonal,” we must first give an explicit bijection between the set of

proper subsets of {2, . . . , n} and the set of nonempty short subsets of {1, . . . , n}. We do

this as follows: given A ( {2, . . . , n}, let

S(A) =




Ac if Ac is short,

{1, . . . , n} \ Ac = A ∪ {1} if Ac is long.

The rows of Υ will be indexed by A, and the sets will appear in lexicographic order within

cardinality class. For example, when n = 4, the order of the rows will be ∅, {2}, {3}, {4},
{2, 3}, {2, 4}, {3, 4}. The columns will be indexed by S according to the bijection described

above.

Claim 5.23 The matrix Υ is lower triangular with ones on the diagonal.

Proof: First consider a column corresponding to a short subset S that does not contain

1. The entries in this column correspond to the coefficient of dA in xS = vS . From Claim

5.21, we see that dA appears in vS only if Sc ⊆ A ⊆ Sc ∪ S̄, and if so it appears with a

coefficient of 2|A∩S̄|. Since 1 /∈ S, we have Sc = Sc\{1} = {2, . . . , n}\S. The diagonal entry

corresponds to the set A = {2, . . . , n} \ S = Sc, therefore in this row we get the number

2|A∩S̄| = 2|S
c∩S̄| = 1. Since the set A corresponding to a given row can never contain the

set B corresponding to a lower row, the rows above the diagonal fail to satisfy the condition

Sc ⊆ A, and we get all zeros.

Now consider a column corresponding to a short subset S that does contain 1. In

this case, the coefficient of dA in xS is

(−1)|S|
∑

1∈T⊆S

(−1)|T |2|A∩T̄ |.
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The diagonal entry corresponds to the set A = S̄, and we get

(−1)|S|
∑

1∈T⊆S

(−1)|T |2|T̄ | = (−1)|S̄|
∑

1∈T⊆S

(−2)|T̄ |

= (−1)|S̄|(1− 2)|S̄| = 1.

Any row above the diagonal corresponds to a set A which does not contain S̄. Choose an

element l ∈ S̄ \A. Then

(−1)|S|
∑

1∈T⊆S

(−1)|T |2|A∩T̄ | = (−1)|S|
∑

l∈T

(−1)|T |2|A∩T̄ | + (−1)|S|
∑

l /∈T

(−1)|T |2|A∩T̄ |

= (−1)|S|
∑

l /∈T

[
(−1)|T |2|A∩T̄ | + (−1)|T∪{l}|2|A∩T̄ |

]

= 0.

Hence Υ is lower triangular. 2

Claim 5.23 tells us that each dA can be expressed as a linear combination of ele-

ments of the form xS, and therefore of elements of the form vS. This completes the proof

of Lemma 5.18 2

5.4 Cohomology of the core components

In this section we compute the S1-equivariant and ordinary cohomology rings of the core

component US corresponding to a short subset S ⊆ {1, . . . , n}. Since US is the closure of

a cell in an even-dimensional equivariant cellular decomposition of M, the restriction map

H∗
S1(M) → H∗

S1(US) is surjective. In particular, H∗
S1(US) is generated by restrictions of

the Kirwan classes c1, . . . , cn, x. For our presentation, it will be convenient to assume that

1 ∈ S, and to work with the classes dk = 1
2 (c1 + ck) introduced in the proof of Lemma 5.18.

With respect to these generators, we obtain the following result.

Theorem 5.24 The equivariant cohomology ringH∗
S1(US) is isomorphic to Q[d1, . . . , dn, x]/JS,
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where JS is generated by the following four families:

1) d1 − di for all i ∈ S

2) dj(d1 − dj) for all j ∈ Sc

3)
∏

j∈R

dj for all R ⊆ Sc such that R ∪ S is long

4) (d1 + x)|S|−1 · 1

d1


∏

j∈L

(dj − d1) −
∏

j∈L

dj


 for all long subsets L ⊆ Sc.

Corollary 5.25 The ordinary cohomology ring H∗(US) is isomorphic to Q[d1, . . . , dn]/IS,
where IS is generated by the following four families:

1) d1 − di for all i ∈ S

2) dj(d1 − dj) for all j ∈ Sc

3)
∏

j∈R

dj for all R ⊆ Sc such that R ∪ S is long

4) d
|S|−2
1

∏

j∈L

(dj − d1) for all long subsets L ⊆ Sc.

Remark 5.26 Each of these relations has a geometric interpretation. For i ∈ {1, . . . , n},
it is possible to construct a line bundle on M with equivariant Euler class di − d1 which

has a section supported on the locus where q1q
∗
1 and qiq

∗
i ∈ R3 point in opposite directions.

