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We introduce the notion of a categorical valuative invariant of polyhedra or matroids, in which

alternating sums of numerical invariants are replaced by split exact sequences in an additive

category. We provide categorical lifts of a number of valuative invariants of matroids, including

the Poincaré polynomial, the Chow and augmented Chow polynomials, and certain two-variable

extensions of the Kazhdan–Lusztig polynomial and Z-polynomial. These lifts allow us to perform

calculations equivariantly with respect to automorphism groups of matroids.

1 Introduction

Let E be a finite set, and let Mat(E) be the free abelian group with basis given by matroids on E.

An element of Mat(E) is said to be valuatively equivalent to zero if it lies in the kernel of the

homomorphism that takes a matroid to the indicator function of its base polytope. The following

fundamental example will be revisited throughout the paper.

Example 1.1. Let E = {1, 2, 3, 4}. Let M be the uniform matroid of rank 2 on E, let N be the

matroid whose bases are all subsets of cardinality 2 except for {3, 4}, let N ′ be the matroid whose

bases are all subsets of cardinality 2 except for {1, 2}, and let N ′′ be the matroid whose bases are

all subsets of cardinality 2 except for {1, 2} and {3, 4}. In Figure 1, the base polytope of M is the

octahedron, the base polytopes of N and N ′ are the two pyramids, and the base polytope of N ′′ is

the square. Thus M −N −N ′ +N ′′ is valuatively equivalent to zero.

Let A be an abelian group, and let f : Mat(E) → A be any homomorphism. This homo-

morphism is called valuative if it vanishes on elements that are valuatively equivalent to zero.

Examples of valuative invariants of matroids include the following, all of which take values in the

group A = Z[t].
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Figure 1: A decomposition of the matroid M = U2,4. The label ij refers to the point that takes
the value 1 in the ith and jth coordinates, such as 12 = (1, 1, 0, 0).

• The Poincaré polynomial πM (t) =
∑
ti dim OSi(M), where OS(M) is the Orlik–Solomon

algebra of M .5 This is a specialization of the Tutte polynomial TM (x, y) ∈ Z[x, y], which is

valuative by [Spe08, Lemma 6.4].

• The Chow polynomial HM (t) =
∑
ti dim CHi(M) [FS, Theorem 8.14]. Here CH(M) is the

Chow ring of M , introduced in [FY04].

• The augmented Chow polynomial HM (t) =
∑
ti dim CHi(M) [FMSV, Theorem 1.11].

Here CH(M) is the augmented Chow ring of M , introduced in [BHM+22].

• The Kazhdan–Lusztig polynomial PM (t) [AS22, Theorem 8.8], introduced in [EPW16].

• The Z-polynomial ZM (t) [FS, Theorem 9.3], introduced in [PXY18].

Our goal in this paper is to promote the corresponding relations among polynomials to exact

sequences of graded vector spaces. For the matroids in Example 1.1, valuativity of the Poincaré

polynomial tells us that we have the relation

πM (t)− πN (t)− πN ′(t) + πN ′′(t) = 0.

We will prove that, after choosing orientations of the base polytopes of the four matroids, we obtain

a canonical exact sequence (Theorem 5.5)

0→ OS(M)→ OS(N)⊕OS(N ′)→ OS(N ′′)→ 0, (1)

5The Poincaré polynomial is closely related to the characteristic polynomial χM (t) = (−t)rkMπM (−t−1). We
prefer the Poincaré polynomial because it has positive coefficients.

2



with similar exact sequences involving the Chow ring and augmented Chow ring (Corollaries 8.6

and 8.10). The story for the Kazhdan–Lusztig polynomial and Z-polynomial is similar but slightly

more complicated: we introduce new bivariate polynomials P̃M (t, u) and Z̃M (t, u) with the property

that P̃M (t,−1) = PM (t) and Z̃M (t,−1) = ZM (t), and we interpret these polynomials as Poincaré

polynomials of bigraded vector spaces that satisfy exact sequences analogous to that in Equation

(1) (Corollaries 8.14 and 8.15). Our results apply not only to the decomposition in Example 1.1,

but to arbitrary matroid decompositions, which are known to generate the group of all valuative

equivalences in Mat(E) (Proposition 3.5).

We have two motivations for this project, one philosophical and the other concrete. The philo-

sophical motivation is that many of the valuativity results cited above are mysterious. One can

prove that these various polynomials are valuative, but we lack a clear understanding of why they

should be valuative. Producing canonical exact sequences of graded vector spaces can be seen as a

satisfying explanation.

The concrete motivation is that it allows us to incorporate symmetries of matroids into the

theory of valuativity. The Orlik–Solomon algebra, the Chow ring, and the augmented Chow ring all

inherit actions of the symmetry group of M . Similarly, the Kazhdan–Lusztig polynomial and the Z-

polynomial can be naturally lifted to “equivariant” polynomials whose coefficients are isomorphism

classes of representations of the symmetry group of M [GPY17, PXY18]. In Example 1.1, the

dihedral group D4 acts by symmetries of the square6, preserving M and N ′′ while permuting N

and N ′. With a small modification that accounts for the action of the group on the orientations of

the various polytopes involved, Equation (1) can be regarded as an exact sequence in the category

of graded representations of D4, and therefore allows us to relate the D4-equivariant isomorphism

class of OS(M) to those of the other terms in the sequence. The most general result along these

lines, for arbitrary categorical valuative invariants, appears in Corollary 9.3.

As a sample application, we compute the effect of relaxing a collection of stressed hyperplanes on

the Orlik–Solomon algebra or the equivariant Kazhdan–Lusztig polynomial of a matroid (Corollar-

ies 9.8 and 9.10), the latter of which recovers the main result of [KNPV23]. A matroid that is related

to a uniform matroid by a sequence of hyperplane relaxations is called paving, so our corollaries

provide explicit formulas for the Orlik–Solomon algebra and equivariant Kazhdan–Lusztig polyno-

mial (as graded representations of the automorphism group) for any paving matroid. The class

of paving matroids is very large: in particular, the probability that a random matroid is paving

conjecturally goes to one as the size of the ground set goes to infinity [MNWW11]. A matroid that

is related to a uniform matroid by a sequence of arbitrary relaxations is called split [JS17, FS],

so our corollaries in fact provide a method for performing equivariant calculations of any of the

invariants discussed above for any split matroid (Proposition 9.6), provided that one can compute

it for certain special matroids of the form Πr,k,E,F and Λr,k,E,F .

To formalize the properties shared by Orlik-Solomon algebras, Chow rings, and the other in-

6The dihedral group D4 is the subgroup of S4 generated by (12) and (13)(24).
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variants discussed above, we introduce the notion of a categorical valuative invariant. There

is a category M(E) whose objects are matroids on the ground set E and whose morphisms are

weak maps. Decompositions like the one in Example 1.1 give rise to complexes in the additive

closure of M(E), and we think of these complexes as being valuatively equivalent to zero. We

call a functor Φ from M(E) to an additive category A valuative if such complexes are sent to

split-exact complexes in A. Taking the map on Grothendieck groups induced by Φ, one obtains

a valuative homomorphism from Mat(E) to the split Grothendieck group of A. We say that the

functor categorifies the homomorphism. For example, the Orlik–Solomon algebra OS is functorial

with respect to weak maps, this functor is valuative (Theorem 5.5), and it categorifies the Poincaré

polynomial.

In fact, we work in a broader setting than that of matroids. We define a category P(V) whose

objects are polyhedra in a real vector space V, and whose morphisms are linear automorphisms of V
that induce inclusions of polyhedra. ThenM(E) is isomorphic to the subcategory of P(RE) whose

objects are base polytopes of matroids on E and whose morphisms are induced by permutations

of E. The notions of valuative equivalence, valuative homomorphisms, and valuative functors all

generalize naturally from matroids to polyhedra, and much of what we do takes place in this more

general framework.

The most important tool developed in this paper is a method of combining simple categorical

invariants of matroids to obtain more complicated ones. We begin with a brief review of the non-

categorical story. Let ψ be a linear functional on the real vector space V. For any polyhedron

P ⊂ V, let Pψ be the face of V on which ψ is maximized if such a face exists, and zero if the

restriction of ψ to P is unbounded. McMullen [McM09, Theorem 4.6] proves that the assignment

P 7→ Pψ preserves valuative equivalence. Now suppose that E = E1 t E2, and ψ is the linear

functional on RE that takes the sum of the coordinates corresponding to elements of E1. Then for

any matroid M , P (M)ψ = P (M1) × P (M2), where M1 is a matroid on E1 and M2 is a matroid

on E2 (Lemma 7.1). Combining this observation with McMullen’s theorem, one can define an

operation that takes a pair of valuative homomorphisms fi : Mat(Ei) → Z[t] to a new valuative

homomorphism f1 ∗ f2 : Mat(E) → Z, called the convolution of f1 and f2. This construction is

due to Ardila and Sanchez, who give a proof of valuativity that is independent from McMullen’s

result [AS22, Theorem C].

In this paper, we categorify everything in the previous paragraph. The categorification of Mc-

Mullen’s theorem is Theorem 6.3, and this is the most difficult result that we prove. With some

additional work, we prove Theorem 7.3 and Corollary 7.7, which together categorify [AS22, The-

orems A and C]. The end result is a categorical convolution product that allows us to combine a

categorical invariant of matroids on E1 with a categorical invariant of matroids on E2 to obtain

a categorical invariant of matroids on E1 t E2. It is via this construction that we categorify the

valuative invariants CHM (t), CHM (t) P̃M (t, u) and Z̃M (t, u).

Finally, we mention two additional results that we prove along the way. First, we use our
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categorifications to prove that the Chow polynomial and augmented polynomial are monotonic,

meaning that their coefficients weakly decrease along rank-preserving weak maps (Theorem 8.19).

We conjecture that an analogous statement holds for the Kazhdan–Lusztig polynomial and Z-

polynomial (Conjecture 8.20). Second, we introduce the valuative category V(E), a triangulated

category that is in some sense the universal source for valuative functors (Section 4.3), and we prove

that the Grothendieck group of V(E) is isomorphic to the valuative group V (E), the universal

source of numerical valuative invariants (Proposition 8.24).

Acknowledgments: The authors are grateful to Matt Larson for explaining the connection between

[McM09] and [AS22] and for his contributions to Section 8.5, to George Nasr for his contributions

to Section 8.4, and to Kris Shaw for explaining the argument in Remark 5.6.

2 Additive homological algebra

We begin with a review of the notions from homological algebra that we will need. The experienced

reader can skip this section and refer back to it as needed.

2.1 Basics

Let A be a Q-linear additive category. We write Ch(A) to denote the additive category of chain

complexes (C•, ∂) in A, with the homological convention that differential ∂ decreases degree by one.

We will sometimes drop the differential from the notation and simply write C• ∈ Ch(A), though

the differential is always part of the data. Morphisms in Ch(A) are chain maps between complexes.

Let K(A) denote the homotopy category of A, which is the triangulated category obtained as

the quotient of Ch(A) by the ideal of null-homotopic chain maps. We write Chb(A) and Kb(A) to

denote the full subcategories whose objects are bounded complexes.

We note that Kb(A) can also be viewed as the quotient of Chb(A) by a class of objects. For

an object X ∈ A and an integer k ∈ Z, one can consider the complex Null(X, k) consisting only

of two copies of X in degrees k and k − 1, with differential the identity map. A bounded complex

is called contractible if it is isomorphic to a finite direct sum of objects of the form Null(X, k).

Then a chain map between bounded complexes is null-homotopic if and only if it factors through

a contractible complex. Thus the ideal of null-homotopic maps is the same as the ideal generated

by the identity maps of Null(X, k) for various X and k. This is an old perspective, but the first

author learned it from [Kho16].

Remark 2.1. The same statements cannot be made for unbounded complexes. Indeed, a null-

homotopic chain map may be nonzero in infinitely many degrees, requiring an expression using an

infinite sum of chain maps which factor through various Null(X, k).

Remark 2.2. If A is a semisimple abelian category, then a complex in Chb(A) is contractible if

and only if it is exact, i.e. its homology is trivial.
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Remark 2.3. A bounded complex is homotopy equivalent to the zero complex if and only if it is

contractible. More generally, two bounded complexes C• and D• are homotopy equivalent if and

only if there are bounded contractible complexes X• and Y• such that C• ⊕X• ∼= D• ⊕ Y•.

Given an arbitrary category C, we write C+ for the Q-linear additive closure of C. Objects in

C+ are formal direct sums of objects in C. If X and Y are objects in C, then HomC+(X,Y ) is the

vector space over Q with basis given by the set HomC(X,Y ). Similarly, morphisms between formal

direct sums are matrices of Q-linear combinations of morphisms in C.
Given two Q-linear additive categories A1 and A2, the Deligne tensor product of A1 and A2

is defined as follows. First, we define an intermediate category whose objects are symbols X1 �X2

for X1 ∈ A1 and X2 ∈ A2, with morphisms from X1 �X2 to Y1 � Y2 given by the tensor product

HomA1(X1, Y1)⊗Q HomA2(X2, Y2).

This intermediate category is not yet additive, because we cannot take direct sums of objects. The

Deligne tensor product A1 �A2 is defined to be the additive closure of this intermediate category.

There is an external tensor product operation Chb(A1)�Chb(A2)→ Chb(A1 �A2), which mimics

the usual tensor product of complexes (with its Koszul sign rule). When A1 = C+
1 and A2 = C+

2 ,

then A1 �A2 = (C1 × C2)+.

2.2 Cones

We let [1] denote the usual homological shift on complexes, so that C[1]i = Ci+1 and differentials

are negated. For an object X ∈ A, let X[−i] denote the complex consisting of X concentrated in

degree i. There is a natural inclusion of A into Ch(A) that sends X to X[0].

Let f : C• → D• be a chain map. The cone of f is the complex

Cone(f) :=

(
C•[−1]⊕D•,

(
−∂C 0

f ∂D

))
.

More explicitly, Cone(f)i := Ci−1 ⊕Di, and for c ∈ Ci−1 and d ∈ Di, ∂(c, d) := (−∂c, f(c) + ∂d).

A termwise-split short exact sequence of complexes in A is a collection of complexes and

chain maps

0→ P• → Q• → R• → 0 (2)

with the property that, in each homological degree i, the sequence

0→ Pi → Qi → Ri → 0

is split exact in A. For any chain map f : C• → D•, one has a termwise-split short exact sequence

0→ D• → Cone(f)→ C•[−1]→ 0. (3)
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Conversely, for any termwise-split short exact sequence as in Equation (2), there exists a chain map

f : R•[1]→ P• and an isomorphism Q• ∼= Cone(f).

Remark 2.4. If ι : D• → Cone(f) is the canonical map in (3), then the cone of ι is called the

cylinder of f , and denoted Cyl(f). There is a termwise-split short exact sequence of complexes

0→ Cone(f)→ Cyl(f)→ D•[−1]→ 0.

There is always a homotopy equivalence Cyl(f) ∼= C•, but there need not exist a termwise-split

short exact sequence of the form 0→ Cone(f)→ C• → D•[−1]→ 0.

The following lemma is well-known, and admits an elementary proof.

Lemma 2.5. Let f : C• → D• be a map of bounded chain complexes.

• The map f is a homotopy equivalence if and only if Cone(f) is contractible.

• The map f is null-homotopic if and only if the termwise-split short exact sequence (3) splits

at the level of complexes.

Remark 2.6. Lemma 2.5 implies that contractible complexes are projective: whenever they appear

as the third term in a termwise-split short exact sequence of complexes, then that short exact

sequence is genuinely split. In particular, the cone of a map between contractible complexes is

itself contractible.

An iterated cone is often called a convolution, which is the additive analogue of a filtered

complex. For example, if (A•, ∂A), (B•, ∂B), and (C•, ∂C) are complexes, then a complex of the

form D• = (A• ⊕ B• ⊕ C•, ∂) is a (three-part) convolution if ∂ is lower triangular and agrees

with (∂A, ∂B, ∂C) along the diagonal. If so, then C• is a termwise-split subcomplex of D•, A• is

a termwise-split quotient complex of D•, and B• is a termwise-split subquotient of D•. One can

describe D• as the cone of a chain map from A[1]• to E•, where E• is the cone of a chain map from

B[1]• to C•. We call A•, B•, and C• the parts of the convolution D•.

