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Abstract. By the work of Ferroni and Larson, Kazhdan–Lusztig polynomials and Z-polynomials

of complete graphs have combinatorial interpretations in terms of quasi series-parallel matroids.

We provide explicit formulas for the number of series-parallel matroids and the number of simple

series-parallel matroids of a given rank and cardinality, extending results of Ferroni–Larson and

Gao–Proudfoot–Yang–Zhang.

1 Introduction

Given a graph, a series extension is a graph obtained by subdividing an edge, and a parallel

extension is a graph obtained by adding a new edge parallel to an existing one. A graph is

called series-parallel if it can be constructed from a 2-cycle by a sequence of series and parallel

extensions. By convention, a single edge and a single loop are also considered series-parallel graphs.

A matroid associated with a series-parallel graph is called a series-parallel matroid. A series-

parallel matroid is simple if and only if it comes from a graph with no loops or parallel edges.

A (possibly empty) direct sum of series-parallel matroids is called quasi series-parallel; this

is the same as taking matroids associated with disjoint unions of series-parallel graphs. A quasi

series-parallel matroid is simple if and only if each of its components is simple. Quasi series-parallel

matroids are characterized by the property of having no minors equal to the uniform matroid of

rank 2 on 4 elements or the matroid associated with the complete graph K4 [FL24, Proposition 2.1].

The rank of a quasi series-parallel matroid is equal to the number of vertices minus the number of

connected components of the corresponding graph.

Consider the following quantities:

Cn,k = the number of series-parallel matroids on [n] of rank k [OEIS, A140945]

En,k = the number of simple series-parallel matroids on [n] of rank k [OEIS, A361355]

An,k = the number of quasi series-parallel matroids on [n] of rank k [OEIS, A359985]

Sn,k = the number of simple quasi series-parallel matroids on [n] of rank k [OEIS, A361353]

Remark 1.1. The letter A stands for All quasi series-parallel matroids, S stands for Simple quasi

series-parallel matroids, and C stands for Connected quasi series-parallel matroids, which are the

same as series-parallel matroids (with the convention that the empty matroid is not connected).

The letter E does not stand for anything, but it means simple and connected. In [FL24], the

quantity E2k,k+1 is denoted Ek.

1Supported by NSF grants DMS-1954050, DMS-2053243, and DMS-2344861.
2Supported by Simons Foundation Collaboration Grant #849676.
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Remark 1.2. The original motivation for studying these quantities is that An,k (respectively Sn,k)

is equal to the coefficient of tn−k in the Z-polynomial (respectively Kazhdan–Lusztig polynomial)

of the matroid associated with the complete graph Kn+1 [FL24, Theorem 1.1]. This is the only

known combinatorial description of these coefficients.

Remark 1.3. Note that the number of series-parallel matroids on [n] is not the same as the number

of series-parallel graphs with edge set [n], because different graphs can induce the same matroid.

For example, there are three different ways (up to isomorphism) to label the edges of the 4-cycle

with the labels {1, 2, 3, 4}, but they all induce the uniform matroid of rank 3.

Consider the following generating functions:

E(x, y) :=

∞∑
n=1

n∑
k=0

En,k y
k x

n

n!
, S(x, y) :=

∞∑
n=0

n∑
k=0

Sn,k y
k x

n

n!

C(x, y) :=
∞∑
n=1

n∑
k=0

Cn,k y
k x

n

n!
, A(x, y) :=

∞∑
n=0

n∑
k=0

An,k y
k x

n

n!
.

Note that the two generating functions on the left begin with n = 1, while the two on the right begin

with n = 0; this is because the empty matroid is quasi series-parallel but not series-parallel. The

combinatorial relationships between these numbers can be expressed in terms of their generating

functions.