Since this locus is disjoint from US when i ∈ S, we have

1) di = d1 ∈ H∗
S1(US) for all i ∈ S.

Similarly, −dj = −1
2 (c1 + cj) is represented by the divisor Z1j ⊆ M of points on which q1q

∗
1

and qiq
∗
i ∈ R3 point in the same direction [HP2, §3]. Then by the previous reasoning, we

obtain

2) dj(d1 − dj) = 0 ∈ H∗
S1(US) for all j ∈ Sc.

For any R ⊆ Sc, we may intersect the divisors Zij ⊆ M (defined in the analogous way) for

all j ∈ R to find that the cohomology class (−1)|R|
∏
j∈R dj is represented by the subvariety

ZR ⊆ M of points with qj proportional to q1 for all j ∈ R. When restricted to US , this

becomes US ∩ UR∪S, the closure of the unstable manifold for the critical locus MR∪S ∩ US
of the Morse-Bott function Φ|US

. In particular, we have

3)
∏

j∈R

dj = 0 ∈ H∗
S1(US) if R ∪ S is long.
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To understand the fourth family of relations, we note that the class

d1 + x = 2di − d1 + x = ci + x ∈ H∗
S1(US)

is represented by the divisor Wi of points with pi = 0 for any i ∈ S [HP2, §3]. In particular,

(d1 + x)|S|−1 is represented by the subvariety of points in US on which pi = 0 for all i ∈ S̄,

which is equal to XS by the complex moment map condition. Hence the fourth family of

generators of JS (or of IS) can be interpreted geometrically as (d1 + x)|S|−1 (respectively

d
|S|−1
1 in the nonequivariant case) times classes that vanish in H∗

S1(XS) (see Lemma 5.28).

Proof of 5.24: Let φ : Q[d1, . . . , dn, x] → H∗
S1(US) denote the composition of the Kirwan

map with restriction to US . Our claim is that Ker φ = JS. For every short subset T

containing S, let

φT : Q[d1, . . . , dn, x] → H∗
S1(XT ∩ US)

denote the composition of the Kirwan map with restriction to XT ∩ US, and let

JT = Ker φT .

Similarly, let

φ∅ : Q[d1, . . . , dn, x] → H∗
S1(XS)

be the natural map, and let

J∅ = Ker φ∅.

The kernel of the restriction map H∗
S1(US) → H∗

S1(U
S1

S ) to the fixed point set of US is a

torsion module over H∗
S1(pt) [AB, 3.5], and Proposition 2.10 tells us that H∗

S1(US) is a free

H∗
S1(pt)-module. Hence the restriction map is injective, and we have

Ker φ = Ker φ∅ ∩
⋂

T⊇S

Ker φT .

We know that XT ∩ US ∼= CP |S|−2 for all short T ⊇ S, therefore

H∗
S1(XT ∩ US) ∼= Q[h, x]/h|S|−1.

Furthermore, we know that for all i ∈ T , the restriction of di+x to H∗
S1(UT ) is represented

by the divisorWi∩UT (see Remark 5.26), and therefore restricts to the class of a hyperplane

on XT ∩ US. Hence φT (di + x) = h for all i ∈ T . On the other hand, for j ∈ T c, the class
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dj is represented by the divisor Z1j on M, which is disjoint from XT ∩US , hence φ(dj) = 0

for all j ∈ T c. Thus we conclude that

Ker φT =
〈
d1 − di, dj, (d1 + x)|S|−1 | i ∈ T, j ∈ T c

〉
.

Lemma 5.27 The intersection
⋂

T⊇S

KerφT is equal to

〈
d1 − di, dj(d1 − dj),

∏

j∈R

dj, (d1 + x)|S|−1

∣∣∣∣ i ∈ S, j ∈ Sc, R ∪ S long

〉
.

Proof: First, since the variable x appears only in the generator (d1 + x)|S|−1, which is

contained in every ideal on both sides of the equation, we may reduce the problem to

showing that

⋂

T⊇S

〈
d1−di, dj

∣∣∣ i ∈ T, j ∈ T c
〉

=

〈
d1 − di, dj(d1 − dj),

∏

j∈R

dj

∣∣∣∣ i ∈ S, j ∈ Sc, R ∪ S long

〉

(5.2)

in the ring Q[d1, . . . , dn]. Both ideals cut out the (reducible) variety

⋃

T⊇S

YT ⊆ SpecQ[d1, . . . , dn],

where

YT =
{
(z1, . . . , zn

∣∣∣ zi = z1 ∀i ∈ S, zj = 0 ∀j ∈ Sc
}
.