A functor Φ between additive categories is called additive if it preserves addition of morphisms,

or (equivalently) if it preserves direct sum decompositions of objects. Additive functors extend to

the category of complexes (and descend to the homotopy category), where they preserve cones

and convolutions. If Φ: C → A is any functor from an arbitrary category C to a Q-linear additive

category A, then it extends naturally to an additive functor C+ → A, which we also denote by Φ.

2.3 Localizing subcategories

A nonempty full subcategory I of Chb(A) is called localizing if it is closed under homotopy

equivalences, shifts, cones, and direct summands. Contractible complexes form the smallest lo-

calizing subcategory. Localizing subcategories are like ideals: they are the “kernels” of triangu-

lated functors. More precisely, consider an additive functor Φ: A → A′, which induces a functor
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Chb(A)→ Chb(A′). Let I ⊂ Chb(A) be the full subcategory consisting of complexes C• with Φ(C•)

being contractible; then I is a localizing subcategory. Conversely, given a localizing subcategory

I of Chb(A), the quotient category Chb(A)/I is triangulated, and I is the kernel of the quotient

functor.

Remark 2.7. Because of Lemma 2.5, there is a relationship between inverting morphisms and

killing objects: formally inverting a chain map f is equivalent to killing the object Cone(f), and

killing an object C is equivalent to formally inverting the zero map 0 → C. Thus the quotient

category Chb(A)/I can also be obtained by inverting morphisms whose cones live in I.

Remark 2.8. Localizing subcategories in the literature are typically defined within the trian-

gulated category Kb(A), defined in the same way. Since all localizing subcategories of Chb(A)

contain all contractible objects, there is a natural quotient-preserving bijection between localizing

subcategories of Chb(A) and localizing subcategories of Kb(A).

Localizing subcategories satisfy the two-out-of-three rule: if 0 → P• → Q• → R• → 0 is a

termwise-split short exact sequence, and two out of three of the complexes P•, Q•, R• live in a

localizing subcategory I, then so does the third.

Lemma 2.9. Let I be a localizing subcategory, and let X• a complex built as a convolution. If all

the parts of X• are in I, then X• is also in I. If X• is in I and all but one part is in I, then the

remaining part is also in I.

Proof. This is an iterated application of the two-out-of-three rule.

Given a nonempty collection Y of complexes in Chb(A), there is a smallest localizing subcategory

〈Y〉 containing those complexes. It contains precisely those complexes homotopy equivalent to

convolutions whose parts are shifts of direct summands of complexes in Y.

2.4 Thin categories and minimal complexes

A category C is called thin if, for all objects X and Y , there is at most one morphism from X

to Y . Thin categories are also called poset categories, as there is a natural partial order on

isomorphism classes of objects given by putting X ≤ Y if and only if there exists a morphism from

X to Y , and this partial order determines C up to equivalence. In this section, we assume that

C is thin, and we let A = C+. For any object X of C, let A<X (respectively A≤X) be the full

subcategory of A consisting of direct sums of objects that are strictly less (respectively less than

or equal to) X.

Let C• be an object in Chb(A). For each object X of C, we have a termwise-split short exact

sequence

0→ C<X• → C≤X• → CX• → 0,

where C<X• (respectively C≤X• ) is the maximal termwise-split subcomplex of C• whose underlying

object lies in A<X (respectively A≤X), and CX• is the termwise-split quotient of C≤X• by C<X• .

Then C• is a convolution with parts {CX• | X ∈ C and CX• 6= 0}.
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A complex in Chb(A) is called minimal if, for all X ∈ C, the (X,X) component of the differen-

tial is trivial. In other words, the differential is required to be strictly upper triangular with respect

to the partial order on objects of C. Because C is thin, this definition of minimality is equivalent

to other definitions in the literature, for example the absence of contractible summands. The cat-

egory A satisfies the Krull–Schmidt property. Consequently, any complex is homotopy equivalent

to a minimal complex, and that minimal complex is unique up to isomorphism [EMTW20, Lemma

19.15]. If DX
• is the minimal complex of CX• (which will necessarily have trivial differential), then

the minimal complex of C• is a convolution with parts {DX
• | X ∈ C}.

3 Decompositions

We next review the literature that we will need on decompositions of polyhedra and matroids.

3.1 Decompositions of polyhedra

Let V be a finite dimensional real vector space. A polyhedron in V is a subset of V obtained by

intersecting finitely many closed half-spaces. A bounded polyhedron is called a polytope. Given

a polyhedron P , we denote its dimension by d(P ).

Let Pol(V) be the free abelian group with basis given by polyhedra in V. Let I(V) ⊂ Pol(V)

be the kernel of the homomorphism from Pol(V) to the group of Z-valued functions on V taking a

polyhedron P to its indicator function 1P . For any abelian group A, a homomorphism Pol(V)→ A

is called valuative if it vanishes on I(V).

The subgroup I(V) ⊂ Pol(V) admits a concrete presentation, which we now describe. Let P be

a polyhedron in V of dimension d. A decomposition of P is a collection Q of polyhedra in V with

the following properties:

• If Q ∈ Q, then every nonempty face of Q is in Q.

• If Q,Q′ ∈ Q, then Q ∩Q′ is a (possibly empty) face of both Q and Q′.

• We have P =
⋃
Q∈Q

Q.

Elements of Q are called faces of the decomposition. We say that a face Q ∈ Q is internal if

Q is not contained in the boundary of P . For all k ≤ d = d(P ), we write Qk to denote the set of

internal faces of dimension k. Note that Q 6=
⋃d
k=0Qk. We also write Qd+1 := {P}.

Remark 3.1. If Q is a decomposition of P , then P is typically not a face of Q, so Qd+1 plays a

fundamentally different role from Qk for k ≤ d. Our use of this potentially confusing notation is

motivated by the expression in Equation (4) below. In the special case where P ∈ Q, then Q is

precisely the set of faces of P ; this is called the trivial decomposition. In this case P is the only

internal face of Q, and we have Qd = Qd+1 = {P}, and Qk = ∅ otherwise.
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Proposition 3.2. If Q is a decomposition of P , then∑
k

(−1)k
∑
Q∈Qk

Q ∈ I(V). (4)

Furthermore, I(V) is spanned by elements of this form.

Proof. We first show that this expression is contained in I(V). For decompositions of matroid

polytopes, this is proved in [AFR10, Theorem 3.5], and the same argument holds verbatim for

arbitrary polytopes. That argument does not immediately generalize to unbounded polyhedra, but

we will show how to use the bounded case to deduce the general case.

We need to show that the function ∑
k

(−1)k
∑
Q∈Qk

1Q (5)

evaluates to zero at an arbitrary point v ∈ V. Let v be given, and choose a polytope R containing

v such that, for all Q ∈ Q, Q ∩ R is a nonempty polytope of the same dimension as Q. (For

example, we can take R to be a very large box centered at v.) Let Q̃ be the decomposition of Q∩R
consisting of Q∩ F for all Q ∈ Q and F a face of R (possibly equal to R itself). Then intersection

with R provides a dimension-preserving bijection from internal faces of Q to internal faces of Q̃.

Since P ∩R is a polytope, the function∑
k

(−1)k
∑
Q̃∈Q̃k

1Q̃ =
∑
k

(−1)k
∑
Q∈Qk

1Q∩R (6)

is identically zero. Since v ∈ R, the functions (5) and (6) take the same value at v, so they are

both zero.

This completes the proof that the expression in question is contained in I(V). The fact that

I(V) is generated by expressions of this form follows from [EHL, Theorem A.2(2)].

We conclude this section with two key lemmas about decompositions of polyhedra. Let Q be a

decomposition of a polyhedron P of dimension d and let 1 ≤ k ≤ d. Given S ∈ Qk+1 and R ∈ Qk−1

with R ⊂ S, let

X(R,S) := {Q ∈ Qk | R ⊂ Q ⊂ S}.

Note that this set always has cardinality exactly equal to 2. For any R ∈ Qk−1, let ΓR be the

simple graph with vertices {Q ∈ Qk | R ⊂ Q} and edges {X(R,S) | R ⊂ S ∈ Qk+1} (see Figure 2).

Lemma 3.3. The graph ΓR is connected.

Proof. First suppose 1 ≤ k < d. Let D ⊂ V be a small disk of dimension d− k + 1 that intersects

R transversely at a single point of the relative interior of R. Then intersection with the elements

of Q defines a cellular decomposition of the boundary of D, and ΓR is isomorphic to the 1-skeleton
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Figure 2: A small piece of a decomposition including a vertex R that is incident to five 1-dimensional
polyhedra and five 2-dimensional polyhedra, along with a picture of the graph ΓR.

of this decomposition. The lemma now follows from the fact that the 1-skeleton of any cellular

decomposition of the sphere Sd−k is connected.

When k = d, the graph ΓR consists of two vertices connected by an edge. The vertices corre-

spond to the two faces Q1, Q2 ∈ Qd that have R as a facet, and the edge is X(R,P ).

Lemma 3.4. Let Q be a decomposition of a polyhedron P , and let B be the union of the bounded

faces of Q. If B is nonempty, then the inclusion of the pair (B, ∂P ∩B) into (P, ∂P ) is a homotopy

equivalence.

Proof. If there is any element of Q with a nontrivial lineality space (equivalently, with no bounded

faces), then every element of Q has this property, and therefore B is empty. We may thus assume

that every element of Q has a bounded face.

Every unbounded polyhedron with a trivial lineality space admits a deformation retraction onto

its boundary. Applying these deformation retractions one at a time to the unbounded elements

of Q, starting with those of maximal dimension, we obtain a deformation retraction of P onto B.

This restricts to a deformation retraction of ∂P onto ∂P ∩B, and provides a homotopy inverse to

the inclusion (B, ∂P ∩B)→ (P, ∂P ).

3.2 Decompositions of matroids

Let E be a finite set, and let RE be the real vector space with basis {ve | e ∈ E}. For any subset

S ⊂ E, define

vS :=
∑
e∈S

ve ∈ RE .

For each e ∈ E, let χe be the linear functional on RE defined by the property that χe(vf ) = δef .

For any subset S ⊂ E, let

χS :=
∑
e∈S

χe.

Thus, for example, we have

χT (vS) = |S ∩ T |.
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Given a matroid M on the ground set E, we define its base polytope P (M) ⊂ RE to be the

convex hull of the set {vB | B a basis for M}. We write d(M) := dimP (M), which is equal to

|E| minus the number of connected components of M . The entire polytope P (M) lies in the affine

subspace {v | χE(v) = rk(M)}.
Let Mat(E) be the free abelian group with basis given by matroids on E, which embeds naturally

in Pol(RE). Let I(E) := Mat(E)∩ I(RE). An abelian group homomorphism Mat(E)→ A is called

valuative if it vanishes on I(E). Five such examples appear in the introduction, all of which take

values in the group A = Z[t].

Given a matroid M on E, a decomposition of M is a collection N of matroids on E with the

property that Q := {P (N) | N ∈ N} is a decomposition of P (M). We refer to elements of N as

faces of the decomposition, and we say that a face N ∈ N is internal if its base polytope is an

internal face of Q. We write Nk to denote the set of internal faces N ∈ N with d(N) = k for all

k ≤ d, and we write Nd+1 := {M}. The following result follows from Proposition 3.2 and [DF10,

Corollary 3.9].

Proposition 3.5. If N is a decomposition of M , then∑
k

(−1)k
∑
N∈Nk

N ∈ I(E).

Furthermore, I(E) is spanned by elements of this form.

Example 3.6. Example 1.1 describes a decomposition N of the uniform matroid M = U2,4. The

matroids N , N ′, and N ′′ in that example are the three internal faces of N . There are also many

faces that are not internal, corresponding to the eight facets, twelve edges, and six vertices of P (M).

The generator of I(E) corresponding to this decomposition is depicted in Figure 3.

− + + −

Figure 3: The generator of I(E) from the decomposition of M = U2,4.

Example 3.7. Any matroid M has a trivial decomposition consisting of M itself along with

all of the matroids N such that P (N) is a face of P (M). In this example, M is the only internal

face. Note that the corresponding generator of I(E) is zero. Moreover, the trivial decomposition is

the only decomposition containing M itself.

3.3 Relaxation

We next review a large class of matroid decompositions that will be a rich source of examples in

Section 9. Let M be a matroid on the ground set E. A flat F ⊂ M is called stressed if the
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localization MF (obtained by deleting E \ F ) and the contraction MF (obtained by contracting a

basis for F and deleting the rest of F ) are both uniform. Given a stressed flat F of rank r, Ferroni

and Schröter define cusp(F ) to be the collection of k-subsets S ⊂ E such that |S ∩ F | = r + 1. If

B is the collection of bases of M , they prove that B ∪ cusp(F ) is the collection of bases for a new

matroid M̃ , which they call the relaxation of M with respect to F [FS, Theorem 3.12]. If F is a

circuit-hyperplane, then cusp(F ) = {F}, and this coincides with the usual notion of relaxation. If

F is a hyperplane, then this coincides with the notion of relaxation of a stressed hyperplane studied

in [FNV22].

Let M , F and M̃ be as in the previous paragraph, and let k be the rank of M . Consider the

matroid

Πr,k,E,F := Uk−r,E\F t Ur,F ,

where Ud,S denotes the uniform matroid of rank d on the set S, and t denotes the direct sum7 of

matroids, so that a basis for Πr,k,E,F is the disjoint union of a basis for Uk−r,E\F and a basis for

Ur,F . Let Λr,k,E,F denote the relaxation of Πr,k,E,F with respect to the stressed flat F of Πr,k,E,F .

The base polytope of Πr,k,E,F is a face of the base polytopes of both Λr,k,E,F and M . For Λr,k,E,F ,

it is the facet on which the linear functional χE\F is maximized. For M it is the face on which the

linear functional χF is maximized, and it is a facet unless M = Πr,k,E,F . Let N be the collection of

matroids consisting of M , Λr,k,E,F , Πr,k,E,F , and all of their faces. The following theorem is proved

in [FS, Theorem 6.3].

Theorem 3.8. The collection N is a decomposition of M̃ . If M = Πr,k,E,F , then N is the trivial

decomposition of Λr,k,E,F . If not, then the only internal faces of N are M , Λr,k,E,F , and Πr,k,E,F .

Example 3.9. In Example 1.1, the matroid N ′′ has two stressed flats (both circuit-hyperplanes),

namely H = {1, 2} and H ′ = {3, 4}. Relaxing H gives us the trivial decomposition of N = Λ1,2,E,H .

If we then relax H ′, which remains a stressed hyperplane of N , we obtain the decomposition of M

from Example 3.6. Alternatively, we could have first relaxed H ′ to obtain the trivial decomposition

of N ′, and then relaxed H to obtain the same decomposition of M .

Example 3.9 suggests a slight generalization of Theorem 3.8 in which we relax more than one

stressed flat at once. Suppose that Γ is a finite group that acts on E by permutations, with the

property that Γ fixes the matroid M . Let F be a stressed flat of M , and let F := {γF | γ ∈ Γ} be

the set of all stressed flats in the same orbit as F . Now define M̃ to be the relaxation of M with

respect to all of the elements of F . More precisely, if B is the collection of bases for M , then the

collection of bases for M̃ is

B ∪
⋃
G∈F

cusp(G).

This is a matroid because we can relax one flat at a time, and at each step, each element of F that

we have not yet relaxed remains a stressed flat. Let N be the collection of matroids consisting of

M , Λr,k,E,G for all G ∈ F , and all matroids whose polytopes are faces of P (M) or P (Λr,k,E,G).

7We eschew the more standard notation of ⊕ for direct sum of matroids in order to avoid conflict with formal
direct sums in the additive closure of the category of matroids that we will introduce in the next section.