Proposition 1.4. We have the following identities:

S(x, y) = eE(x,y)

A(x, y) = eC(x,y)

C(x, y) = E(ex − 1, y) + x

A(x, y) = S(ex − 1, y) · ex
AC

SE
exponentiate

exponentiate

precompose
with ex − 1
and multiply

by ex

precompose
with ex − 1
and add x

Proof. A quasi series-parallel matroid on [n] is given by a partition of [n] along with a series-parallel

matroid on each part, and it is simple if and only if each component is simple. This fact, combined

with [Sta24, Corollary 5.1.6], implies the first two identities. When n ≥ 2, a series-parallel matroid

on [n] is given by a partition of [n] into parallel classes and a simple series-parallel matroid on the

set of parallel classes. This observation, combined with [Sta24, Theorem 5.1.4], implies the third

identity. (The addition of x comes from the matroid of rank 0 on the set [1], which is series-parallel

but not simple.) Finally, a quasi series-parallel matroid on [n] is given by a set of loops, a partition of

the nonloops into parallel classes, and a simple series-parallel matroid on the set of parallel classes.

This statement implies the fourth identity by [Sta24, Proposition 5.1.1 and Theorem 5.1.4], with

the factor of ex corresponding to the choice of the set of loops.
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We focus here on the numbers En,k, from which all of the others can be computed. We know

that we have En,k = 0 when n ≥ 2k > 0 [FL24, Proposition 2.10]. Theorem 1.5 provides formulas

for E2k−1,k [FL24, Corollary 2.12] and E2k−2,k [GPYZ, Corollary 1.6].

Theorem 1.5. [FL24, GPYZ] We have

E2k−1,k
(2k − 1)!!

= (2k− 1)k−3 and
E2k−2,k

(2k − 3)!!
= (2k− 1)k−2− (2k− 2)k−2 +

2

3
(k− 2)(2k− 2)k−3.

Our goal in this note is to provide a formula for E2k−r,k for arbitrary k and r. Our formula

becomes more complicated as r grows. It can be used to recover Theorem 1.5, and we also use it

to provide an explicit closed formula for the next case E2k−3,k (Example 1.7).

Consider the unsigned associated Stirling number of the first kind[[
n

k

]]
= (n− 1)

[[
n− 2

k − 1

]]
+ (n− 1)

[[
n− 1

k

]]
, (1)

which counts the number of derangements of [n] with k cycles [Com74, page 256]. This quantity

vanishes when n < 2k, and Equation (1) implies the following formulas when n is close to 2k:[[
2k

k

]]
= (2k−1)!!,

[[
2k + 1

k

]]
=

2

3
k (2k+1)!!, and

[[
2k + 2

k

]]
=

1

9
(4k+5)(k+1)k (2k+1)!!.

Theorem 1.6. For all 0 ≤ r ≤ k, we have

E2k−r,k =
r∑

p=1

[[
2k − p− 1

k − p

]]
r−p∑
i=0

(−1)i+p+1(2k − p− i)k−p−1

i!(r − p− i)!
.

Example 1.7. When r = 1 and r = 2, Theorem 1.6 reproduces Theorem 1.5. When r = 3,

Theorem 1.6 tells us that

E2k−3,k
(2k − 3)!!

=
1

2
(2k − 1)k−2 − (2k − 2)k−2 +

1

2
(2k − 3)k−2

+
2

3
(k − 2)

(
(2k − 3)k−3 − (2k − 2)k−3

)
+

1

9
(4k − 7)(k − 2)(k − 3)(2k − 3)k−5.

Remark 1.8. Let M be a simple quasi series-parallel matroid of rank k on the set [2k − r], and

let {Mi} be its connected components. Then Mi is a simple series-parallel matroid of rank ki on a

set of cardinality 2ki − ri, and we have
∑

i ki = k and
∑

i ri = r. Thus S2k−r,k may be computed

in terms of E2j−s,j for j ≤ k and s ≤ r. The precise formula can be derived from the first equation

in Proposition 1.4.

