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ABSTRACT

APPLICATIONS OF MULTICOMPONENT CHEMICAL EQUILIBRIA TO YOLCANIC
GASES AT AUGUSTINE VOLCANO, YOLCANIC HALOGEN EMISSIONS, AND

VOLCANOLOGICAL STUDIES OF GAS-PHASE TRANSPORT

Dynamic chemical processes in multicomponent volcanic-gas systems were
studied using a thermodynamic modeling approach by changing the bulk composition,
temperature, or pressure in small increments. To constrain the calculations, a
thermochemical data base of >1000 species of gases, solids, and liquids in a 42 element
system was compiled. This data base interfaces with computer programs {modified from
Reed, 1982) that calculate multicomponent homogeneous and heterogeneous chemical
equilibrium in gas-solid-liquid systems.

Applications of the modeling to the 9/81 Mount St. Helens volcanic gases are
shown. Constraining the model with samples of gases, sublimates, and magmas from the
volcano, the model computes: (1) the amounts of trace elements degassed from magma,
and (2) the solids that fractionate from the gas upon cooling. Then the model’s
predictions were tested by comparing them with the measured trace-element
concentrations and the observed sublimate sequence. Using this approach, tﬁe following
conclusions are reached: (1) most trace elements are volatilized from dacite magma as
simple chlorides (e.g., CuCl, AgCl, CsCl) or other types of gas species (e.g., HyMoOy,,
AuS, Fe(OH),, Hg, HjSe); (2) some elements (e.g., Al, Si) exist as rock particles-not
gases-in the gas stream; (3) near-surface cooling of the gases triggers sublimation of
oxides (e.g., magnetite), sulfides (e.g., molybdenite), halides (e.g., halite), tungstates (e.g.,
ferberite), and native elements (e.g., gold); (4) equilibrium cooling of the gases to 100°C
causes most trace elements, except for Hg, Sb, and Se, to fractionate from the gas by

sublimation,
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The thermochemical modeling approach was also used to study volcanic halogen
emissions. This work shows that HCI and HF are the overwhelmingly dominant species
of CI and F in volcanic gases. It also shows that large explosive volcanic eruptions may
inject significant amounts of HCl and HF into the stratosphere and that passively
degassing volcanoes are a major source of tropospheric HF.

Finally, the thermochemical models were used to understand the origin and
speciation of trace elements in high-temperature, HCl-rich gases collected from
Augustine volcano after the spring-1986 eruptions. The study shows that the HCl-rich
Augustine gases are very favorable for volatilizing metal chlorides (e.g., FeCl,, NaCl,

KCl, MnCl,, CuCl) from magma.
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Chapter 1

Calculation of Muticomponent Chemical Equilibria in Gas-Solid-Liguid Systems:
Thermochemical Data and Applications to Studies of High-temperature Volcanic

Gases with Examples from Mount St. Helens.



ABSTRACT

A thermochemical data base, GASTHERM, has been compiled to interface with
our computer programs (Reed and Symonds, 1990) that calculate multicomponent
chemical equilibrium in gas-solid-liquid systems. GASTHERM contains coefficients for
calculation of the equilibrium constants, K, from 259-1200°C for derived-species
reactions that are defined by a chosen set of thermodynamic components. GASTHERM
includes >1000 species of gases, solids, and liquids in the 42 element system.

Dynamic chemical processes in 30-40 component volcanic-gas systems can be
modeled with our programs and data base by changing the bulk composition,
temperature, or pressure in small increments. Examples of such calculations for the 9/81
Mount St. Helens volcanic gases are shown. Constraining our model with samples of
gases, sublimates, and magmas from the volcano, we predict: (1) the amounts of trace
elements degassed from magma, and (2) the solids that fractionate from the gas upon
cooling. We then test the model's predictions by comparing them with the measured
trace-element concentrations and the observed sublimate sequence. Using this approach,
we reach the following conclusions: (1) most trace elements are volatilized from dacite
magma as simple chlorides (e.g., CuCl, AgCl, CsCl) or other types of gas species (e.g.,
H2M004, AuS, Fe(OH)z, Hg, HZSe); (2) some elements (e.g., Al, Si) exist as rock
particles-not gases-in the gas stream; (3) near-surface cooling of the gases triggers
sublimation of oxides (e.g., magnetite), sulfides (e.g., molybdenite), halices (e.g., halite),
tungstates (e.g., ferberite), and native elements (e.g., gold); (4) equilibrium cooling of the
gases to 100°C causes most trace elements, except for Hg, Sb, and Se, to fractionate

from the gas by sublimation.
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INTRODUCTION