13



Theorem 3.10. The collection N is a decomposition of M̃ . If M = Πr,k,E,F , then N is the trivial

decomposition of Λr,k,E,F . If not, then the only internal faces of N are M , Λr,k,E,G for all G ∈ F ,

and Πr,k,E,G for all G ∈ F .

Proof. The case where M = Πr,k,E,F is trivial. Otherwise, by repeatedly applying Theorem 3.8,

once for each element of F , we obtain a decomposition N of M̃ with maximal faces consist of M

and {Λr,k,E,G | G ∈ F}, and whose internal faces include {Πr,k,E,G | G ∈ F}. We need only prove

that there are no additional internal faces.

Suppose that N is a non-maximal internal face. Then P (N) is necessarily a face of the base

polytope of at least two maximal faces ofN . In particular, this implies that it is a face of P (Λr,k,E,G)

for some G ∈ F . We may assume without loss of generality that G was the last flat that we relaxed,

in which case Theorem 3.8 tells us that N = Πr,k,E,G.

Example 3.11. Let D4 act on the matroid N ′′ from Example 1.1 by symmetries of the square

P (N ′′). If F = H, then F = {H,H ′}. We could also achieve this working only with the subgroup

S2 ⊂ D4 generated by the involution γ = (13)(24).

4 Valuative functors

Our goal in this section is to give precise definitions of categories of polyhedra and matroids, and

what it means for a functor from such a category to be valuative.

4.1 Categories of polyhedra and matroids

We begin by defining a category P in which an object consists of a pair (V, P ), where V is a finite

dimensional real vector space and P is a nonempty polyhedron in V, and a morphism from (V, P )

to (V′, P ′) is a linear isomorphism ϕ : V→ V′ such that P ′ ⊂ ϕ(P ). If P ′ ⊂ P , we will write ιP,P ′

to denote the morphism from (V, P ) to (V, P ′) given by the identity map idV. For any V, we define

P(V) to be the full subcategory of P consisting of polyhedra in V, and we define Pid(V) to be the

subcategory of P(V) consisting only of morphisms of the form ιP,P ′ . Equivalently, Pid(V) is the

category associated with the poset of polyhedra in V, ordered by reverse inclusion.

Similarly, letM be the category in which an object consists of a pair (E,M), where E is a finite

set and M is a matroid on E, and a morphism from (E,M) to (E′,M ′) is a bijection ϕ : E → E′

such that P (M ′) ⊂ ϕ(P (M)). In other words, M is the subcategory of P whose objects are base

polytopes of matroids and whose morphisms come from bijections of ground sets. Morphisms in

M are sometimes called weak maps of matroids. For any finite set E, we define M(E) to be the

full subcategory of M consisting of matroids on E, and we define Mid(E) to be the subcategory

of M(E) consisting of only morphisms ιM,M ′ : M →M ′ given by the identity map idE . Note that

ιM,M ′ : M →M ′ is a morphism if and only if every basis for M ′ is also a basis for M .

Remark 4.1. The category Pid(V) is thin in the sense of §2.4, whereas the category P(V) is not.

The Q-linear additive closure P+(V) does not satisfy the Krull–Schmidt property, and complexes in
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Chb(P+(V)) need not have well-defined minimal complexes. For this reason, we work with Pid(V)

when doing homological algebra. Similar statements apply to M(E) and Mid(E).

Let A be an additive category, and let A be its split Grothendieck group. For an object X of

A, we write [X] to denote its class in A. We will be interested in functors Φ to A from Pid(V) or

Mid(E). Such a functor induces a homomorphism from Pol(V) or Mat(E) to A, and we say that

the functor categorifies the homomorphism. Often, but not always, the functors that interest us

will extend naturally to the larger categories P or M.

Example 4.2. LetA be the category of finite dimensional graded vector spaces over Q. The Orlik–

Solomon functor OS :M→A takes a matroidM to its Orlik–Solomon algebra OS(M), and sends

a weak map ϕ : (E,M)→ (E′,M ′) to the algebra homomorphism OS(ϕ) : OS(M)→ OS(M ′) given

by sending the generator ue to the generator uϕ(e) for all e ∈ E. The split Grothendieck group of A
is isomorphic to the polynomial ring Z[t], and the functor OS categorifies the Poincaré polynomial.

See Section 5 for a more detailed treatment of this example.

Example 4.3. Given a finite set E, a natural number r, an increasing r-tuple k = (k1, . . . , kr) of

natural numbers, and an increasing r-tuple S = (S1, . . . , Sr) of subsets of E, we define a functor

ΨE,k,S :Mid(E)→ VecQ

as follows. On objects,

ΨE,k,S(M) =

Q if Si is a flat of rank ki for all i

0 otherwise.

On morphisms, ΨE,k,S(idE) : ΨE,k,S(M) → ΨE,k,S(M ′) is the identity map whenever each Si is a

flat of rank ki for both M and M ′.

Example 4.4. The functor ΨE,k,S of Example 4.3 does not naturally extend from Mid(E) to

M(E). However, the direct sum

ΨE,k :=
⊕
S

ΨE,k,S

sends each matroid M to the vector space spanned by chains of flats with ranks given by k. This

functor does extend to M(E), where for a bijection ϕ : E → E the summand ΨE,k,S(M) is sent

isomorphically to the summand ΨE,k,ϕ(S)(M).

4.2 The complex associated with a decomposition

Let P be a polyhedron in V of dimension d = d(P ). An orientation ΩP of P is an orientation

of the relative interior of P . An orientation of P induces an orientation of any facet Q of P by

contracting with an outward normal vector. Given orientations ΩP and ΩQ of P and Q, we say

that they match if the orientation of Q induced by ΩP is equal to ΩQ.

15



Let Q be a decomposition of a polyhedron P . We define an orientation Ω of Q to be an

arbitrary choice of orientation of each polyhedron in Q, along with a choice of orientation of P

itself.

Given the pair (Q,Ω), we define a chain complex (CΩ
• (Q), ∂Ω) ∈ Chb(P+

id(V)) as follows. First,

we set

CΩ
k (Q) :=

⊕
Q∈Qk

Q.

If 1 ≤ k ≤ d and R ∈ Qk−1 is a facet of Q ∈ Qk, then the (Q,R) component of the differential

∂Ω
k : CΩ

k (Q) → CΩ
k−1(Q) is given by ±ιQ,R, depending on whether or not the orientation of R

matches the orientation of Q. Similarly, for each Q ∈ Qd, the relative interior of Q is an open

submanifold of the relative interior of P , and the (P,Q) component of the differential ∂Ω
d+1 is given

by ±ιP,Q, depending on whether or not the orientation of Q agrees with the restriction of the

orientation of P . As noted in Section 3.1, if R ∈ Qk−1 and S ∈ Qk+1 for some 1 ≤ k ≤ d, then

the set X(R,S) = {Q1, Q2} has cardinality exactly two, giving two contributions to the (S,R)

component of ∂2. The normal vectors of the two inclusions R ⊂ Qi are opposite, so these two

contributions cancel each other out. This proves that ∂2 = 0.

Let CΩ
≤d(Q) be the subcomplex of CΩ

• (Q) consisting of everything in degree less than or equal

to d. There is a chain map αΩ
Q : P [−d]→ CΩ

≤d(Q) given by the first differential in CΩ
• (Q), and we

have an isomorphism

CΩ
• (Q) ∼= Cone(αΩ

Q).

If N is a decomposition of a matroid M on E, we define an orientation Ω of N to be an

orientation of the induced decomposition of base polytopes, and we define the analogous chain

complexes CΩ
≤d(N ) ⊂ CΩ

• (N ) ∈ Chb(M+
id(E)).

Example 4.5. Consider the decomposition N from Examples 1.1 and 3.6. The complex CΩ
• (N )

takes the form depicted in Figure 4. Choose an orientation of the 3-dimensional vector space

{v | χE(v) = 2} ⊂ RE . The relative interiors of P (M), P (N), and P (N ′) are all open subsets

of this vector space, so our choice of orientation induces orientations Ω(M), Ω(N), and Ω(N ′).

Choose Ω(N ′′) to be the orientation induced by realizing P (N ′′) as a facet of P (N), which is the

opposite of the orientation induced by realizing P (N ′′) as a facet of P (N ′). We have

HomM+
id(E)(M,N ⊕N ′) ∼= Q2,

and our first differential corresponds to the element (1, 1). We also have

HomM+
id(E)(N ⊕N

′, N ′′) ∼= Q2,

and our second differential corresponds to the element (1,−1). The composition is given by dot

product, and our differential squares to zero because (1, 1) is orthogonal to (1,−1).
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0 ⊕ 0

Figure 4: The complex CΩ
• (N ) arising from the decomposition of M = U2,4. This complex is

supported in degrees 1, 2, and 3.

Remark 4.6. Let Ω be an orientation of a decomposition Q of a polyhedron P , and let Ω′ be

the orientation obtained from Ω by reversing the orientation on a single face Q ∈ Q. The only

difference between CΩ
• (N ) and CΩ′

• (N ) is that the signs of the morphisms going into and out of

the summand Q are reversed. There is an isomorphism CΩ
• (N ) → CΩ′

• (N ) given by the identity

map on all faces Q′ 6= Q, and minus the identity map on Q. Thus the choice of orientation does

not affect the isomorphism class of the complex.

The following lemma is a strengthening of Remark 4.6. Not only is the isomorphism class of

the complex CΩ
• (Q) independent of Ω, but any complex that looks as if it could be isomorphic to

CΩ
• (Q) is indeed isomorphic to it. This lemma will be a key technical ingredient in Section 7.

Lemma 4.7. Fix a decomposition Q of P and an orientation Ω of Q. Let (C•, ∂) ∈ Chb(P+
id(V))

be any complex with the following properties:

• For all k, Ck =
⊕
Q∈Qk

Q = CΩ
k (Q).

• If Q ∈ Qk, R ∈ Qk−1, and R ⊂ Q, then the (Q,R) component of the differential ∂k is an

invertible multiple of ιQ,R. Otherwise, the (Q,R) component is zero.

Then there exists an isomorphism of complexes (C•, ∂) ∼= (CΩ
• (Q), ∂Ω).

Proof. Choose an element Q ∈ Qk for some k, and let (C•, ∂
′) be the complex obtained from (C•, ∂)

by multiplying all maps out of Q by an invertible scalar λ ∈ Q×, and multiplying all maps into Q by

λ−1, an operation which we call rescaling at Q by λ. There is an isomorphism (C•, ∂)→ (C•, ∂
′)

given by the identity map on all faces Q′ 6= Q and λ−1 times the identity map on Q. We will show

that (C•, ∂) can be transformed into (CΩ
• (Q), ∂Ω) by a finite sequence of rescalings. One can begin

by rescaling at all Q ∈ Qd, so that ∂d+1 = ∂Ω
d+1. We will assume inductively that ∂l = ∂Ω

l for all

l > k, and we will show that (C•, ∂) can be rescaled to a complex (C•, ∂
′) with ∂′l = ∂Ω

l for all

l ≥ k.

Given any Q ∈ Ql and R ∈ Ql−1 with R ⊂ Q, let aQ,R be the coefficient of ιQ,R in the (Q,R)

component of ∂l and let bQ,R be the coefficient of ιQ,R in the (Q,R) component of ∂Ω
l . Note that

aQ,R and bQ,R are both invertible. Now fix a specific Q ∈ Qk and R ∈ Qk−1 with R ⊂ Q. By

rescaling (C•, ∂) at R, we may assume that aQ,R = bQ,R. Let us say that an element Q′ ∈ Qk

17



with R ⊂ Q′ is sympatico if aQ′R = bQ′R. By assumption, Q is sympatico. We claim that every

Q′ ∈ Qk that contains R is sympatico. If we can show this, then we may complete the inductive

step by rescaling once at each R ∈ Qk−1.

Recall that we defined a graph ΓR with vertex set {Q′ ∈ Qk | R ⊂ Q′} and edge set

{X(R,S) | R ⊂ S ∈ Qk+1},

and Lemma 3.3 states that this graph is connected. Thus it will be sufficient to prove that, if

X(R,S) = {Q′, Q′′} is an edge of ΓR, then Q′ is sympatico if and only if Q′′ is sympatico.

Examining the (S,R) component of the composition ∂k ◦ ∂k+1 = 0, we see that

aSQ′aQR′ + aSQ′′aQ′′R = 0.

Similar reasoning for the differential ∂Ω tells us that

bSQ′bQR′ + bSQ′′bQ′′R = 0.

Since we have assumed that ∂k+1 = ∂Ω
k+1, we have bSQ′ = aSQ′ and bSQ′′ = aSQ′′ . Taking the

difference of the two equations, we find that

aSQ′(aQ′R − bQ′R) + aSQ′′(aQ′′R − bQ′′R) = 0.

Thus Q′ is sympatico if and only if Q′′ is sympatico.

4.3 Valuative functors

Let A be an Q-linear additive category. We say that a functor Φ : P+
id(V)→ A is valuative if, for

any pair (Q,Ω), the complex Φ(CΩ
• (Q)) is contractible. By Lemma 2.5, this is equivalent to the

condition that Φ(αΩ
Q) is a homotopy equivalence. We say that a functor from Pid(V), P(V), or P

to A is valuative if the induced functor from P+
id(V) to A is valuative.

Similarly, we say that Φ : M+
id(E) → A is valuative if, for any pair (N ,Ω), Φ(CΩ

• (N )) is

contractible. We say that a functor from Mid(E), M(E), or M to A is valuative if the induced

functor from M+
id(V) to A is valuative. Note that any valuative functor on P+

id(RE) restricts to

a valuative functor on M+
id(E). By Propositions 3.2 and 3.5, any valuative functor categorifies a

valuative homomorphism.

Remark 4.8. When the target category A is semisimple, Φ is valuative if and only if Φ(CΩ
• (Q)) is

exact for all (Q,Ω). In all of our examples, A will be the category of (possibly graded or bigraded)

finite dimensional Q-vector spaces, which is indeed semisimple.

Remark 4.9. A direct sum of valuative functors is valuative, and a direct summand of a valuative

functor is valuative. These statements follow from the corresponding statements about contractible

complexes.
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Let I(V) be the localizing subcategory inside Chb(P+(V)) generated by complexes of the form

CΩ
• (Q). Let V(V) be the quotient of Chb(P+

id(V)) by I(V). A functor P+
id(V) → A is valuative

if and only if it descends to a triangulated functor V(V) → Kb(A). Similarly, let I(E) be the

localizing subcategory inside Chb(M+
id(E)) generated by complexes of the form CΩ

• (N ). Let V(E)

be the quotient of Chb(M+
id(E)) by I(E). A functor M+

id(E) → A is valuative if and only if it

descends to a triangulated functor V(E)→ Kb(A).

Remark 4.10. The triangulated Grothendieck group of V(E) is a priori isomorphic to a quotient

of the valuative group Val(E) := Mat(E)/ I(E); we will prove in Section 8.5 that it is in fact

isomorphic to Val(E). The valuative group Val(E) is canonically isomorphic to the homology of

the stellahedral toric variety [EHL, Theorem 1.5], with the homological grading corresponding to the

grading of Val(E) by rank. It would be interesting to find a corresponding geometric interpretation

of the triangulated category V(E) in terms of the same toric variety.

As a basic example, consider the trivial functor τ : P → VecQ that takes all polyhedra to Q
and all morphisms to the identity map. This categorifies the homomorphism that evaluates to 1

on every polyhedron.

Proposition 4.11. The trivial functor τ is valuative.

Proof. We need to show that, for any decomposition Q of a polyhedron P in a vector space V and

any orientation Ω of Q, the complex τ(CΩ
• (Q)) is exact. Since CΩ

• (Q) is the cone of

αΩ
Q : P [−d]→ CΩ

≤d(Q),

there is a termwise-split short exact sequence of complexes

0→ CΩ
≤d(Q)→ CΩ

• (Q)→ P [−d− 1]→ 0.

Additive functors preserve cones, so we also have a short exact sequence of vector spaces

0→ τ(CΩ
≤d(Q))→ τ(CΩ

• (Q))→ Q[−d− 1]→ 0.