We prove Theorem 1.6 using the generating functions. Ferroni and Larson provide an expression
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for the generating function C(x, y) in terms of the compositional inverse of the function

1

y
log(1 + xy) + log(1 + x)− x,

where y is regarded as a parameter (Section 4). We explicitly compute the coefficients of this

compositional inverse, which gives us a formula for the numbers Cn,k (Corollary 4.4). We then

combine this with the third identity in Proposition 1.4 to prove Theorem 1.6.

Acknowledgments: The authors are grateful to Luis Ferroni and Matt Larson, whose work made

this paper possible.

2 Two Stirling lemmas

We begin with two lemmas about Stirling numbers that we will need later in the paper. Let
{
n
k

}
be

the Stirling number of the second kind, which counts partitions of [n] into k nonempty parts.

Lemma 2.1. We have

∑̀
p=0

(−1)`+p

(
m + p

` + p

)[[
` + p

p

]]
=

{
m + 1

m− ` + 1

}
.

Proof. Let us denote the left-hand side of the equation by Tm,`. We have{
m + 1

m− ` + 1

}
−
{

m

m− `

}
= (m− ` + 1)

{
m

m− ` + 1

}
,
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and we will show that Tm,` satisfies the same recursion. Indeed, we have

Tm,` − Tm−1,` =
∑̀
p=1

(−1)p+`

((
m + p

` + p

)
−
(
m− 1 + p

` + p

))[[
` + p

p

]]

=
∑̀
p=0

(−1)p+`

(
m + p− 1

` + p− 1

)[[
` + p

p

]]

=
∑̀
p=0

(−1)p+`

(
m + p− 1

` + p− 1

)
(` + p− 1)

([[
` + p− 2

p− 1

]]
+

[[
` + p− 1

p

]])

= (m− ` + 1)
∑̀
p=0

(−1)p+`

(
m + p− 1

` + p− 2

)([[
` + p− 2

p− 1

]]
+

[[
` + p− 1

p

]])

= (m− ` + 1)
`−1∑
q=0

(−1)q+`

((
m + q − 1

` + q − 2

)
−
(

m + q

` + q − 1

))[[
` + q − 1

q

]]

= (m− ` + 1)

`−1∑
q=0

(−1)q+`−1
(
m + q − 1

` + q − 1

)[[
` + q − 1

q

]]
= (m− ` + 1)Tm−1,`−1.

This completes the proof.

Lemma 2.2. We have {
n + k

m

}
=

k−1∑
j=0

{
n + 1

m− j

} j∑
i=0

(−1)i(m− i)k−1

i!(j − i)!
.

Proof. We have

m!

{
n + k

m

}
=

∣∣{f : [n + k] � [m]}
∣∣

=

k−1∑
j=1

(
m

j

)∣∣{f : [n + 1] � [m− j]}
∣∣ · ∣∣{f : [k − 1]→ [m] | [j] ⊂ im(f)}

∣∣
=

k−1∑
j=1

(
m

j

)
(m− j)!

{
n + 1

m− j

}
·
∣∣{f : [k − 1]→ [m] | [j] ⊂ im(f)}

∣∣,
and therefore {

n + k

m

}
=

k−1∑
j=1

1

j!

{
n + 1

m− j

}
·
∣∣{f : [k − 1]→ [m] | [j] ⊂ im(f)}

∣∣.
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By the inclusion-exclusion principle,

∣∣{f : [k − 1]→ [m] | [j] ⊂ im(f)}
∣∣ =

k−1∑
i=0

(−1)i
(
j

i

)∣∣{f : [k − 1]→ [m] | [i] 6⊂ im(f)}
∣∣

=
k−1∑
i=0

(−1)i
(
j

i

)∣∣{f : [k − 1]→ [m− i]}
∣∣

=

k−1∑
i=0

(−1)i
(
j

i

)
(m− i)k−1.

This completes the proof.

3 Sums of products of reciprocals

Consider the numbers

Hm,k :=
∑

j1+···+jk=m
j1≥1,...,jk≥1

1

(j1 + 1) · · · (jk + 1)
.