The left hand side of Equation (5.2) is an intersection of prime ideals, and is therefore

radical. Thus by Hilbert’s Nullstellensatz, it is sufficient to prove that the right hand side

of Equation (5.2) is radical. This involves showing that the ideal is saturated, with Hilbert

polynomial equal to the constant #{short T ⊇ S}.
The degree k piece of the quotientQ[d1, . . . , dn]/ 〈d1 − di, dj(d1 − dj) | i ∈ S, j ∈ Sc〉

has a basis of elements of the form

de11
∏

j∈Sc

d
ej
j ,

where ej ∈ {0, 1} for all j > 0, and e1 +
∑

j∈Sc ej = k. The subset of these elements with

the property that S ∪ {j | ej = 1} is short descends to a basis for the degree k part of the
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ring Q[d1, . . . , dn]

/〈
d1 − di, dj(d1 − dj),

∏

j∈R

dj

∣∣∣∣ i ∈ S, j ∈ Sc, R ∪ S long

〉
,

hence our ideal has the desired Hilbert polynomial. It is also clear from this description

that if an element a of the quotient ring is nonzero, so is dd1 · a for any d ≥ 0, hence our

ideal is saturated. 2

It now remains to show that

JS =

〈
d1 − di, dj(d1 − dj),

∏

j∈R

dj, (d1 + x)|S|−1

∣∣∣∣ i ∈ S, j ∈ Sc, R ∪ S long

〉
∩ Ker φ∅.

The fact that JS is contained in the intersection is clear. To show the opposite containment,

consider an element

a+η·(d1+x)
|S|−1 ∈

〈
d1 − di, dj(d1 − dj),

∏

j∈R

dj, (d1 + x)|S|−1

∣∣∣∣ i ∈ S, j ∈ Sc, R ∪ S long

〉
,

with

a ∈
〈
d1 − di, dj(d1 − dj),

∏

j∈R

dj

∣∣∣∣ i ∈ S, j ∈ Sc, R ∪ S long

〉
,

and suppose that we also have

a+ η · (d1 + x)|S|−1 ∈ Ker φ∅.

Lemma 5.28 [HK] The kernel of φ∅ is equal to

〈
d1 − di, dj(d1 − dj),

∏

j∈R

dj, (d1 + x)|S|−1d−1
1


∏

j∈L

(dj − d1) −
∏

j∈L

dj



〉
,

where i ∈ S, j ∈ Sc, and R, L ⊆ Sc, with R ∪ S and L both long.

Lemma 5.28 tells us that a ∈ Ker φ∅, therefore

η · (d1 + x)|S|−1 ∈ Ker φ∅.

But (d1 +x)|S|−1 is represented in H∗
S1(US) by the subvariety XS (see Remark 5.26), hence

0 = φ∅(η · (d1 + x)|S|−1) = φ∅(η) · e(XS),
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where e(XS) is the equivariant Euler class of the normal bundle to XS inside of US. Since

the equivariant Euler class of the normal bundle to a component of the fixed point set is

never a zero-divisor, we have η ∈ Kerφ∅. Then by Equation 5.28,

a+ η · (d1 + x)|S|−1 ∈ JS.

This completes the proof of Theorem 5.24. 2

Example 5.29 For arbitrary n and α, suppose that S is a maximal short subset. Then

Corollary 5.25 tells us that H∗(US) ∼= Q[d1]/〈dn−2
1 〉. We conjecture that in this case we in

fact have US ∼= CPn−3 .

Example 5.30 Consider the core component pictured in Example 5.8. By Theorem 5.25

and Remark 5.26,

H∗(US) ∼= Q[d1, d3, d4, d5]

/〈
d3(d1 − d3), d4(d1 − d4), d5(d1 − d5), d3d4, d3d5, d4d5,

d1(d1 − d3 − d4), d1(d1 − d3 − d5), d1(d1 − d4 − d5)

〉
,

where d1 is the fundamental class of XS, and d3, d4, and d5 are the negatives of the funda-

mental classes of the curves labeled 123, 124, and 125, respectively. Because the transverse

intersection of two complex varieties is positive, we know that −d1d3[US] = 1. With respect

to the basis

{d1 − d3 − d4 − d5, d3, d4, d5},

the intersection form on H2(US) is represented by the matrix



1

−1

−1

−1



.

It is likely that US is isomorphic to the blow-up of CP 2 at three points.

Example 5.31 Using the same α = (1, 1, 3, 3, 3), consider the short subset S = {1, 3}. In

this case, Theorem 5.25 tells us that

H∗(US) ∼= Q[d1, d2]/
〈
d2

1, d2(d1 − d2)
〉
.

With respect to the basis {d1 − d2, d2}, the intersection form on H2(US) is represented by

the matrix
(

−1 0

0 1

)
, hence US is homeomorphic to the blow-up of CP 2 at a single point.
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