The boundary map in the long exact sequence in cohomology is induced by τ(αΩ
Q), which is a

general fact about cones.

The complex τ(CΩ
≤d(Q)) coincides with the cellular chain complex that computes the homology

of the one point compactification of P relative to the one point compactification of ∂P , which is 1-

dimensional and concentrated in degree d. The boundary map to degree d must be an isomorphism,

since τ(αΩ
Q) is evidently injective. Thus the homology of τ(CΩ

• (Q)) vanishes.

Remark 4.12. In Section 6.3, we will need a slight generalization of the observation that we used

at the end of the proof of Proposition 4.11. Let Q be a decomposition of a polyhedron of dimension

d, and let Ω be an orientation of Q. Let S ⊂ R ⊂ Q be subsets of Q that are closed under taking
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faces. Let

DΩ
k (R,S) :=

⊕
Q∈R\S
dimQ=k

Q,

and define a differential ∂Ω as before. For example, if R = Q and S is the set of non-internal faces,

then

DΩ
• (R,S) = CΩ

≤d(Q).

Define S ⊂ R ⊂ V by taking S to be the union of the elements of S, and R to be the union of

the elements of R. If R is bounded, then it admits the structure of a CW complex with closed

cells R, or with open cells {Q̊ | Q ∈ R}, where Q̊ denotes the relative interior of Q. In this

case, τ(DΩ
• (R,S), ∂Ω) may be identified with the cellular chain complex for the pair (R,S). More

generally, the one point compactification R̂ := Rt{?} admits the structure of a CW complex with

open cells {Q̊ | Q ∈ R} t {{?}}, and τ(DΩ
• (R,S), ∂Ω) may be identified with the cellular chain

complex for the pair (R̂, Ŝ).

5 The Orlik–Solomon functor

The purpose of this section is to prove that the Orlik–Solomon functor of Example 4.2 is valuative.

5.1 The Orlik–Solomon algebra

Let E be a finite set, and let ΛE be the exterior algebra over Q with generators {ue | e ∈ E}. Let

n be the cardinality of E, and fix an identification of E with the set {1, . . . , n}. For any subset

S = {e1, . . . , ek} ⊂ E with e1 < e2 < · · · < ek, consider the monomial uS := ue1 · · ·uek ∈ ΛE and

the element

wS :=
k∑
i=1

(−1)i−1ue1 · · · ûei · · ·uek ∈ ΛE .

A set S is called independent if it is contained in some basis and dependent otherwise. A

minimal dependent set is called a circuit. The Orlik–Solomon algebra OS(M) is defined as the

quotient of ΛE by the ideal generated by {wS | S a circuit}. We observe that changing the order

on E changes wS by a sign, therefore the Orlik–Solomon algebra does not in fact depend on the

identification of E with {1, . . . , n}. We also observe that wS divides wT whenever S ⊂ T , thus

OS(M) may also be defined as the quotient of ΛE by the ideal generated by {wS | S dependent}.
This makes it clear that the homomorphisms in Example 4.2 are well defined. Though these are

in fact algebra homomorphisms, we will only regard OS as a functor from M to the category A of

finite dimensional graded vector spaces over Q.

5.2 Degenerating

For any circuit S ⊂ E, we define the associated broken circuit S̄ to be the set obtained from S

by removing the minimal element. Consider the grading on ΛE given by setting the degree of ue
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equal to e. The grading induces an increasing filtration on OS(M) whose ith piece is equal to the

image of classes of degree ≤ i in ΛE , and the associated graded ring gr OS(M) is isomorphic to the

quotient of ΛE by the ideal generated by {uS̄ | S a circuit} [OT92, Theorem 3.43]. Note that this

filtration is functorial with respect to morphisms inMid(E) (though not for morphisms inM(E)),

so we obtain a functor gr OS: Mid(E)→ A.

Let us explicitly describe the functor gr OS on morphisms. We define

nbc(M) := {S ⊂ E | S does not contain any broken circuit}.

Then the set {uS | S ∈ nbc(M)} is a basis for gr OS(M), where deg(uS) = |S|. If ιM,M ′ is a

weak map, then every (broken) circuit for M contains a (broken) circuit for M ′, hence we have an

inclusion nbc(M ′) ⊂ nbc(M). The map gr OS(ιM,M ′) : gr OS(M) → gr OS(M ′) takes uS to uS if

S ∈ nbc(M ′) and to 0 otherwise.

Consider the functor V (−, S) : Mid(E)→ A given by putting

V (M,S) :=

Q if S ∈ nbc(M)

0 otherwise,

with the morphism ιM,M ′ sent to the identity map whenever S ∈ nbc(M ′). The previous paragraph

can be summarized by saying that there is a natural isomorphism of functors

gr OS ∼=
⊕
S⊂E

V (−, S)
(
− |S|

)
. (7)

We use round brackets to denote grading shifts, so as not to confuse with the square brackets that

we use to denote homological shifts; thus V (−, S)
(
− |S|

)
takes a matroid M with S ∈ nbc(M) to

a single copy of Q in degree |S|.

Remark 5.1. With Equation (7), we are decomposing the functor gr OS as a sum of functors that

send every matroid to either a shift of Q or to 0. For any particular M , this corresponds to a

certain basis for gr OS(M), namely the nbc basis. We employ a similar approach with the Chow

ring and augmented Chow ring in Section 8.2.

Let N be a decomposition of a matroid M on the ground set E, and let d = d(M). For any

S ∈ nbc(M), consider the quotient complex V Ω
• (N , S) of τ(CΩ

• (N )) given by putting

V Ω
k (N , S) :=

⊕
N∈Nk

S∈nbc(N)

Q.

More informally, V Ω
• (N , S) is obtained from τ(CΩ

• (N )) by killing the termwise-split subcomplex

consisting of all terms corresponding to internal faces N ∈ N for which S /∈ nbc(N). By (7) we
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have an isomorphism of complexes of graded vector spaces

gr OS(CΩ
• (N )) ∼=

⊕
S∈nbc(M)

V Ω
• (N , S)

(
− |S|

)
. (8)

Our strategy will be to prove that V Ω
• (N , S) is exact, and use this to prove Theorem 5.5.

5.3 Characterizing the nbc condition

Fix a subset S ⊂ E. For each e ∈ E, let Se := {s ∈ S | s > e}, and consider the open half-space

H+
e,S :=

{
v ∈ RE

∣∣∣ χSe∪{e}(v) > |Se|
}
.

Lemma 5.2. If M is a matroid on E, the following statements are equivalent:

(i) S ∈ nbc(M)

(ii) Se ∪ {e} is independent for all e ∈ E

(iii) P (M) ∩H+
e,S 6= ∅ for all e ∈ E

(iv) P (M) ∩
⋂
e∈E

H+
e,S 6= ∅.

Proof. The equivalence of (i) and (ii) is immediate from the definition of a broken circuit. We next

prove the equivalence of (ii) and (iii). If Se ∪ {e} is independent, then it is contained in some basis

B, and vB ∈ P (M) ∩H+
e,S . Conversely, suppose that v ∈ P (M) ∩H+

e,S . Then we have

|Se| < χSe∪{e}(v) ≤ rk
(
Se ∪ {e}

)
,

where the first inequality comes from the fact that v ∈ H+
e,S and the second comes from the fact

that v ∈ P (M). This implies that the cardinality of Se ∪{e} is equal to its rank, which means that

it is independent.

We have now established the equivalence of (i), (ii), and (iii). The fact that (iv) implies (iii) is

obvious, thus we can finish the proof by showing that (ii) implies (iv). Assume that (ii) holds, and

for each e ∈ E, choose a basis Be containing Se ∪ {e}. In addition, choose real numbers ε0, . . . , εn

with ε0 = 1, εn = 0, and εe < εe−1/
(
|Se|+ 1

)
for all e ∈ E. Let

v :=
∑
e∈E

(εe−1 − εe) vBe ∈ RE .

The sum of the coefficients appearing in the definition of v is equal to ε0 − εn = 1, thus v is in

the convex hull of {vBe | e ∈ E}, which is contained in P (M). It thus remains only to prove that

v ∈ H+
e,S for all e ∈ E. We have

χSe∪{e}(v) =
∑

f∈Se∪{e}

∑
Bg3f

(εg−1 − εg) =
∑
f∈Se

∑
Bg3f

(εg−1 − εg) +
∑
Bg3e

(εg−1 − εg). (9)
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Note that, if g ≤ f and f ∈ S, then f ∈ Sg ∪ {g} ⊂ Bg. This implies that∑
f∈Se

∑
Bg3f

(εg−1 − εg) ≥
∑
f∈Se

∑
g≤f

(εg−1 − εg) =
∑
f∈Se

(ε0 − εf ) ≥
∑
f∈Se

(ε0 − εe) = |Se|(1− εe). (10)

In addition, we have e ∈ Be, and therefore∑
Bg3e

(εg−1 − εg) ≥ εe−1 − εe > |Se|εe. (11)

Combining Equations (9), (10), and (11), we find that

χSe∪{e}(v) > |Se|(1− εe) + |Se|εe = |Se|,

and therefore v ∈ H+
e,S .

5.4 Exactness of the summands

Fix a matroid M on the ground set E, a decomposition N of M with orientation Ω, and a set

S ∈ nbc(M). We now use Lemma 5.2 to prove the following proposition.

Proposition 5.3. The complex V Ω
• (N , S) is exact.

Remark 5.4. Let fS : Mat(E)→ Z be the homomorphism characterized by putting fS(M) = 1 if

S ∈ nbc(M) and fS(M) = 0 otherwise. Lemma 5.2, combined with [AFR10, Theorem 4.2], implies

that fS is valuative. The functor V (−, S) categorifies the homomorphism fS , and Proposition 5.3

says precisely that the functor V (−, S) is valuative.

Proof of Proposition 5.3. We will proceed in the same manner as the proof of Proposition 4.11.8

As in that argument, let d = d(M), and let V Ω
≤d(N , S) be the complex obtained from V Ω

• (N , S) by

removing the term in degree d + 1. We will give a topological interpretation of this complex that

is slightly different from the interpretation in Remark 4.12.

Let

U := P̊ (M) ∩
⋂
e∈E

H+
e,S .

Since U is an intersection of convex open subsets of P (M), it is itself a convex open subset of

P (M). By Lemma 5.2, U is nonempty, therefore (Ū , ∂U) ∼= (Bd, Sd−1).

For all N ∈ N , let UN := U ∩ P̊ (N). Lemma 5.2 implies that UN 6= ∅ if and only if N is an

internal face and S ∈ nbc(N). The set U is the disjoint union of the convex open sets UN , and

adding a single 0-cell gives us a cell decomposition of the quotient Ū/∂U . The complex V Ω
≤d(N , S)

is precisely the cell complex that computes the reduced homology H̃∗(Ū , ∂U) ∼= Q[−d].

We have an exact sequence of chain complexes

0→ V Ω
≤d(N , S)→ V Ω

• (N , S)→ Q[−d− 1]→ 0.

8In the special case where M is loopless and S = ∅, Proposition 5.3 follows from Proposition 4.11.
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We have observed that V Ω
≤d(N , S) has 1-dimensional homology concentrated in degree d, while

Q[−d − 1] has 1-dimensional homology concentrated in degree d + 1. Just as in the proof of

Proposition 4.11, the boundary map in the long exact sequence in homology is an isomorphism,

which implies that the homology of V Ω
• (N , S) vanishes.

Theorem 5.5. The categorical invariant OS is valuative.

Proof. We need to show that, for any matroid M on E and any decomposition N of M with

orientation Ω, OS(CΩ
• (N )) is exact. By Equation (8) and Proposition 5.3, OS(CΩ

• (N )) admits a

filtration whose associated graded is exact. The spectral sequence of the filtered complex has E1

page equal to the homology of the associated graded and converges to the homology of the original

complex. In this case, the E1 page is zero, so the original complex must be exact, as well.

Remark 5.6. Given a tropical linear space L, there is an associated matroid decomposition N
of a matroid M ; decompositions that arise this way are called regular. When N is a regular

decomposition, the fact that OS(CΩ
• (N )) is exact can alternatively be proved as a corollary of

some known results on tropical linear spaces, as we outline below.

First, we observe that there is an inclusion reversing correspondence between Nk and the set of

codimension k bounded faces of L. The complex OS(CΩ
• (N )) can then be interpreted as a cellular

sheaf on L. If we remove the first term of this complex and take the qth homology of this complex

in graded degree q, we obtain the tropical cohomology group

Hp,q(L) = Hq

(
OSp(CΩ

≤d(N ))
)
.

We claim that this group vanishes unless q = 0, and that Hp,0(L) ∼= OSp(M); this is sufficient

to conclude that OS(CΩ
• (N )) is exact. This statement can be proved using a deletion/contraction

induction, as explained to us by Kris Shaw.

6 Maximizing a linear functional

In this section, we state and prove Theorem 6.3, which categorifies of a theorem of McMullen

[McM09, Theorem 4.6]. Theorem 6.3 is the technical heart of the paper, and will be the key

ingredient to the proof of Theorem 7.7.

6.1 The statement

Let V be a finite dimensional real vector space, and fix throughout this section a linear functional

ψ : V → R. If P ⊂ V is a polyhedron with the property that the restriction of ψ to P is bounded

above, then we define Pψ ⊂ P to be the face on which ψ obtains its maximum value. If Q is a

decomposition of P , then

Qψ := {Q ∈ Q | Q ⊂ Pψ}

is a decomposition of Pψ.
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Consider the additive functor

∆ψ : P+
id(V)→ P+

id(V)

characterized by the following properties:

• If the restriction of ψ to P is not bounded above, then ∆ψ(P ) = 0.

• If the restriction of ψ to P is bounded above, then ∆ψ(P ) = Pψ.

• If Q ⊂ P and Qψ ⊂ Pψ, then ∆ψ takes ιP,Q ∈ Hom(P,Q) to ιPψ ,Qψ ∈ Hom(Pψ, Qψ).

Remark 6.1. If Q ⊂ P and the restriction of ψ to P is bounded above but the maximum value

of ψ on P is strictly greater than the maximum value of ψ on Q, then Hom(Pψ, Qψ) = 0, so ∆ψ

necessarily takes ιP,Q ∈ Hom(P,Q) to zero.

Remark 6.2. We may think of the functor ∆ψ as projection from P+
id(V) to the full subcategory

P+
id(V)ψ, whose objects are formal sums of polyhedra on which ψ is a constant function. This

category P+
id(V)ψ splits as a direct sum of categories of polyhedra on each level set of ψ.

Let Iψ(V) ⊂ I(V) be the localizing subcategory of Chb(P+
id(V)ψ) generated by the complexes

CΩ
• (Q) for oriented decompositions Q of polyhedra P on which ψ is constant.

Theorem 6.3. Suppose that Q is a decomposition of P ⊂ V and Ω is an orientation of Q.

• If the restriction of ψ to P is not bounded above, then the complex ∆ψ(CΩ
• (Q)) is contractible.

• If the restriction of ψ to P is bounded above, the complex ∆ψ(CΩ
• (Q)) is homotopy equivalent

to a shift of C
Ωψ
• (Qψ) for some (equivalently any) orientation Ωψ of Qψ.

Thus ∆ψ sends I(V) to Iψ(V) ⊂ I(V).

Example 6.4. Consider the triangle P ⊂ R2 along with the decomposition Q shown in Figure 5

whose maximal faces are four smaller triangles. Consider the linear functional ψ = x1 + x2, which

F

A

BG

O

V1

V2

Figure 5: A polytope in R2 and its decomposition.

is maximized on P by the hypotenuse Pψ. The family Qψ = {V1, A, F,B, V2} is a decomposition

of Pψ. The complex ∆ψ(CΩ
• (Q)) decomposes as a direct sum of two pieces. The first piece is the
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contractible complex Null(G, 2), coming from the lower-left triangle and the edge G. The second

piece has the following shape (ignoring signs):

A F

F F 0.