Lemma 3.1. We have the recursion

nHn−k,k = kHn−k−1,k−1 + (n− 1)Hn−k−1,k.

Proof. We have

nHn−k,k =
n!

k!

∑
j1+···+jk=n−k
j1≥1,...,jk≥1

1

(j1 + 1) · · · (jk + 1)

=
∑

j1+···+jk=n−k
j1≥1,...,jk≥1

(j1 + 1) + · · ·+ (jk + 1)

(j1 + 1) · · · (jk + 1)
.

By symmetry, we may replace the numerator in the fraction above by k(jk + 1), and we obtain the

equation

nHn−k,k =
∑

j1+···+jk=n−k
j1≥1,...,jk≥1

k(jk + 1)

(j1 + 1) · · · (jk + 1)

=
∑

j1+···+jk=n−k
j1≥1,...,jk≥1

k

(j1 + 1) · · · (jk−1 + 1)

=
∑
jk≥1

∑
j1+···+jk−1=n−k−jk

j1≥1,...,jk−1≥1

k

(j1 + 1) · · · (jk−1 + 1)
.
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Similarly, we have

(n− 1)Hn−k−1,k =
∑
jk≥1

∑
j1+···+jk−1=n−k−jk−1

j1≥1,...,jk−1≥1

k

(j1 + 1) · · · (jk−1 + 1)
.

Taking the difference, we find that

nHn−k,k − (n− 1)Hn−k−1,k =
∑

j1+···+jk−1=n−k−1
j1≥1,...,jk−1≥1

k

(j1 + 1) · · · (jk−1 + 1)

= kHn−k−1,k.

This completes the proof.

Lemma 3.2. We have

Hn−k,k =
k!

n!

[[
n

k

]]
.

Proof. The recursion in Equation (1) matches the one in Lemma 3.1.

Lemma 3.3. We have

∑
j1+···+jk=m
j1≥1,...,jk≥1

k∏
i=1

1 + yji

ji + 1
=

m∑
`=0

y`
k∑

p=0

(
k

p

)
H`,pHm−`,k−p.

Proof. We have

∑
j1+···+jk=m
j1≥1,...,jk≥1

k∏
i=1

1 + yji

ji + 1
=

∑
j1+···+jk=m
j1≥1,...,jk≥1

k∑
p=0

(
k

p

)
yj1+···+jp

(j1 + 1) · · · (jk + 1)

=

k∑
p=0

(
k

p

)m−k+p∑
`=p

y`
∑

j1+···+jk=m
j1+···+jp=`
j1≥1,...,jk≥1

1

(j1 + 1) · · · (jk + 1)

=
m∑
`=0

y`
k∑

p=0

(
k

p

)
H`,pHm−`,k−p.

This completes the proof.

Combining Lemmas 3.2 and 3.3 yields the following corollary, which we will use in Section 4.

Corollary 3.4. We have

∑
j1+···+jk=m
j1≥1,...,jk≥1

k∏
i=1

1 + yji

ji + 1
=

k!

(m− k)!

m∑
`=0

y`
k∑

p=0

(
m− k

` + p

)[[
` + p

p

]][[
m− ` + k − p

k − p

]]
.
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4 Inverting a power series

The partial Bell polynomials Bn,k(t1, . . . , tn−k+1) are characterized by the identity

exp

y

∞∑
j=1

tj
xj

j!

 =
∑

0≤k≤n
Bn,k(t1, . . . , tn−k+1) y

k x
n

n!
. (2)

The following lemma gives an explicit expression for these polynomials.

Lemma 4.1. We have

Bn,k(t1, . . . , tn−k+1) =
n!

k!

∑
j1+···+jk=n
j1≥1,...,jk≥1

tj1
j1!
· · · tjk

jk!
.

Proof. Equation (2) implies that Bn,k(t1, . . . , tn−k+1) is equal to the coefficient of xn in the power

series

n!

k!

 ∞∑
j=1

tj
xj

j!

k

.

The lemma follows.

