16 Sept. 1981 gas analysis from Mt. St. Helens (Gerlach and Casadevall, 1986). Compute CTS in this run. GASRUN Demonstration 7. < ERPC >< FO2log >< UNACT >< GASTOT >< tempC >< PF >< RAT > .10000E-110.0000E+000.0000E+00.10000E+02.67000E+03.10000E+01-.3000E+03 BSTO NTEM NMTT NMOL IGAM NLOO NSUN IPRI ITRE 42 0 1 0 0 90 0 0 0 saq> < name > < mtot >< mtry >< gamma > 1 H2 0.263840000E-01 0.100000000E-01 1.0000 2 H2O 0.986446580E+02 0.890000000E+00 1.0000 3 CO2 0.914321000E+00 0.700000000E-01 1.0000 4 H2S 0.210000000E+00 0.110000000E-01 1.0000 5 HCl 0.890000000E-01 0.590000000E-02 1.0000 Gerlach T. and Casadevall T. (1986) Evaluation of gas data from high-temperature fumaroles at Mount St. Helens, 1980-1982. Jour. Volcanol. Geotherm. Res., v. 28, p. 107-140. On CTS: "One of the most useful ways to evaluate equilibrium in volcanic gas samples is to calculate correspondence temperatures (CTs). CTs are the temperature at which the analytical concentration is equal to the calculated fugacity. If the CTs for all gas species agree at a reasonable temperature, that is good evidence that the gas is an equilibrium mixture (Le Guern et al., 1982; Gerlach and Casadevall, 1986). If the CTs do not agree, then the specific way in which they disagree may help diagnose the reason(s) for disequilibrium in the sample (Gerlach 1980a,b; Le Guern et al., 1982; Gerlach and Casadevall, 1986)."