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1. Introduction

Building on the mathematical work [2], there has recently been tremendous progress

in the use of exceptional collections to derive quiver gauge theories for Calabi-Yau

cones [3, 4, 5, 6, 7, 8]. In this program, initiated in [9], one begins with a Fano

Kähler-Einstein surface V . An exceptional collection on V is a collection of objects

in the derived category of coherent sheaves on V that forms an analogue of a basis

of a vector space. Given such a collection with nice enough properties, Bondal [2]

constructs a quiver that has a derived category of representations equivalent to the

derived category of coherent sheaves. It is shown in the above references how to

‘complete’ the quiver to obtain a new, more complicated quiver, whose category of

representations corresponds not to V , but rather to the total space ω of the canonical

bundle over V . In this paper we consider a related variety, C(V ), which (on the level

of points) is obtained from ω by collapsing the zero section. It is so named because

if the anticanonical bundle of V is very ample, then C(V ) is isomorphic to the cone

over V in its anticanonical projective embedding. It follows from topological string

theory [6] that the gauge theory on a D-brane located at the tip of the cone C(V ) is

the quiver gauge theory corresponding to the completed quiver. Other Calabi-Yau

cones can be obtained by undoing an orbifold as shown in [7]. Recently, Herzog and

Karp [10] have shown how to find exceptional collections describing a large class of

toric cones, and Verlinde and Wijnholt [11] have applied these techniques towards

string phenomenology.

In string theory, we generally expect that if we have a D-brane probing a par-

ticular geometry, the moduli space of the gauge theory on the brane (or perhaps

a particular branch thereof) should correspond in some way to the geometry being

probed. It then becomes an interesting question to ask about the moduli spaces of

these quiver gauge theories derived from exceptional collections. In mathematical

language, this is the moduli space of representations of the completed quiver. In

this paper, we will address this question for exceptional collections consisting solely

of line bundles. (This implies that the ranks of the gauge groups are all one.) We

will show that one component of the classical moduli space of the gauge theory is

precisely the cone C(V ) on which the D-brane lives.

It is interesting to note that there exists a natural map from points on V (re-

spectively ω) to the stack of isomorphism classes of representations of the original

(respectively completed) quiver.1 A representation consists of a vector space for

each node in the quiver and a linear map for each arrow. In our case, the nodes

of the quiver will correspond to the line bundles E1, . . . , En in our exceptional col-

lection, and the set of arrows from j to i will correspond to vectors in the vector

space Hom(Ei, Ej). Given a point p in our variety, there is a canonical quiver rep-

resentation with vector spaces given by the fibers at p of the dual line bundles. Set

1We thank David Ben-Zvi for calling our attention to this map.
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theoretically, the moduli space of the gauge theory is in a quotient of a subset of

the moduli stack. The compatibility of the stack theoretic and moduli theoretic

approaches will be discussed in [1].

The main idea of our approach is as follows. It is well-known in gauge theory that

the moduli space of vacua is parameterized by the gauge-invariant operators which

for quiver gauge theories are all given by loops in the quiver. (In mathematical

language, the moduli space is equal to the reduced variety underlying the affine GIT

quotient of the space of representations by the complexified gauge group, which is

defined as Spec of the ring of gauge-invariant functions.) A result of Bridgeland

[4] tells us that the ring of based loops in our quiver, i.e., loops through a given

node, is isomorphic to the ring of sections of the anticanonical line bundle on V . It

follows that the affine algebraic variety parameterized by the ring of based loops is

isomorphic to the cone C(V ). There is still some difficulty arising from the mismatch

between based loops and loops in general. This is why C(V ) turns out to be only

one irreducible component (branch) of the moduli space.