Suppose that

F (x) =

∞∑
n=1

Fn
xn

n!
and G(x) =

∞∑
n=1

Gn
xn

n!

are power series with coefficients in some commutative Q-algebra R. Suppose further that F1 6= 0,

and let F̂n = Fn+1

(n+1)F1
, so that

F̂ (x) :=
∞∑
n=1

F̂n
xn

n!
=

F (x)− F1x

x
.

The following result is a corollary of the Lagrange inversion theorem [Cha02, Corollary 11.3].

Theorem 4.2. We have G(F (x)) = x if and only if G1 = F−11 and, for all n > 1,

Gn =
1

Fn
1

n−1∑
k=1

n(n + 1) · · · (n + k − 1)Bn−1,k

(
F̂1, . . . , F̂n−k

)
=

1

Fn
1

n−1∑
k=1

(−1)k
(n + k − 1)!

k!

∑
j1+···+jk=n−1
j1≥1,...,jk≥1

k∏
i=1

F̂ji

ji!
.

We now apply Theorem 4.2 to a particular power series with coefficients in the commutative
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Q-algebra Q[y]. Let

F (x, y) =
∞∑
n=1

Fn(y)
xn

n!
:=

1

y
log(1 + xy) + log(1 + x)− x.

Explicitly, we have F1(y) = 1 and Fn(y) = (−1)n−1(n− 1)!(1 + yn−1) for all n > 1. Let

G(x, y) =

∞∑
n=1

Gn(y)
xn

n!
=

∞∑
n=1

∞∑
k=0

Gn,k y
k x

n

n!

be the unique power series with the property that G(F (x, y), x) = x.

Proposition 4.3. We have

Gn,` = Gn,n−`−1 =
∑̀
j=0

(−1)j+`

[[
j + `

j

]]{
n + j

j + ` + 1

}
.

Proof. Let

F̂n(y) :=
Fn+1(y)

(n + 1)F1(y)
=

(−1)nn!(1 + yn)

n + 1
.

By Theorem 4.2, we have

Gn(y) =
n−1∑
k=1

(−1)k
(n + k − 1)!

k!

∑
j1+···+jk=n−1
j1≥1,...,jk≥1

k∏
i=1

F̂ji(y)

ji!

=

n−1∑
k=1

(−1)n+k−1 (n + k − 1)!

k!

∑
j1+···+jk=n−1
j1≥1,...,jk≥1

k∏
i=1

1 + yji

ji + 1
.

Note that this polynomial is clearly palindromic of degree n−1, which implies that Gn,` = Gn,n−`−1.

By Corollary 3.4, Gn(y) is equal to

n−1∑
`=0

y`
n−1∑
k=1

(−1)n+k−1
∑̀
p=0

[[
` + p

p

]][[
n− 1− ` + k − p

k − p

]](
n + k − 1

` + p

)
.

Taking the coefficient of y` and reindexing with j = k − p, we get

Gn,` =

n−`−1∑
j=0

(−1)n+j−`−1

[[
n− 1− ` + j

j

]]∑̀
p=0

(−1)`+p

[[
` + p

p

]](
n− 1 + j + p

` + p

)
.

Note that the symmetry Gn,` = Gn,n−1−` can be seen by exchanging j and p in the summation
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above. By Lemma 2.1 with m = n− 1 + j, we have

Gn,` =
n−`−1∑
j=0

(−1)n+j−`−1

[[
n− 1− ` + j

j

]]{
n + j

n + j − `

}
.

Replacing ` with n− 1− ` allows us to rewrite our expression as

Gn,` = Gn,n−1−` =
∑̀
j=0

(−1)j+`

[[
j + `

j

]]{
n + j

j + ` + 1

}
.

This completes the proof.

Proposition 4.3, along with a theorem of Ferroni and Larson, provides a formula for Cn,`.

Corollary 4.4. For all n ≥ 2, we have

Cn,` =
`−1∑
k=0

(−1)k+`−1

[[
k + `− 1

k

]]{
n− 1 + k

k + `

}
.