0 Pψ B

Here the three copies of F come from applying ∆ψ to the middle triangle, its northern edge, and

its eastern edge, all of which are internal faces of Q. This complex is not minimal, as the (F, F )

component of the differential is nontrivial. However, it is homotopy equivalent to the complex

C
Ωψ
• (Qψ).

In general, the complex ∆ψ(CΩ
• (Q)) will decompose as a direct sum, with summands indexed

by the maximum values achieved by ψ on various internal faces of Q. Theorem 6.3 says that all

but one of those summands will be contractible, and the one corresponding to the maximum of ψ

on P (assuming that ψ is bounded on P ) will be homotopy equivalent to C
Ωψ
• (Qψ).

6.2 Geometry

In this section, we give the geometric constructions that we will need for the proof of Theorem 6.3.

Let Q be a decomposition of a polyhedron in V, and let F ∈ Q be any face. Informally, we define

the local fan ΣF (Q) to be the fan that one sees when one looks at Q in a small neighborhood of

a point in the relative interior of F . More precisely, for any G ∈ Q with F ⊂ G, we define the cone

σG := {λ(v − v′) | v ∈ G, v′ ∈ F, λ ∈ Q≥0},

and we put ΣF (Q) := {σG | F ⊂ G ∈ Q}. Let VF := σF , which is a linear subspace of V. The

vector space VF acts freely by translation on every cone in ΣF (Q), and we may therefore define

the cone σ̃G := σG/VF for every F ⊂ G ∈ Q and the reduced local fan

Σ̃F (Q) := {σ̃G | F ⊂ G ∈ Q},

which is a pointed fan in the vector space V/VF .

Let ψ be a nonzero linear functional on V. Let Q be a decomposition of a polyhedron P ⊂ V on

which ψ is bounded above, and let F ∈ Q be any face on which ψ is constant. Then ψ descends to

a linear functional ψ̃ on V/VF . Let HF,ψ := ψ̃−1(−1) ⊂ V/VF , let RF,ψ := HF,ψ ∩ Supp Σ̃F (Qψ),

and let

RF,ψ := {σ̃ ∩H | σ̃ ∈ Σ̃F (Q)}

be the induced decomposition of RF,ψ.
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Let BF,ψ ⊂ RF,ψ be the collection of bounded faces. Let

QF,ψ := {Q ∈ Q | Qψ = F and Q 6= F}.

We have a bijection

QF,ψ → BF,ψ
Q 7→ σ̃Q ∩HF,ψ.

(12)

This bijection takes faces of dimension k + 1 + dimF to faces of dimension k, and it restricts to a

bijection between elements of QF,ψ that lie on the boundary of P and faces of BF,ψ that lie on the

boundary of RF,ψ.

Example 6.5. Consider the decomposition shown in Figure 6, with ψ equal to the height function.

The fan Σ̃F (Q) = ΣF (Q) is complete, with one vertex, four rays, and four cones of dimension 2.

The polyhedron RF,ψ is equal to the line HF,ψ, and the decomposition RF,ψ of RF,ψ has two rays,

two vertices, and one interval. The rays are equal to σH1 ∩HF,ψ and σH3 ∩HF,ψ, the two vertices

are equal to σG2 ∩ HF,ψ and σG3 ∩ HF,ψ, and the interval is equal to σH2 ∩ HF,ψ. Thus the set

QF,ψ = {G2, G3, H2} is in canonical bijection with the bounded complex BF,ψ.

G1 H3

H1

H2

G2
G3

F

Figure 6: A decomposition Q of a quadrilateral, with some of the internal faces labeled.

We will also need a relative version of this construction. Suppose we are given F ⊂ G ∈ Q, with

F a facet of G and ψ constant on G. Let LF,G,ψ ⊂ RF,ψ be the collection of faces that are either

bounded or have recession cone equal to the ray σ̃G. Informally, these are the polyhedra that are

unbounded in at most one direction, namely that of the inward normal vector to F in G. We then

have a bijection

QG,ψ → LF,G,ψ \ BF,ψ
Q 7→ σ̃Q ∩HF,ψ.

(13)

Example 6.6. Continuing with the picture in Example 6.5, we have

QG1,ψ = {H1} and LF,G1,ψ \ BF,ψ = σH1 ∩HF,ψ.

6.3 Algebra

In this section, we prove Theorem 6.3. Let P be a polyhedron in V, let Q be a decomposition of

P , and let ψ be a linear functional on V. We may assume that ψ is nonconstant on P , as Theorem
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6.3 is trivial in this case.

Let F ∈ Q be any face on which ψ is constant, and let C(F )• := ∆ψ(CΩ
• (Q))F be the subquotient

of ∆ψ(CΩ
• (Q)) consisting of all copies of the object F (see Section 2.4). Recall that τ : P → VecQ

is the functor that takes every polyhedron to the vector space Q and every linear automorphism of

V to the identity morphism.

Lemma 6.7. If F lies on the boundary of P , then τ
(
C(F )•

)
[1 + dimF ] is homotopy equivalent to

the singular chain complex for the pair (RF,ψ, ∂RF,ψ). If F is an internal face of Q, then τ
(
C(F )•

)
is contractible.

Proof. First suppose that F lies on the boundary of P , which means that F itself does not appear

in CΩ
• (Q). Let BF,ψ ⊂ RF,ψ be the union of all of the elements of BF,ψ. Combining Remark

4.12 with the bijection (12) from Section 6.2, we may identify the complex τ
(
C(F )•

)
[1 + dimF ]

with the cellular chain complex for the pair (BF,ψ, BF,ψ ∩ ∂RF,ψ), which is homotopy equivalent to

(RF,ψ, ∂RF,ψ) by Lemma 3.4.

Now suppose that F is an internal face of Q. In this case, F does appear in CΩ
• (Q), which leads

to a small modification of the argument above. We now have a termwise-split short exact sequence

0→ Q[1]→ τ
(
C(F )•

)
[1 + dimF ]→ τ

(
C(F )>dimF

)
[1 + dimF ]→ 0. (14)

The complex τ
(
C(F )•

)
[dimF ] is isomorphic to the cone of the augmentation map

f : τ
(
C(F )>dimF

)
[1 + dimF ]→ Q,

so that Equation (14) may be identified with a shift of Equation (3).

As in the first paragraph of this proof, the quotient complex τ
(
C(F )>dimF

)
[1 + dimF ] may

be identified with the cellular chain complex for the pair (BF,ψ, BF,ψ ∩ ∂RF,ψ), which is homotopy

equivalent to (RF,ψ, ∂RF,ψ). The complex τ
(
C(F )•

)
[dimF ], being the cone of the augmentation

map, may be identified with the reduced cellular chain complex. Since F is internal, the reduced local

fan ΣF (Q) is complete, which implies that RF,ψ = HF,ψ and ∂RF,ψ = ∅. The reduced homology of

the pair (RF,ψ, ∂RF,ψ) is trivial, which implies that τ
(
C(F )•

)
[dimF ] is contractible.

Lemma 6.8. If any of the following three conditions hold, then C(F )• is contractible:

1. The restriction of ψ to P is not bounded above.

2. The restriction of ψ to P is bounded above but F is not contained in Pψ.

3. The restriction of ψ to P is bounded above and F is contained in ∂Pψ.

Proof. The complex C(F )• lives in the full subcategory of Pid(V) consisting of direct sums of copies

of F . This subcategory is equivalent via the trivial functor τ to the category of finite dimensional

Q-vector spaces, thus it is sufficient to prove that τ(C(F )•) is contractible.
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The case where F is an internal face of Q is treated in Lemma 6.7, so we may assume that F is

contained in the boundary of P . In this case, Lemma 6.7 tells us that it is sufficient to prove that

∂RF,ψ is a deformation retract of RF,ψ. If ψ is bounded below on P and achieves its minimum on

F , then RF,ψ = ∅, and we are done. Thus we may assume that ψ(F ) is neither the minimum nor

the maximum of ψ on P .

Since we know that F is contained in the boundary of P , this implies that there exists a point

v ∈ P \F with ψ(v) = ψ(F ). Choose a point v′ ∈ F , and let w be the image of v−v′ in V/VF . Then

w is contained in the recession cone of RF,ψ, and −w is not. This implies that RF,ψ is unbounded

and ∂RF,ψ is nonempty, which in turn implies that ∂RF,ψ is a deformation retract of RF,ψ.

Our next lemma addresses the one case not covered by Lemma 6.8.

Lemma 6.9. Suppose that the restriction of ψ to P is bounded above and F is an internal face of

Qψ. Then C(F )• is homotopy equivalent to F [−dimP + dimPψ − dimF ].

Proof. As in the proof of Lemma 6.8, it is sufficient to prove that τ(C(F )•) has one dimensional

homology concentrated in degree dimP − dimPψ + dimF . By Lemma 6.7, this is equivalent to

proving that the pair (RF,ψ, ∂RF,ψ) has one dimensional homology, concentrated in degree dimP −
dimPψ − 1. The polyhedron RF,ψ is isomorphic to the product of the vector space VP /VF with

the quotient polytope P/Pψ. The result then follows from the fact that P/Pψ is homeomorphic to

a closed ball of dimension dimP − dimPψ − 1.

Lemmas 6.8 and 6.9 together allow us to identify the minimal complex of C(F )• for any F ∈ Q
on which ψ is constant. The next lemma tells us how two of these minimal complexes interact.

Suppose that the restriction of ψ to P is bounded above, F and G are both internal faces of Qψ,

and F is a facet of G. Let C(F,G)• be the subquotient of ∆ψ(CΩ
• (Q)) consisting of all copies of F

and G. Note that this complex has C(F )• as a termwise-split subcomplex, and the termwise-split

quotient is isomorphic to C(G)•.

Lemma 6.10. The complex τ
(
D(F,G)•

)
is contractible.

Proof. Let LF,G,ψ be the union of the elements of LF,G,ψ. Combining Remark 4.12 with the two

bijections (12) and (13) in Section 6.2 allows us to identify τ
(
D(F,G)•

)
with a shift of the cellular

chain complex for the pair (L̂F,G,ψ, LF,G,ψ ∩ ∂RF,ψ ∪ {?}), where ? ∈ L̂F,G,ψ is the point at infinity.

Translation in the direction of the ray σ̃G ⊂ HF,ψ defines a deformation retraction from this pair

to the pair ({?}, {?}), therefore this chain complex is contractible.

We are now ready to prove Theorem 6.3.

Proof of Theorem 6.3. Let D• be a minimal complex for ∆ψ(CΩ
• (Q)). By Lemmas 6.8 and 6.9 and

the discussion in Section 2.4, D• has either one or zero copies of each face F ∈ Q, depending on

whether or not F is an internal face of Qψ, in which case that copy appears in degree dimF +

dimP − dimPψ. Thus D• = 0 if the restriction of ψ to P is not bounded above, and otherwise

D•[dimP − dimPψ] ∼= C
Ωψ
• (Qψ)
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as graded objects of Pid(V) for some (equivalently any) orientation Ωψ of Qψ. Given a pair F ⊂ G
of internal faces of Qψ with F a facet of G, Lemma 6.10 implies that the corresponding component

of the differential in D• is equal to an invertible multiple of ιG,F . By Proposition 4.7, this implies

that D•[dimP − dimPψ] is isomorphic to C
Ωψ
• (Qψ) as a complex.

7 Convolution

The main results of this section are Theorem 7.3 and Corollary 7.7, which categorify [AS22, The-

orems A and C]. In particular, Theorem 7.7 will provide a valuable tool for constructing new

valuative categorical invariants of matroids.

7.1 A product and coproduct for matroids

Consider a finite set E = E1tE2. Let M1 be a matroid E1 and M2 a matroid on E2. As in Section

3.3, we write M1 tM2 to denote the direct sum of M1 and M2, which is a matroid on E1 tE2. We

write Mid(E)t to denote the full subcategory of Mid(E) whose objects are matroids of the form

M1 tM2.

In this section, we will define functors

m :M+
id(E1) �M+

id(E2)→M+
id(E) and ∆ :M+

id(E)→M+
id(E1) �M+

id(E2).

The product functor m is characterized by putting m(M1 �M2) := M1 tM2 and

m(ιM1,M ′1
� ιM2,M ′2

) = ιM1tM2,M ′1tM ′2 .

We observe that m is a fully faithful embedding, with essential image M+
id(E)t. In particular, we

may write m−1 for the inverse functor from the essential image. For example, we have

m−1(M1 tM2) = M1 �M2 ∈M+
id(E1) �M+

id(E2).

Given a matroid M on E, the localization ME1 is defined to be the matroid on E1 obtained by

deleting E2, and the contraction ME1 is defined to be the matroid on E2 obtained by contracting

a basis for ME1 and deleting the remaining elements of E1. We also define

M(E1, E2) := ME1 tME1 , (15)

which is again a matroid on E. Given an arbitrary basis B for M , we have |B ∩ E1| ≤ rkM (E1).

The bases for M(E1, E2) are precisely those bases B for M such that |B ∩ E1| = rkM (E1). If

M = M1 tM2, then M(E1, E2) = M , thus the operation M 7→M(E1, E2) is idempotent.

Of crucial importance is the following connection between the operation M 7→ M(E1, E2) and

the maximization of a linear functional on base polytopes. Recall that we have a linear functional

χE1 : RE → R that takes the sum of the E1 coordinates.
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Lemma 7.1. For any matroid M on the set E, we have

P (M)χE1
= P (M(E1, E2)) = P (ME1)× P (ME1). (16)

Proof. If B ⊂ E is a basis for M , then χE1(vB) = |B ∩E1|, thus vB ∈ P (M)ψ if and only if B is a

basis for M(E1, E2).

Using Lemma 7.1, we may define a functor

∆t := ∆χE1
:M+

id(E)→M+
id(E)t.

We then use this to define the coproduct functor

∆ := m−1 ◦∆t :M+
id(E)→M+

id(E1) �M+
id(E2).

In concrete terms, we have ∆(M) = ME1 �ME1 and

∆(ιM,M ′) =

ιME1 ,(M ′)E1 � ιME1
,M ′E1

if rkM (E1) = rkM ′(E1)

0 otherwise.

Remark 7.2. The product functor m : M+
id(E1) �M+

id(E2) → M+
id(E) is induced by a functor

Mid(E1)×Mid(E2)→Mid(E), but the coproduct functor ∆ :M+
id(E)→M+

id(E1) �M+
id(E2) is

not induced by any functorMid(E)→Mid(E1)×Mid(E2). This is because the coproduct functor

sends some morphisms to zero.

Let M = M1 tM2. If N1 is a decomposition of M1 and N2 is a decomposition of M2, then

N1 tN2 := {N1 tN2 | N1 ∈ N1 and N2 ∈ N2}

is a decomposition of M . Furthermore, every decomposition of M is of this form [LdMRS20,

Corollary 4.8].

7.2 Categorical Hopf ideals

The purpose of this section is to prove that the product and coproduct functors interact nicely with

the localizing subcategories I(E) ⊂ Chb(M+
id(E)) defined in Section 4.3. The following theorem,

which categorifies [AS22, Theorem A], says that these subcategories satisfy a condition analogous

to that of a Hopf ideal in a Hopf monoid.

Theorem 7.3. We have the following inclusions of subcategories:

m
(
I(E1) �M+

id(E2)
)
⊂ I(E), m

(
M+

id(E1) � I(E2)
)
⊂ I(E) (17)
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and

∆
(
I(E)

)
⊂
〈
I(E1) �M+

id(E2),M+
id(E1) � I(E2)

〉
. (18)

There are three localizing subcategories of Chb(M+
id(E)) at play here. The first is I(E). The

second, which we will call I(E)t, is generated by those complexes of the form CΩ
• (N1 tN2), where

N1 is a decomposition of a matroid on E1 and N2 is a decomposition of a matroid on E2. Finally,

we will need to consider the localizing subcategory

I(E1, E2) :=
〈
m(I(E1) �M+

id(E2)),m(M+
id(E1) � I(E2))

〉
.