In this discussion, we have set the Fayet-Iliopoulis terms to zero. (Mathemat-

ically, this means that we do not impose any stability condition on the space of

representations.) Turning on these terms corresponds to (partially) desingularizing

the tip of the cone2. The relation of this to dibaryonic operators in the SU(d)n gauge

theory is currently being pursued by the first author. We restrict in this paper to

the situation where the cone is defined by the canonical line bundle. The extension

to the undone orbifolds of [7] is straightforward. It is also an interesting question,

in the mathematical context, to ask whether the uncompleted quiver has a stability

condition such that its moduli space of stable representations has V as one of its

components. This will be addressed in a future work [1].

This paper is organized as follows. In Section 2, we briefly review the material

that we need from the theory of exceptional collections in the derived category of an

algebraic variety. In Section 3, we describe quiver gauge theories and their moduli

spaces and prove our main result. Finally, in Section 4, we illustrate our result for

the Z2 orbifold of the conifold.

2. Exceptional collections and quivers

In this section, we give an overview of the procedure for obtaining a quiver from an

exceptional collection. For more details, see [2, 3, 4, 5, 7]. An exceptional sheaf3 is

a coherent sheaf, E, such that

Extk(E, E) = Cδk0 . (2.1)

2See Remark 3.4 of [1].
3This definition is most naturally applied to exceptional objects in the derived category, but in

our case it is sufficient to work with honest sheaves.
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A strong exceptional collection is an ordered collection of exceptional sheaves, (E1, . . . , En),

such that

i > j ⇒ Hom(Ei, Ej) = 0, (2.2)

and ∀ i, j, Extk(Ei, Ej) = 0 ∀k 6= 0. (2.3)

Finally, the exceptional collection is called full if it generates the derived category.

With this data, let

T =
n⊕

i=0

Ei , (2.4)

and

A = [Hom(T, T )]op =
⊕
i≤j

Hom(Ei, Ej), (2.5)

where the multiplication

Hom(Ei, Ej)× Hom(Ek, El) → Hom(Ek, Ej) (2.6)

is zero unless i = l and is otherwise defined in the obvious manner. Bondal [2]

constructs a quiver with relations whose nodes are indexed by the exceptional objects

E1, . . . , En, and whose path algebra is isomorphic to A. In other words, the vector

space of paths from node j to node i modulo relations is canonically isomorphic to

Hom(Ei, Ej), and the multiplication of Equation (2.6) corresponds to composition of

paths. Furthermore, Bondal proves that the derived category of representations of

this quiver is equivalent to the derived category of coherent sheaves on V .

Given such an exceptional collection, the doubly infinite collection of sheaves

generated by the relation

Ei = Ei+n ⊗KV , i ∈ Z, (2.7)

is called a helix. Following Bridgeland [4], we call this helix simple if Extk(Ei, Ej) = 0

for all i ≤ j ∈ Z whenever k 6= 0. We next define the helix algebra,

B̃ =
⊕
k≥0

∏
j−i=k

Hom(Ei, Ej), (2.8)

where i and j run over the integers. This algebra has a natural Z-action given by

the isomorphism

⊗KV : Hom(Ei, Ej) −→ (Ei−n, Ej−n). (2.9)

The invariant subalgebra under this action is called the rolled-up helix algebra by

Bridgeland; we will denote its opposite algebra by B. It is has been long conjectured

and finally shown in [8] that this algebra is the path algebra of a ‘completed quiver’

where the relations can be derived from a superpotential.
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Recall that ω is defined to be the total space of the canonical bundle KV on V ,

and let π denote the projection from ω to V . The nodes of the completed quiver

correspond to the sheaves π∗(Ei) on ω, and the arrows are defined such that the

vector space spanned by the set of paths from node j to node i is isomorphic to

Hom(π∗(Ei), π
∗(Ej)) =

⊕
m≥0

Hom(Ei, Ej ⊗K−m
V ). (2.10)

Note that these vector spaces are infinite dimensional, but each summand is finite

dimensional. The grading by m in Equation (2.10) corresponds to the grading in the

path algebra given by the number of times that a path circles the quiver. Since we

will be assuming that the sheaves E1, . . . , En are all line bundles, Equation (2.10)

tells us that for all i, the algebra Bi of loops based at i is isomorphic to

Hom(π∗(Ei), π
∗(Ei)) =

⊕
m≥0

Hom(K−m
V ). (2.11)

Even though the collection π∗E1, . . . , π
∗En on ω is not exceptional, Bridgeland shows

that the derived category of representations of B and, hence, of the completed quiver,

is equivalent to the derived category of coherent sheaves on ω.