Proof. Using the work of Drake [Dra08, Example 1.5.1], Ferroni and Larson [FL24, Proposition 2.3]

show that

C(x, y) = (1 + y)x + y

∫
G(x, y) dx,

where the improper integral is taken to have no constant term. This means that, for all n ≥ 2,

Cn,` = Gn−1,`−1. The Corollary then follows from Proposition 4.3.

Remark 4.5. In Proposition 4.3, we gave an algebraic proof of the identity Gn,` = Gn,n−1−`. We

can reinterpret this identity as saying that Cn+1,`+1 = Cn+1,n−`, which follows from the fact that

matroid duality is a bijection from the set of series-parallel matroids on [n+ 1] of rank `+ 1 to the

set of series-parallel matroids on [n + 1] of rank n− `.

5 Proof of Theorem 1.6

This section is devoted to using Corollary 4.4 to prove Theorem 1.6.

Lemma 5.1. For all n ≥ 2, we have

Cn,` =

n∑
m=`

{
n

m

}
Em,`.

Proof. This can be derived from the third identity in Proposition 1.4, or one can prove it directly

using the same combinatorial reasoning employed in the proof of Proposition 1.4. That is, a series-

parallel matroid on [n] is given by a partition of [n] into m parallel classes for some m, along with

a simple series-parallel matroid on the set of parallel classes. The lemma follows.
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Let

Ẽn,` :=
2`−n∑
p=1

[[
2`− p− 1

`− p

]]
2`−n−p∑

i=0

(−1)i+p+1(2`− p− i)`−p−1

i!(2`− n− p− i)!
,

so that

Ẽ2k−r,k =
r∑

p=1

[[
2k − p− 1

k − p

]]
r−p∑
i=0

(−1)i+p+1(2k − p− i)k−p−1

i!(r − p− i)!

is the expression appearing on the right-hand side of the equation in the statement of the theorem.

We next prove the analogue of Lemma 5.1 for Ẽ.

Lemma 5.2. For all n ≥ 2, we have

Cn,` =

n∑
m=`

{
n

m

}
Ẽm,`.

Proof. By Corollary 4.4 and using Lemma 2.2, we have

Cn,` =

`−1∑
k=0

(−1)k+`−1

[[
k + `− 1

k

]]
k−1∑
j=0

{
n

k + `− j

} j∑
i=0

(−1)i(k + `− i)k−1

i!(j − i)!
,

Setting m = k + `− j, we get

Cn,` =

n∑
m=1

{
n

m

} `−1∑
k=0

(−1)k+`−1

[[
k + `− 1

k

]]
k+`−m∑
i=0

(−1)i
(k + `− i)k−1

i!(k + `−m− i)!
,

thus it will suffice to show that

`−1∑
k=0

(−1)k+`−1

[[
k + `− 1

k

]]
k+`−m∑
i=0

(−1)i(k + `− i)k−1

i!(k + `−m− i)!

is equal to
2`−m∑
p=1

[[
2`− p− 1

`− p

]]
2`−m−p∑

i=0

(−1)i+p+1(2`− p− i)`−p−1

i!(2`−m− p− i)!
.

This is readily seen by setting k = `− p.

Proof of Theorem 1.6. We need to prove that En,` = Ẽn,` for all n ≥ ` ≥ 1. We fix ` ≥ 1 and

proceed by induction on n. If n = ` = 1, we can verify the equality directly. Otherwise we have

n ≥ 2, so Equation (5.1) and Lemma 5.2 tell us that{
n

`

}
E`,` +

{
n

` + 1

}
E`+1,` + · · ·+

{
n

n

}
En,` = Cn,` =

{
n

`

}
Ẽ`,` +

{
n

` + 1

}
Ẽ`+1,` + · · ·+

{
n

n

}
Ẽn,`.

By our inductive hypothesis, we can conclude that En,` = Ẽn,`.
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