This is the localizing subcategory generated by those complexes of the form CΩ
• (N1 t N2), where

either N1 is the trivial decomposition of a matroid on E1 or N2 is the trivial decomposition of a

matroid on E2. We clearly have

I(E1, E2) ⊂ I(E)t ⊂ I(E),

which in particular implies Equation (17).

Lemma 7.4. We have ∆t(I(E)) ⊂ I(E)t.

Proof. Theorem 6.3 and Lemma 7.1 together imply that, for any matroid M on E with decom-

position N and orientation Ω, the complex ∆t(CΩ
• (N )) is either homotopy equivalent to zero or

homotopy equivalent to a shift of the complex CΩ′
• (N ′), where N ′ is a decomposition of M(E1, E2).

As we noted at the end of Section 7.1, N ′ is necessarily equal to N1 tN2 for some decompositions

N1 of ME1 and N2 of ME1 [LdMRS20, Corollary 4.8].

Lemma 7.5. We have I(E1, E2) = I(E)t.

Proof. Let N = N1tN2 be a decomposition of M = M1tM2, and let Ω be an orientation of N . We

need to show that CΩ
• (N ) ∈ I(E1, E2). Because the isomorphism class of CΩ

• (N ) is independent of

the choice of orientation, we may assume that Ω is induced from an orientation Ω1 of N1 and an

orientation Ω2 of N2.

Let di = d(Mi) and Ci := CΩi
≤di(Ni). Then

CΩ
≤d1+d2

(N ) = m(C1 � C2). (19)

The complex CΩ
• (N ) = Cone(αN ) is obtained from the complex of (19) by adding one new summand

M1 tM2 in degree d1 + d2 + 1.
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Let D• := CΩ1
• (N1) � CΩ2

• (N2) ∈ Chb(M+
id(E1) �M+

id(E2)). Explicitly, we have

D• =



M1[−d1 − 1] �M2[−d2 − 1]

⊕
M1[−d1 − 1] � C2

⊕
C1 �M2[−d2 − 1]

⊕
C1 � C2

,


0 0 0 0

± idM1 �αN2 ± id�∂ 0 0

αN1 � idM2 0 ∂ � id 0

0 αN1 � id ∓ id�αN2 ∂ � ∂




.

We represent D• by the following schematic diagram (with signs suppressed):

D• =


M1 tM2 M1 t C2

C1 tM2 C1 t C2

idtαN2

αN1
t id αN1

t id

idtαN2

 .

We next construct a chain map

β : Null(M1 tM2, d1 + d2 + 1)→ m(D•).

As objects, we have

Null(M1 tM2, d1 + d2 + 1) = (M1 tM2)[−d1 − d2 − 1]⊕ (M1 tM2)[−d1 − d2]

and

m(D•) = (M1 tM2)[−d1 − d2 − 2]⊕m(M1 � C2)[−d1 − 1]⊕m(C1 �M2)[−d2 − 1]⊕m(C1 � C2)

= (M1 tM2)[−d1 − d2 − 2]⊕m(M1 � C2)[−d1 − 1]⊕m(C1 �M2)[−d2 − 1]⊕ CΩ
≤d1+d2

(N ).

With respect to these decompositions, we encode β as the following matrix:

β =


0 0

0 0

m(αN1 � idM2) 0

0 αN

 .

Here the two nontrivial pieces of β go from the first summand of Null(M1 tM2, d1 + d2 + 1) to the

third summand of m(D•) and from the second summand of Null(M1tM2, d1 +d2 +1) to the fourth

summand of m(D•). We define B• := Cone(β), which we represent by the following schematic
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diagram (again with signs suppressed):

B• =



M1 tM2

M1 tM2 M1 tM2

M1 t C2

C1 tM2 C1 t C2

idtαN2

αN1
t id αN1

t id

idtαN2

id

αN1
t id αN


.

We observe that B• is a convolution with six parts, three of which are shifts of M1 tM2. The

leftmost terms live in homological degree d1+d2+2, and the other copy of M1tM2 is in homological

degree d1 + d2 + 1. The remaining terms are complexes that begin in the homological degree

indicated in the diagram. The terms appearing in red make up the termwise-split quotient complex

Null(M1 tM2, d1 + d2 + 1)[1].

Let us draw B• again, regrouping the six parts into three groups of two which we emphasize

with color:

B• =


M1 tM2

M1 tM2 M1 tM2

M1 t C2

C1 tM2 C1 t C2

 . (20)

The red terms M1 tM2 → C1 t C2 form a termwise-split subcomplex isomorphic to C•(N ). The

green terms M1 t M2 → C1 t M2 form a termwise-split subquotient complex isomorphic to a

shift of m(C•(N1) �M2). The blue terms M1 tM2 → M1 t C2 form a termwise-split quotient

complex isomorphic to a shift of m(M1 � C•(N2)). This demonstrates that the complex B• may

be constructed as a convolution with three parts as just described.

Now we conclude. The complex m(D•) clearly lives in I(E1, E2). So does the contractible

complex Null(M1 tM2, d1 + d2 + 1). By Lemma 2.9, B• = Cone(β) is also in I(E1, E2). Two of

the three parts in a convolution describing B• are m(C•(N1) �M2) and m(M1 �C•(N2)), both of

which live in I(E1, E2). Applying Lemma 2.9 again, the remaining part of this convolution also

lies in I(E1, E2). This remaining part is CΩ
• (N ), which completes the proof.

Proof of Theorem 7.3. We have already established Equation (17). Since m is an equivalence from

M+
id(E1)�M+

id(E2) toM+
id(E)t and ∆ = m−1 ◦∆t, Equation (18) is equivalent to the statement

that we have ∆t(I(E)) ⊂ I(E1, E2). This follows from Lemmas 7.4 and 7.5.
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7.3 Convolution of valuative functors

Suppose that A is a monoidal additive category, and let ⊗ denote the tensor product in A.

The example to have in mind is the category of finite dimensional graded vector spaces. Let

Φ: M+
id(E1)→ A and Ψ: M+

id(E2)→ A be additive functors. We define the additive functor

Φ � Ψ: M+
id(E1) �M+

id(E2)→ A

by putting

Φ � Ψ(M1 �M2) = Φ(M1)⊗ Φ(M2) and Φ � Ψ(f � g) = Φ(f)⊗Ψ(g).

We then define the convolution

Φ ∗Ψ := (Φ � Ψ) ◦∆: M+
id(E)→ A.

In particular, we have Φ ∗Ψ(M) = Φ(ME1)⊗Ψ(ME1) for any matroid M on E.

Remark 7.6. If Φ and Ψ categorify matroid invariants f and g, then the convolution Φ ∗ Ψ

categorifies the convolution f ∗ g as defined in [AS22, Definition 6.2]. There is no relationship

between this use of the word convolution and the notion of convolution of complexes discussed in

Section 2.2.

Theorem 7.3 has the following corollary.

Corollary 7.7. If Φ and Ψ are valuative, then so is Φ ∗Ψ.

Proof. Theorem 7.3 tells us that ∆ takes I(E) to
〈
I(E1) �M+

id(E2),M+
id(E1) � I(E2)

〉
. Since Φ

and Ψ are both valuative, Φ kills I(E1) and Ψ kills I(E2). Therefore Φ ∗Ψ kills I(E).

8 Examples of valuative categorical invariants

In this section, we use Corollary 7.7 to derive new examples of valuative categorical invariants of

matroids.

8.1 Whitney functors

We begin with a simple lemma. Let Φ :Mid(E)→ A be a valuative functor, and let k be a natural

number. Define a new functor [Φ]k : Mid(E) → A by putting [Φ]k(M) = Φ(M) if rkM = k

and 0 otherwise. Since all morphisms in Mid(E) relate matroids of the same rank, Φ is naturally

isomorphic to the direct sum over all k of [Φ]k. This immediately implies the following result.

Lemma 8.1. If Φ is valuative, then so is [Φ]k.
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Fix a natural number r and an increasing r-tuple of natural numbers k = (k1, . . . , kr). For any

matroid M , let

Lk(M) := {(F1, . . . , Fr) | Fi is a flat of rank ki and F1 ⊂ · · · ⊂ Fr}.

We define the Whitney functor

Φk :M→ VecQ

on objects by taking Φk(M) to be a vector space with basis Lk(M). If ϕ : (E,M)→ (E′,M ′) is a

morphism and (F1, . . . , Fr) ∈ Lk(M), then we define

Φk(ϕ)(F1, . . . , Fr) =


(
ϕ(F1), . . . , ϕ(Fr)

)
if rkM ′(ϕ(Fi)) = ki for all i

0 otherwise.

The main result of this section is that the functor Φk is valuative.

Proposition 8.2. For any r and k, the functor Φk is valuative.

To prove Proposition 8.2, we first consider the related functors introduced in Example 4.3.

Lemma 8.3. The functor ΨE,k,S from Example 4.3 is valuative.

Proof. We proceed by induction on r. The base case r = 0 is Proposition 4.11. For the inductive

step, let r ≥ 1 be given and assume that the lemma holds for r − 1. Fix a set E, an increasing

r-tuple k = (k1, . . . , kr) of natural numbers, and an increasing r-tuple S = (S1, . . . , Sr) of subsets

of E. By our inductive hypothesis, the functor

ΨSr,(k1,...,kr−1),(S1,...,Sr−1) :Mid(Sr)→ VecQ

is valuative. By Lemma 8.1, so is the functor

[
ΨSr,(k1,...,kr−1),(S1,...,Sr−1)

]
kr

:Mid(Sr)→ VecQ .

By Theorem 5.5, the functor OS0 : Mid(E \ Sr) → VecQ is valuative. Note that the degree zero

part of the Orlik–Solomon algebra of a matroid is equal to Q if that matroid is loopless and to 0

otherwise, thus for any matroid M on E, OS0(MSr) is equal to Q if Sr is a flat and 0 otherwise. It

follows that

ΨE,k,S =
[
ΨSr,(k1,...,kr−1),(S1,...,Sr−1)

]
kr
∗OS0,

and therefore ΨE,k,S is valuative by Corollary 7.7.

Proof of Proposition 8.2. We need to show that, for any decomposition N of a matroid M on the

ground set E, and any orientation Ω of N , the complex Φk(CΩ
• (N )) is exact.

For any matroid N , define a filtration on Φk(N) by taking the ith filtered piece to be spanned

by those tuples (F1, . . . , Fr) ∈ Lk(N) such that |F1| + · · · + |Fr| ≥ i. The linear map of vector
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spaces induced by a weak map ιN,N ′ : N → N ′ takes the ith filtered piece of Φk(N) to the ith

filtered piece of Φk(N ′), hence we obtain a filtered complex Φk(CΩ
• (N )). The associated graded of

this complex is isomorphic to the complex

ΨE,k(CΩ
• (N )) =

⊕
S

ΨE,k,S(CΩ
• (N )),

where the sum is over all increasing r-tuples S = (S1, . . . , Sr) of subsets of E. By Lemma 8.3,

this associated graded complex is exact. By considering the spectral sequence associated with

the filtered complex (as in the proof of Theorem 5.5), we may conclude that the filtered complex

Φk(CΩ
• (N )) is exact, as well.

8.2 Chow functors

Let M be a matroid on the ground set E. The augmented Chow ring CH(M) is defined as the

quotient of the polynomial ring

Q[xF | F a flat]⊗Q[ye | e ∈ E]

by the ideal〈∑
F

xF

〉
+

〈
ye −

∑
e/∈F

xF

∣∣∣ e ∈ E〉+
〈
yexF

∣∣∣ e /∈ F〉+
〈
xFxG

∣∣∣ F,G incomparable
〉
.

If M has no loops, the Chow ring CH(M) is defined as the quotient of CH(M) by the ideal

generated by {ye | e ∈ E}. If M has loops, then CH(M) is by definition 0.

We would like to promote these rings to categorical invariants. Our first tool will be the following

theorem of Feichtner and Yusvinsky [FY04, Corollary 1].

Theorem 8.4. If M has no loops, then CH(M) has a basis consisting of monomials of the form

xm1
F1
· · ·xmrFr , where r ∈ N, ∅ = F0 ( F1 ( · · · ( Fr, and 0 < mi < rkFi − rkFi−1 for all

i ∈ {1, . . . , r}.

For any positive integer k, consider the graded vector space

Qk := Q(−1)⊕ · · · ⊕Q(1− k)

of total dimension k − 1, with a piece in every positive degree less than k. Theorem 8.4 has the

following corollary.

Corollary 8.5. If M has no loops, then there is a canonical isomorphism of graded vector spaces

CH(M) ∼=
⊕
r≥0

⊕
k=(k1,...,kr)
0<k1<···<kr

Φk(M)⊗Qk1 ⊗Qk2−k1 ⊗ · · · ⊗Qkr−kr−1 .
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Based on Corollary 8.5, we define a functor CH from M to the category of finite dimensional

graded vector spaces over Q by setting

CH :=
⊕
r≥0

⊕
k=(k1,...,kr)
0<k1<···<kr

Φk ⊗Qk1 ⊗Qk2−k1 ⊗ · · · ⊗Qkr−kr−1

on the full subcategory spanned by matroids without loops, and CH = 0 on the full subcategory

spanned by matroids with loops. We observe that there are no morphisms in M from a matroid

with loops to a matroid without loops, so these conditions uniquely characterize a well-defined

functor CH.

Corollary 8.6. The categorical invariant CH is valuative.

Proof. Corollary 8.5 tells us that CH is a direct sum of shifts of functors of the form Φk, which is

valuative by Proposition 8.2.

Our next task is to construct an analogous basis for the augmented Chow ring CH(M). Given

a flat F of M , choose any maximal independent set I ⊂ F , and let yF :=
∏
e∈I ye ∈ CH(M). The

element yF does not depend on the choice of I [BHM+22, Lemma 2.11(2)].

Proposition 8.7. For any matroid M , the augmented Chow ring CH(M) has a basis consisting

of monomials of the form yF0x
m1
F1
· · ·xmrFr , where r ∈ N, F0 ( F1 ( · · · ( Fr, and 0 < mi <

rkFi − rkFi−1 for all i ∈ {1, . . . , r}.

Proof. Let m ⊂ CH(M) be the ideal generated by {ye | e ∈ E}. The argument in the proof of

[BHM+, Proposition 1.8] shows that we have an isomorphism

gr CH(M) :=
⊕
p≥0

mp CH(M)

mp+1 CH(M)
∼=
⊕
F

CH(MF )(− rkF ), (21)

where CH(MF )(− rkF ) embeds into gr CH(M) by sending a polynomial η in {xG | F ⊂ G ⊂ E}
to the polynomial yF η. We may therefore use the basis for each CH(MF ) from Theorem 8.4 to

construct a basis for gr CH(M), and this lifts to a basis for CH(M).

Remark 8.8. The decategorified version of Equation (21), which says that

HM (t) =
∑
F

trkFHMF
(t),

appears in [FMSV, Theorems 1.3, 1.4, and 1.5].

Proposition 8.7 has the following corollary.

Corollary 8.9. There is a canonical isomorphism of graded vector spaces

CH(M) ∼=
⊕
r≥0

⊕
k=(k0,k1,...,kr)
k0<k1<···<kr

Φk(M)⊗Qk1−k0 ⊗Qk2−k1 ⊗ · · · ⊗Qkr−kr−1(−k0).
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Motivated by Corollary 8.9, we define a functor CH fromM to the category of finite dimensional

graded vector spaces over Q by putting

CH :=
⊕
r≥0

⊕
k=(k0,k1,...,kr)
k0<k1<···<kr

Φk(M)⊗Qk1−k0 ⊗Qk2−k1 ⊗ · · · ⊗Qkr−kr−1(−k0).

Corollary 8.6 has the following augmented analogue.

Corollary 8.10. The categorical invariant CH is valuative.

Remark 8.11. Corollaries 8.6 and 8.10 categorify [FS, Theorem 8.14] and [FMSV, Theorem 1.11],

which say that the Chow polynomial HM (t) and the augmented Chow polynomial HM (t) are

valuative invariants.