3. Moduli spaces of quiver gauge theories

Given a quiver with relations derived from a superpotential, the additional ingredient

that we need to define a quiver gauge theory is a dimension vector. This is a vector

of n integers, (d1, . . . , dn), where n is the number of nodes in the quiver. The matter

content then consists of a vector multiplet for each node associated with a U(di)

gauge group at that node and a chiral multiplet for each arrow that transforms in

the fundamental of the head and the antifundamental of the tail. We will restrict

our attention to the case in which the gauge groups are all U(1). Thus each arrow

corresponds to a complex number, and our configuration space is simply C#arrows.

We then impose the F-term and D-term constraints with all the FI-terms set to

zero, and quotient by the gauge groups. The F-terms are the relations in the quiver

as discussed in Section 2, and they cut out a subvariety of C#arrows. The D-term

constraints are known in the mathematical literature as a moment map; imposing

them and quotienting by the gauge group means taking a symplectic quotient. It is

well known to both physicists and mathematicians [12, 13] that this corresponds to

taking a GIT quotient by the complexified gauge group. With the FI-terms turned

off, this means that we consider the affine variety Spec R, where R is the ring of

gauge invariant functions on our subvariety. In fact, the relevant space for physics is

not Spec R, but rather its underlying reduced variety, i.e., the set of points cut out

of affine space by the equations defining the ring R.
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Let us now consider the total space ω of the canonical bundle on V . A polynomial

function on ω may be thought of as an element of the section ring

S :=
⊕
m≥0

Hom(K−m
V ), (3.1)

where m corresponds to the degree of the polynomial in the fiber direction. There is

a natural projection from ω to Spec S, and it is an isomorphism away from the zero

section, which gets collapsed to a point because V is projective. Let C(V ) be the

underlying reduced variety of Spec S. If the anticanonical bundle if very ample then

V is isomorphic to Proj S, and C(V ) is simply the cone over V in its anticanonical

embedding. It is a theorem of LeBruyn and Procesi4 that the invariant ring of

any quiver with any dimension vector is generated by the traces of automorphisms

coming from loops in the quiver.5 Suppose that it is in fact generated by functions

associated to loops that are based at a given node i. Then Equation (2.11) tells us

that R ∼= Bi
∼= S, and therefore that Spec R ∼= Spec S. Passing to the underlying

reduced varieties, we conclude that the moduli space of vacua in the quiver gauge

theory is isomorphic to C(V ).

Finally, we would like to eliminate the assumption that all invariants of the quiver

are generated by loops based at a single node. In general, instead of an isomorphism

between R and S, we have the following commutative diagram for each i, where ϕi is

the isomorphism of Equation (2.11). The map Ψ is determined by the property that

Bi

σi   @
@@

@@
@@

S
ϕioo

R

Ψ

??�������

the above diagram commutes for all i. The existence of such a map is guaranteed

by the compatability of the isomorphisms ϕi, and its uniqueness comes from the fact

that the images of the various σi generate R as a ring. The injection σi ◦ ϕi induces

a surjective map from the quiver moduli space Spec R to Spec S, while Ψ induces a

section of this map. We will prove below that there exists a nonzero elements βi ∈ Bi

such that σi becomes an isomorphism after inverting βi. It follows that the inclusion

induced by Ψ of C(V ) into the quiver moduli space is an isomorphism over the open

set where βi is nonzero. Since C(V ) is irreducible, this implies that the inclusion

identifies C(V ) with an irreducible component of the moduli space.