8.3 Kazhdan–Lusztig functors

Given positive integers j and r along with a subset R ⊂ [r], let

sj(R) := min
(
Z≥j \R

)
∈ {1, . . . , r + 1}.

The following theorem is proved in [PXY18, Theorems 6.1].

Theorem 8.12. Let M be a loopless matroid of rank k on the ground set E. The Kazhdan–Lusztig

polynomial PM (t) is equal to

1 +
∑
i≥0

i∑
r=1

ti
∑
R⊂[r]

(−1)|R|
∑

a0<a1<···<ar<ar+1
a0=0
ar=i

ar+1=k−i

dim Φk(M),

where k = (k1, . . . , kr) and kj = k − asr+1−j(R) − ar−j.

Remark 8.13. The polynomial PM (t) is equal to zero for any matroid with loops, thus Theorem

8.12 provides a full description of the Kazhdan–Lusztig polynomials of all matroids.

Based on Theorem 8.12, we define a functor KL from M to the category of finite dimensional

bigraded vector spaces over Q as follows. On the full subcategory of M consisting of loopless

matroids of rank k, we define the functor

KL := τ ⊕
⊕

1≤r≤i

⊕
R⊂[r]

⊕
a0<a1<···<ar<ar+1

a0=0
ar=i

ar+1=k−i

Φk(−i,−|R|),

where k = (k1, . . . , kr) and kj = k− asr+1−j(R)− ar−j . Here the notation means that the summand

Φk appears in bidegree (i, |R|). We define KL = 0 on the full subcategory of M consisting of
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matroids with loops. By definition, the functor KL categorifies the matroid invariant

P̃M (t, u) :=
∑
i,j

dim KLi,j(M) tiuj ,

and Theorem 8.12 and Remark 8.13 imply that P̃M (t,−1) is equal to the Kazhdan–Lusztig poly-

nomial PM (t). The following result follows immediately from Propositions 4.11 and 8.2.

Corollary 8.14. The categorical invariant KL is valuative.

The Z-polynomial relates to the Kazhdan–Lusztig polynomial in the same way that the aug-

mented Chow polynomial relates to the Chow polynomial. That is, we have

ZM (t) :=
∑
F

trkFPMF
(t) =

∑
S⊂E

trkSPMS
(t), (22)

where the second equality comes from the fact that, whenever S is not a flat, MS has a loop, and

therefore PMS
(t) = 0. We therefore define the functor

Σ :=
⊕
k≥0

⊕
S⊂E

(
[τ ]k ∗KL

)
(−k, 0),

where the summand indexed by S is understood to be the convolution of the functor [τ ]k on

Mid(S) with the functor KL on Mid(E \ S). Each summand of this functor is defined only on the

categoryMid(E), but the direct sum extends to the entire categoryM. By definition, the functor

Σ categorifies the polynomial

Z̃M (t, u) :=
∑
i,j

dim Σi,j(M) tiuj ,

and Equation (22) implies that Z̃M (t,−1) = ZM (t). We obtain the following corollary from Propo-

sition 4.11, Corollary 7.7, Lemma 8.1, and Corollary 8.14.

Corollary 8.15. The categorical invariant Σ is valuative.

Remark 8.16. Corollaries 8.14 and 8.15 categorify [AS22, Theorem 8.9] and [FS, Theorem 9.3],

which say that the Kazhdan–Lusztig polynomial PM (t) and the Z-polynomial ZM (t) are valuative

invariants.

Remark 8.17. In light of our definition of the functor Σ, one might ask if we should have defined

the functor CH in an analogous way. More precisely, consider the functor

Θ :=
⊕
k≥0

⊕
S⊂E

(
[τ ]k ∗ CH

)
(−k).

As in the definition of Σ, each summand is defined only on the category Mid(E), but the direct

sum extends to the entire categoryM. By Remark 8.8 and the fact that CH vanishes on matroids
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with loops, Θ categorifies the augmented Chow polynomial HM (t). Moreover, a slight modification

of Proposition 8.7 implies that Θ(M) is canonically isomorphic to CH(M) for any matroid M . In

addition, Proposition 4.11, Corollary 7.7, Lemma 8.1, and Corollary 8.6 imply that Θ is valuative.

However, Θ is not naturally isomorphic to the functor CH because it behaves differently on weak

maps that are not isomorphisms. For example, the degree zero part of Θ is isomorphic to Ψ(0),

whereas the degree zero part of CH is isomorphic to Φ(0). That is, if ϕ : M → M ′ is a morphism

in M and M ′ has strictly more loops than M , then CH(ϕ) will be an isomorphism but Θ(ϕ) will

be zero. In particular, Corollary 8.19 (which will be stated and proved in the next section) would

fail for the functor Θ. This is why we regard the functor CH as a “better” categorification of the

augmented Chow polynomial than the functor Θ.

Similarly, the functor Σ is not the only valuative categorical invariant that categorifies the Z-

polynomial. However, since there is no analogue of Corollary 8.19 for the Z-polynomial, we know

of no reason to regard one categorification as better than another. See Remark 8.21 for more on

this topic.

8.4 Monotonicity

If ϕ : M → M ′ is a morphism in M, it is clear from the definition of the functor OS that the

ring homomorphism OS(ϕ) : OS(M) → OS(M ′) is surjective, and therefore that the polynomial

πM (t)−πM ′(t) has non-negative coefficients. We express this statement by saying that the Poincaré

polynomial is monotonic with respect to weak maps. The aim of this section is to prove a similar

result for the Chow and augmented Chow polynomials, and to discuss the possibility of extending

it to the Kazhdan–Lusztig and Z-polynomials.

Fix a natural number r and an increasing r-tuple of natural numbers k = (k1, . . . , kr). The

following result is equivalent to a statement conjectured in [FMSV, Conjecture 3.38].

Proposition 8.18. For any morphism ϕ : M →M ′ in M, the linear map

Φk(ϕ) : Φk(M)→ Φk(M ′)

is surjective.9

Proof. We may use ϕ to identify the ground sets of M and M ′, and thus reduce to the case of a

morphism ιM,M ′ : M → M ′ in Mid(E). Suppose we are given (F ′1, . . . , F
′
r) ∈ Lk(M ′). We need to

find (F1, . . . , Fr) ∈ Lk(M) such that Fi = F ′i for all 1 ≤ i ≤ r.
We proceed by induction on r. When r = 0, there is nothing to prove. The r = 1 case is

proved in [Luc75, Proposition 5.12]. For the inductive step, we may assume that we have flats

F2 ⊂ · · · ⊂ Fr with rkM (Fi) = ki and Fi = F ′i for all 2 ≤ i ≤ r.
Since F2 = F ′2, we have

rkM ′(F2) = rkM ′(F
′
2) = k2 = rkM (F2),

9We thank George Nasr for his help with this result.
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thus we have a morphism MF2 → (M ′)F2 in Mid(F2), and F ′1 ∩ F2 is a flat of rank k1 in (M ′)F2 .

We may therefore apply [Luc75, Proposition 5.12] again to find a flat F1 of MF2 of rank k1 whose

closure in (M ′)F2 is equal to F ′1 ∩ F2.

We claim that the closure of F1 in M ′ is equal to F ′1. Indeed, the rank of F1 in M ′ is the same as

its rank in (M ′)F2 , which is equal to k1, thus its closure is a flat of rank k1. Since F1 ⊂ F ′1∩F2 ⊂ F ′1,

the closure is contained in F ′1, and must be equal by comparison of the ranks.

As a consequence, we obtain a strengthening of the numerical monotonicity result in [FMSV,

Theorem 1.13].

Corollary 8.19. For any morphism ϕ : M →M ′ in M, the linear maps

CH(ϕ) : CH(M)→ CH(M ′) and CH(ϕ) : CH(M)→ CH(M ′)

are both surjective. In particular, the polynomials

HM (t)−HM ′(t) and HM (t)−HM ′(t)

have non-negative coefficients.

Proof. The maps CH(ϕ) and CH(ϕ) are surjective by Proposition 8.18 and the definitions of CH

and CH as direct sums of shifts of functors of the form Φk.

The Kazhdan–Lusztig polynomial and Z-polynomial are conjectured to have the same mono-

tonicity property as the Chow polynomial and augmented Chow polynomial. The following con-

jecture was first formulated by Nasr, generalizing an unpublished conjecture of Gedeon in the case

where M is uniform.

Conjecture 8.20. For any morphism ϕ : M →M ′ in M, the polynomials

PM (t)− PM ′(t) and ZM (t)− ZM ′(t)

have non-negative coefficients.

Remark 8.21. There exist graded vector subspaces IH(M) ⊂ CH(M) and IH(M)∅ ⊂ CH(M) with

Poincaré polynomials ZM (t) and PM (t), respectively [BHM+, Theorem 1.9]. It would be interesting

to define functors to the abelian category of finite dimensional graded vector spaces over Q taking a

matroid M to IH(M) and IH(M)∅, and then to strengthen Conjecture 8.20 along the same lines as

Conjecture 8.19 by conjecturing that the linear maps induced by a morphism in M are surjective.

Unfortunately, we do not currently know how to define these functors on morphisms that are not

isomorphisms (other than by defining all such maps to be zero, which would be neither valuative

nor surjective). This is why we work instead with the functors KL and Σ to the category of bigraded

vector spaces.
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8.5 The Grothendieck group of the valuative category

We observed in Remark 4.10 that the Grothendieck group of the valuative category V(E) is

a priori isomorphic to a quotient of the valuative group V (E). The subtlety here is that lo-

calizing subcategories are by definition closed under passing to direct summands, which means

that the Grothendieck classes of objects of I(E) could in theory include elements of the group

M(E) ∼= K(Chb(M+
id(E))) that do not lie in the subgroup I(E). In this section, we prove that the

Grothendieck group of V(E) is in fact isomorphic to V (E); we thank Matt Larson for outlining

this argument.

Consider an increasing r-tuple k = (k1, . . . , kr) of natural numbers and an increasing r-tuple

S = (S1, . . . , Sr) of subsets of E. The functor ΨE,k,S : Mid(E) → VecQ was defined in Example

4.3 and proved to be valuative in Lemma 8.3. In the proof of Proposition 8.2, we fixed k and

considered the direct sum of these functors over all possible S. In this section, we do the opposite:

we fix S, and define ΨE,S :Mid(E)→ VecQ by putting

ΨE,S(M) :=
⊕
k

ΨE,k,S(M).

Concretely, ΨE,S(M) is equal to Q if Sj is a flat (of any rank) for all j, and zero otherwise.

Now fix a subset I ⊂ S1 of cardinality k. Let S \ I := (S1 \ I, . . . , Sr \ I), which we regard as

an increasing chain of subsets of E \ I. We will be interested in the functor

ΨE\I,S\I :Mid(E \ I)→ VecQ .

We will also consider the functor [τ ]k :Mid(I) → VecQ, which takes the Boolean matroid on I to

Q, and all other matroids on I to zero. Convolving them, we obtain a new functor

ΨI≤S := [τk] ∗ΨE\I,S\I :Mid(E)→ VecQ .

On the level of objects, ΨI≤S(M) is equal to Q if I is independent in M and Sj \ I is a flat of the

contraction MI for all j, or equivalently if I is independent in M and Sj is a flat of M for all j.

Otherwise, ΨI≤S(M) = 0.

Lemma 8.22. The functor ΨI≤S is valuative.

Proof. Valuativity of the first convolution factor follows from Proposition 4.11 and Lemma 8.1,

while valuativity of the second convolution factor follows from Lemma 8.3. The result then follows

from Corollary 7.7.

The stellahedral fan [EHL, Definition 3.2] ΣE is a complete unimodular fan in RE with cones

σI≤S indexed by chains

∅ ⊆ I ⊆ S1 ( S1 ( · · · ( Sr ( E.

Note that we are allowed to have r = 0, in which case I is allowed to coincide with E. Explicitly,
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we have

σI≤S := R≥0{ve | e ∈ I}+ R≥0{−vE\Sj | 1 ≤ j ≤ r}.

For any matroid M on E, the augmented Bergman fan [BHM+22, Definition 2.4] ΣM is defined

to be the subfan of ΣE consisting of those σI≤S for which I is independent and Sj is a flat for all

j. Note that the stellahedral fan is equal to the augmented Bergman fan of the Boolean matroid.

Let ZΣE be the vector space with basis {wσ | σ ∈ ΣE}. The following theorem follows immedi-

ately from [EHL, Theorems 1.5 and 5.6].

Theorem 8.23. The homomorphism M(E) → ZΣE taking M to
∑

σ∈ΣM
wσ has kernel equal to

I(E), and therefore descends to an embedding of Val(E) into ZΣE .

We are now ready to prove our proposition.

Proposition 8.24. The Grothendieck group of the valuative category V(E) is isomorphic to the

valuative group Val(E).

Proof. We have already noted that there is a canonical surjection Val(E) → K(V(E)) taking the

class of a matroid M to the Grothendieck class of the object M of V(E). We will now prove that

this is an isomorphism by constructing its inverse.

Let VecΣE
Q be the category of finite dimensional Q-vector spaces equipped with a direct sum

decomposition indexed by cones σ ∈ ΣE , with morphisms given by linear maps that are compatible

with these decompositions. Consider the functor Ψ :Mid(E)→ VecΣE
Q obtained as the direct sum

of the functors ΨI≤S. Lemma 8.22 immediately implies that Ψ is valuative, thus Ψ descends to the

valuative category V(E), and therefore the induced homomorphism

M(E) ∼= K(Mid(E))→ K(VecΣE
Q ) ∼= ZΣE

descends to K(V(E)). This is precisely the homomorphism from Theorem 8.23, whose image is iso-

morphic to Val(E). The induced homomorphism from K(V(E)) to Val(E) takes the Grothendieck

class of M to the class of M in Val(E), and is therefore inverse to the homomorphism in the first

paragraph.

9 Characters

In this section, we explain how to use valuative categorical matroid invariants to obtain relations

among isomorphism classes of graded representations of the symmetry group of a matroid decom-

position. Everything that follows works equally well for decompositions of polyhedra, but since our

examples are all matroid invariants, we will work entirely in that setting.

9.1 The oriented case

Let N be a decomposition of a matroid M on the ground set E, and let Ω be an orientation of N .

Let Γ be a finite group acting via permutations of E that preserve N and Ω. In other words, for
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every N ∈ N and γ ∈ Γ, γ(N) ∈ N , and the map P (N) → P (γ(N)) on base polytopes induced

by γ is orientation preserving. This implies that γ acts on the complex CΩ
• (N ). Fix an abelian

group, and let A be the category of finite dimensional vector spaces over Q that are graded in that

group.10 Suppose that Φ : M(E) → A is a categorical valuative invariant. Then Φ(CΩ
• (N )) is

exact, and we therefore have an equation

0 = χΓ
(

Φ(CΩ
• (N ))

)
:=

∑
k

(−1)k Φ(CΩ
k (N ))

=
∑
k

(−1)k
⊕
N∈Nk

Φ(N) (23)

=
∑
k

(−1)k
⊕

N∈Nk/Γ

IndΓ
ΓF

Φ(N)

of virtual graded representations of Γ, where for the last sum one takes a single representative of

each Γ orbit in Nk.
Examples from previous sections of valuative categorical invariants include OS (Theorem 5.5),

CH (Corollary 8.6), CH (Corollary 8.10), all of which take values in finite dimensional graded vector

spaces. In these cases, Equation (23) gives a relationship between Orlik–Solomon algebras, Chow

rings, and augmented Chow rings of all of the matroids in N , regarded as isomorphism classes of

representations of Γ. We also have the examples KL (Corollary 8.14) and Σ (Corollary 8.14), both

of which take values in bigraded vector spaces. The virtual graded Γ-representations∑
j

(−1)j KLi,j(M) and
∑
j

(−1)j Σi,j(M)

are equal to the coefficients of ti in the Γ-equivariant Kazhdan–Lusztig polynomial PΓ
M (t) and the

Γ-equivariant Z-polynomial ZΓ
M (t), respectively [PXY18, Theorem 6.1]. Thus Equation (23) also

allows us to relate these equivariant matroid invariants for M to those of the various N ∈ N .

There is, however, a serious limitation to the usefulness of Equation (23). When given a

decomposition N with an action of Γ, it is usually impossible to choose an orientation Ω that

is preserved by Γ. For instance, consider the decomposition in Examples 1.1 and 3.6. We have

E = {1, 2, 3, 4}, and the group S2 acts by swapping 1 with 3 and 2 with 4. This action preserves

N , swapping N with N ′ and taking N ′′ to itself. However, the action of S2 on P (N ′′) is orientation

reversing, so there is no way to choose Ω. If there were, then Equation (23) applied to the trivial

categorical invariant τ would tell us that τ(M)⊕ τ(N ′′) (two copies of the trivial representation of

S2) is isomorphic to τ(N)⊕ τ(N ′) (the regular representation of S2), which is of course false.

What we would like to do is replace τ(N ′′) with the sign representation of S2, to reflect the

fact that the action on P (N ′′) is orientation reversing (see Example 9.5). The rest of this section

is devoted to developing the machinery needed to make this precise, in the form of Corollary 9.3,

and then applying it to certain families of examples.

10In practice, we will always take our gradings in Z or Z2.
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9.2 The determinant category

If M is a matroid on the ground set E, consider the vector space

A(M) := Span{x− y | x, y ∈ P (M)} ∩QE .

If P (M ′) ⊂ P (M), we define the 1-dimensional vector space

L(M,M ′) := ∧d(M)−d(M ′)
(
A(M)/A(M ′)

)
.

Given M , M ′, and M ′′ with P (M ′′) ⊂ P (M ′) ⊂ P (M), wedge product induces a canonical isomor-

phism

L(M,M ′)⊗ L(M ′,M ′′)→ L(M,M ′′). (24)

We now define a new category M∧id(E) by taking the objects to be formal direct sums of matroids

on E, and taking

HomM∧id(E)(M,M ′) := L(M,M ′).

Composition is given by Equation (24), and morphisms between formal direct sums are matrices

whose entries consist of morphisms between the individual matroids.

Remark 9.1. The categoryM∧id(E) should be regarded as a variant ofM+
id(E). In both categories,

the space of homomorphisms from M to M ′ is a 1-dimensional Q-vector space. The difference is

that, inM+
id(E), this vector space is canonically identified with Q, whereas the same is not true in

M∧id(E).

Given a decomposition N of a matroid M on the ground set E, we defined a large collection

of complexes CΩ
• (M) in M+

id(E), depending on an Ω of N . In contrast, we will define a single

complex C∧• (N ) in M∧id(E) that does not depend on any choices. The objects will be the same;

that is, we put

C∧k (N ) :=
⊕
N∈Nk

N.

For each maximal face N ∈ Nd(M), L(M,N) is canonically isomorphic to Q, and we define

C∧d(M)+1(N )→ C∧d(M)(N ) to be the diagonal map. Given k ≤ d(M), N ∈ Nk, and N ′ ∈ Nk−1 with

P (N ′) ⊂ P (N), we define the (N,N ′) component of the differential C∧k (N )→ C∧k−1(N ) to be the

class of the outward unit normal vector to P (N ′) inside of P (N) in

A(N)/A(N ′) = Q(N,N ′) = HomM∧id(E)(N,N
′).

It is straightforward to check that the differential squares to zero.
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9.3 The determinant functor

In this section, we define an additive functor Det from M∧id(E) to the category VecQ. For any

matroid M on E, we put

Det(M) := ∧d(M)A(M)∗.

If P (M ′) ⊂ P (M) and

σ ∈ ∧d(M)−d(M ′)(A(M)/A(M ′)) = L(M,M ′) = HomM∧id(E)(M,M ′),

then wedge product with σ gives an isomorphism from ∧d(M ′)A(M ′) to ∧d(M)A(M). Dualizing, we

obtain our map

Det(σ) : Det(M)→ Det(M ′).

Let Φ :Mid(E)→ A be a categorical matroid invariant valued in a Q-linear category A. There

is a monoidal action of VecQ on A, which we denote with ⊗. We define a functor Φ∧ :M∧id(E)→ A
by putting Φ∧ := Φ ⊗ Det. More precisely, we define Φ∧(M) := Φ(M) ⊗ Det(M) for all M , and

given an element

σ ∈ L(M,M ′) = HomM∧id(E)(M,M ′),

we put

Φ∧(σ) := Φ(ιM,M ′)⊗Det(σ) : Φ∧(M)→ Φ∧(M ′).

Proposition 9.2. If Φ :Mid(E) → A is valuative and N is a decomposition of a matroid M on

the ground set E, then Φ∧(C∧• (N )) is contractible.

Proof. Let Ω be an orientation ofN . This induces an isomorphism Det(M) ∼= Q, along with isomor-

phisms Det(N) ∼= Q for each N ∈ N . These isomorphisms fit together to form an isomorphism of

complexes Φ∧(C∧• (N )) ∼= Φ(CΩ
• (N )), and the latter is contractible by definition of valuativity.

Proposition 9.2 has a corollary that allows us to generalize Equation (23) to situations where

it is not possible to choose an orientation Ω in a way that is fixed by symmetries. Fix an abelian

group, and let A be the category of finite dimensional vector spaces over Q that are graded by that

group.

Corollary 9.3. Let N be a decomposition of a matroid M on the ground set E. Let Γ be a finite

group acting on E preserving N . Let Φ : M → A be a valuative categorical invariant. Then we

have an equation

0 = χΓ
(

Φ(C∧• (N ))
)

:=
∑
k

(−1)k Φ(C∧k (N ))

=
∑
k

(−1)k
⊕
N∈Nk

Φ(N)⊗Det(N)

=
∑
k

(−1)k
⊕

N∈Nk/Γ

IndΓ
ΓF

Φ(N)⊗Det(N)
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of virtual graded representations of Γ.

Remark 9.4. If there exists an orientation Ω of N that is fixed by the action of Γ, then for all

N ∈ N , Det(N) is isomorphic to the 1-dimensional trivial representation of the stabilizer of N . In

particular, Equation (23) is a special case of Corollary 9.3.

Example 9.5. Let N be the decomposition of M in Examples 1.1 and 3.6, and let Γ = S2 act by

swapping 1 with 3 and 2 with 4. Applying Corollary 9.3 to the trivial categorical invariant τ , we

obtain the equation

0 = Det(M)−Det(N)−Det(N ′) + Det(N ′′)

of virtual representations of S2. Since S2 acts on P (M) in an orientation preserving way, Det(M)

is the trivial representation. Since S2 acts on P (N ′′) in an orientation reversing way, Det(N ′′)

is the sign representation. Finally, since S2 swaps N with N ′, Det(N) ⊕ Det(N ′) is the regular

representation.

9.4 Equivariant relaxation

Let M be a matroid of rank k on the ground set E, equipped with an action of the group Γ. Let F

be a stressed flat of rank r, and let F := {γF | γ ∈ Γ}. Let M̃ be the matroid obtained by relaxing

M with respect to every G ∈ F , as described in Section 3.3. Let ΓF ⊂ Γ denote the stabilizer of

F . Note that ΓF acts on the sets F and E \F , and therefore on the matroids Πr,k,E,F and Λr,k,E,F

from Section 3.3.

Fix an abelian group, and let A be the category of finite dimensional vector spaces over Q that

are graded by that group. Let Φ :M→A be a valuative categorical invariant.

Proposition 9.6. We have the following equality of virtual graded Γ-representations:

Φ(M̃) = Φ(M) + IndΓ
ΓF

Φ(Λr,k,E,F )− IndΓ
ΓF

Φ(Πr,k,E,F ).

Proof. If M = Πr,k,E,F , then M̃ = Λr,k,E,F and the statement is trivial. Assume now that this is

not the case. Let N be the decomposition of M̃ described in Theorem 3.10. By Corollary 9.3, we

have

(−1)d(M̃)Φ(M̃)⊗Det(M̃) = (−1)d(M)Φ(M)⊗Det(M)

+ (−1)d(Λr,k,E,F ) IndΓ
ΓF

Φ(Λr,k,E,F )⊗Det(Λr,k,E,F )

+ (−1)d(Πr,k,E,F ) IndΓ
ΓF

Φ(Πr,k,E,F )⊗Det(Πr,k,E,F ).

To simplify this, we first note that

d(M̃) = d(M) = d(Λr,k,E,F ) = d(Πr,k,E,F ) + 1.
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Next, we observe that

A(M̃) = A(M) = A(Λr,k,E,F ) = A(Πr,k,E,F )⊕Q · xF ,

which implies that Det(M̃) = Det(M) as representations of Γ. Since ΓF fixes xF , it also implies

that Det(Λr,k,E,F ) = Det(Πr,k,E,F ) = ResΓ
ΓF

Det(M) as representations of ΓF . Thus

(−1)d(M)Φ(M̃)⊗Det(M) = (−1)d(M)Φ(M)⊗Det(M)

+ (−1)d(M) IndΓ
ΓF

(
Φ(Λr,k,E,F )⊗ ResΓ

ΓF
Det(M)

)
− (−1)d(M) IndΓ

ΓF

(
Φ(Πr,k,E,F )⊗ ResΓ

ΓF
Det(M)

)
= (−1)d(M)Φ(M)⊗Det(M)

+ (−1)d(M)
(

IndΓ
ΓF

Φ(Λr,k,E,F )
)
⊗Det(M)

− (−1)d(M)
(

IndΓ
ΓF

Φ(Πr,k,E,F )
)
⊗Det(M).

Dividing both sides by (−1)d(M) Det(M), which is an invertible element of the ring of virtual graded

representations of Γ, yields the statement of the proposition.

9.5 Relaxing a stressed hyperplane

We conclude by applying Proposition 9.6 to the functors OS and KL in the special case where the

stressed flat F = H is a hyperplane, meaning that r = k − 1. In this case, we have

Πk−1,k,E,H = U1,E\H t Uk−1,H .

The matroid Λk−1,k,E,H obtained by relaxing Πk−1,k,E,H with respect to the stressed hyperplane H

has as its bases those subsets B ⊂ E of cardinality k with |B ∩H| ≥ k − 1. It has no loops, and

its simplification is the uniform matroid of rank k on the ground set H̄ := H t {∗} obtained from

E by identifying all of the elements of E \H.

The group Aut(E \H)×Aut(H) acts on the matroids Πk−1,k,E,H and Λk−1,k,E,H , and therefore

on their Orlik–Solomon algebras. Since all of the elements of E \H are parallel in both Πk−1,k,E,H

and Λk−1,k,E,H , the actions on the Orlik–Solomon algebra factor through the projection to Aut(H).

For the rest of this section, we will write h = |H| and identify H with {1, . . . , h}. If λ is a

partition of h, we write Vλ to denote the corresponding Specht module for Sh = Aut(H). Recall

that V[h] is the trivial representation.

Lemma 9.7. We have

OS(Λk−1,k,E,H)−OS(Πk−1,k,E,H) =
(
∧k−1 V[h−1,1]

)
⊗
(
Q(1− k)⊕Q(−k)

)
as graded virtual representations of Sh.
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Proof. The matroids Λk−1,k,E,H and Πk−1,k,E,H have the same independent sets of cardinality less

than k, so their Orlik–Solomon algebras differ only in degrees k − 1 and k. Let us consider the

degree k part first.

The Orlik–Solomon algebra of a direct sum is isomorphic to the tensor product of the Orlik–

Solomon algebras, and the degree k− 1 part of the Orlik–Solomon algebra of Uk−1,H is isomorphic

to ∧k−2V[h−1,1], thus

OSk(Πk−1,k,E,H) ∼= OS1(U1,E\H)⊗OSk−1(Uk−1,H)

∼= V[h] ⊗ ∧k−2 V[h−1,1]

∼= ∧k−2 V[h−1,1].

The Orlik–Solomon algebra is unaffected by simplification, thus

OSk(Λk−1,k,E,H) ∼= Res
Sh+1

Sh
OSk(Uk,H̄)

∼= Res
Sh+1

Sh
∧k−1 V[h,1]

∼= ∧k−1 Res
Sh+1

Sh
V[h,1]

∼= ∧k−1
(
V[h−1,1] ⊕ V[h]

)
∼= ∧k−1 V[h−1,1] ⊕ ∧k−2 V[h−1,1].

This proves that the lemma is correct in degree k. The statement in degree k − 1 follows from

the fact that, for any matroid M on a nonempty ground set,
∑

(−1)i OSi(M) = 0 as a virtual

representation of the automorphism group of M .

Let ΓH := Γ∩Aut(E \H)×Aut(H) be the stabilizer of H, which maps via projection to Sh =

Aut(H). We write ResShΓH
for the functor that pulls back a representation along the homomorphism

from ΓH to Sh. Proposition 9.6 and Lemma 9.7 have the following immediate corollary.

Corollary 9.8. Let M be a matroid equipped with an action of the group Γ. Let H be a stressed

hyperplane of M , and let M̃ be the matroid obtained from M by relaxing γH for all γ ∈ Γ. Then

OS(M̃) = OS(M) +
(

IndΓ
ΓH

ResShΓH
∧k V[h−1,1]

)
⊗
(
Q(1− k)⊕Q(−k)

)
as virtual graded representations of Γ.

We now turn our attention to the functor KL. Recall that, if M is a matroid equipped with

an action of a group Γ, then the coefficient of ti in the Γ-equivariant Kazhdan–Lusztig polynomial

PΓ
M (t) is equal to the virtual Γ-representation

∑
j(−1)jΣi,j(M). Given a skew partition λ/µ of h,

we write Vλ/µ to denote the corresponding skew Specht module for Sh.

Lemma 9.9. If k > 1, then we have

PSh
Λk−1,k,E,H

(t)− PSh
Πk−1,k,E,H

(t) =
∑

0<i<k/2

V[h−2i+1,(k−2i+1)i]/[k−2i,(k−2i−1)i−1] t
i.
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Proof. Equivariant Kazhdan–Lusztig polynomials of matroids are multiplicative under direct sums

and the equivariant Kazhdan–Lusztig polynomial of a rank 1 loopless matroid is the trivial repre-

sentation in degree zero, hence

PSh
Πk−1,k,E,H

(t) = PSh
Uk−1,H

(t) =
∑

0≤i<(k−1)/2

V[h−2i,(k−2i)i]/[(k−2i−2)i] t
i,

where the second equality is proved in [GXY, Theorem 3.7]. On the other hand, equivariant

Kazhdan–Lusztig polynomials of loopless matroids are unchanged by simplification, hence

PSh
Λk−1,k,E,H

(t) = PSh
Uk,H̄

(t) =
∑

0≤i<k/2

Res
Sh+1

Sh
V[h−2i+1,(k−2i+1)i]/[(k−2i−1)i] t

i,

where the last equality again follows from [GXY, Theorem 3.7]. By [KNPV23, Lemma 4.1] and

[Kle05, Proposition 2.3.5, Lemma 2.3.12], we may rewrite this as

PSh
Λk−1,k,E,H

(t) =
∑

0≤i<(k−1)/2

V[h−2i,(k−2i+1)i]/[(k−2i−1)i] t
i+

∑
0<i<k/2

V[h−2i+1,(k−2i+1)i]/[k−2i,(k−2i−1)i−1] t
i.

The lemma is obtained by taking the difference between the our expressions for PSh
Πk−1,k,E,H

(t) and

PSh
Λk−1,k,E,H

(t).

Proposition 9.6 and Lemma 9.9 have the following immediate corollary, which was first proved

in [KNPV23, Theorems 1.3 and 1.4].

Corollary 9.10. Let M be a matroid of rank k > 1 equipped with an action of the group Γ. Let H

be a stressed hyperplane of M , and let M̃ be the matroid obtained from M by relaxing γH for all

γ ∈ Γ. Then

PΓ
M̃

(t) = PΓ
M (t) +

⊕
0<i<k/2

IndΓ
ΓH

ResShΓH
V[h−2i+1,(k−2i+1)i]/[k−2i,(k−2i−1)i−1] t

i.
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