Given any pair of nodes i and j, Equation (2.10) tells us that the space of paths

in from j to i can be identified with the vector space
⊕

m≥0 Hom(Ei, Ej ⊗ K−m
V ).

4See, for example, Lecture 10 of [14].
5It is interesting to note that if we replace the gauge groups by the special unitary groups SU(di)

we will have more invariants. In physics, these are called dibaryons, while in the mathematical
literature, they are called semi-invariants of the quiver.
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Since K−1
V is ample, this vector space is always nonzero. Choose a pair of nonzero

paths p from i to j and q from j to i, and let βj
i be the composition qp. If ` is a loop

based at j, then

σi(β
j
i ) · σj(`) = σi(qp) · σj(`) = σi(p`q). (3.2)

Put βi =
∏

j 6=i β
j
i . Equation (3.2) tells us that σi(βi)·σj(`) ∈ σi(Bi). Since the ring R

is generated by functions associated to loops, this implies that σi(βi) ·R is contained

in σi(Bi). Thus, when we invert βi, the inclusion σi becomes an isomorphism.

The precise mathematical theorem that we have proven may be stated as follows.

Theorem. Let E1, . . . , En be a full, strong, exceptional collection of line bundles on

a Fano surface V , generating a simple helix. Then C(V ) includes into the moduli

space of S-equivalence classes6 of representations of the associated ‘completed quiver’

with dimension vector (1, . . . , 1), and the image is the canonical reduced subscheme

of an irreducible component.

4. An example

O(0, 1)
•

•
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bj
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wwwwwwwwww O(1, 1)//4eij
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•
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O(1, 0)
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Figure 1: The completed quiver for P1 × P1.

To illustrate our theorem, we consider an example in which V ∼= P1 × P1, and

C(V ) is the Z2 orbifold of the famous conifold. The line bundles O,O(0, 1),O(1, 0),

and O(1, 1) form a full strong exeptional collection; its quiver is shown in Figure 1,

with i, j, k and l running from 1 to 2. The 4 in the middle of the central arrow means

that there are four arrows from O to O(1, 1). Let {x1, x2} be a basis of sections of

O(0, 1), and {y1, y2} a basis of sections of O(1, 0). The arrows ai and ci correspond

to multiplication by xi, and bj and dj correspond to multiplication by yj. This gives

the relations

aibj = djci for all i, j. (4.1)

In addition, the arrows eij correspond to multiplication by xiyj leading to further

relations. These relations can all be derived from the superpotential

W = (a1b1 − d1c1)e22 − (a1b2 − d2c1)e21 − (a2b1 − d1c2)e12 + (a2b2 − d2c2)e11. (4.2)
6This means that we identify two isomorphism classes if their closures intersect in the moduli

stack.
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Let us consider only those loops that are based at the node O(0, 1). There are

näıvely 2 × 4 × 2 = 16 loops through this node that cycle exactly once around the

quiver. Modulo relations, however, we find that the ring of based loops is generated

by nine monomials and may in fact be identified with the subring of C[x1, x2, y1, y2]

spanned by all monomials with the same even degree in both x and y. One can

see by explicit calculation that this gives the Z2 orbifold of the conifold, but it is

also possible to see this more geometrically. This ring is precisely the homogeneous

coordinate ring of P1 × P1 in its projective embedding defined by composing the

2-uple embedding of P1 × P1 in P2 × P2 with the Segré embedding of P2 × P2 in

P8. The hyperplane bundle on P8 pulls back to O(2, 2) = K−1
V over P1 × P1, so we

immediately see that our variety is the affine cone we are looking for. In this case, the

invariant ring is an integral domain, and, consequently, any loop that does not pass

through the node O(0, 1) is equivalent in the path algebra to a linear combination

of loops that do.
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