High-temperature volcanic gas systems are chemically and physically complex;
they contain significant concentrations of 30 to 60 elements that are subjected to a wide
range of temperature and pressure conditions. Most high-temperature volcanip gases
originate from degassing magma. In route to the surface, however, these magmatic gases
may cool, erode and entrain rock particles, react with the wall rock, and mix with
crustal gases such as boiled meteoric water, seawater, or metamorphic fluids. As the
volcanic gases cool and mix with other gases, sublimates and acid droplets form; they
may nucieate on the walls of the vent or in the gas stream as particles, Incrustations
may also form by gas-rock or liquid-rock reactions if this gas-solid-liquid mixture
reacts with the wall rock. Finally, this complex solution of gases and particles escapes
from volcanic fumaroles where the gases are shocked by additional cooling and mixing
with atmospheric gases.

At present, it is only possible to sample volcanic gases or their reaction products
after they have reached volcanic fumaroles or mixed with the atmosphere; even then,
sampling methods only allow incomplete snapshots of the ensuing chemical reactions.
These natural samples provide direct information on the major gas species (H,0, CO,,
CO, SOZ, H,S, Hz, HCI, HF), the concentrations of trace elements (e.g., Cu, Zn, Pb, Ir,
Se), the speciation and zoning of sublimates (e.g., halite, sylvite, molybdenite, native S)
and other types of incrustations (e.g., gypsum, hematite) around volcanic vents, and the
speciation of particles in volcanic plumes.

Without further analysis, however, such data do not tell us (A) whether the
sampled gases are direct products of magma degassing or whether the gases come from
some other source, (B) if the gases were once in equilibrium, (C) the molecular form of
the trace gases, or (D) the chemical reactions that occur in volcanic gas systems.
Thermochemical modeling can be used to (1) determine whether the concentrations of

trace elements in volcanic gases can be explained by the predicted concentrations of
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trace elements volatilized from magma; (2) test the equilibrium hypothesis; (3) predict
the distribution of trace species (e.g., COS, NaCl, AsS) in the volcanic gas; (4) identify
the reactions which control the origin and zoning of sublimates and other types of
incrustations; and (5) predict the reactions that control the origin of particles in volcanic
plumes.

The ideal thermochemical model would consider every possible reaction between
gases, solids, and liquids in 30- to 60-component volcanic gas systems; it would
incorporate the thermochemical properties of all possible species. Although limited by
available thermochemical data, it is possible to approximate such a comprehensive model
by compiling the large amount of modern thermochemical data, attempting to include
the most abundant or probable species of every component under consideration. Many
of the first thermochemical models of volcanic gases (Ellis, 1957; Heald, Naughton, and
Barnes, 1963; Gerlach and Nordlie, 1975) were limited to chemical equilibrium of gases
in the C-0-H-S or C-O-H-S-CI-F systems, the dominant elements in terrestrial volcanic
gases. [Early modeling studies that did include more components (Krauskopf, 1957:
Krauskopf, 1964; Naughton and others, 1974), were hampered by now-obsolete
thermochemical data and relatively simple computer models.

Recent studies (Symonds and others, 1987; Le Guern 1988; Quisefit and others,
1989) use more versatile models that consider hundreds of gas, solid, and liquid species
in 30-40 component systems; they also take advantage of the vastly improved quality and
quantity of recent thermochemical data. Most of these studies, however, have used
thermochemical modeling as a small part of their overall study; details of the modeling
and documentation of the large thermochemical data bases have not been included in
past communications. The purposes of this work are three-fold: (1) document the
thermochemical data base; (2) describe the many applications of multicomponent

thermochemical models to volcanic gas systems; and (3) evaluate the quality of our
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modeling results. A companion paper (Reed and Symonds, 19%0) describes the computer

programs, SOLVGAS and GASWORKS, used for these calculations.

NUMERICAL MODELS

Numerical calculation were done with SOLVGAS and GASWORKS, computer
codes for calculating homogeneous and heterogeneous equilibrium, respectively, in ideal
gases. A complete description of these programs is given elsewhere (Reed and Symonds,
1990). Both programs accommodate minor and trace components (transition metals, etc.)
and species in addition to the major ones (those in the C-0-H-S$-CI-F system), and
provide for strict oxygen mass balance, allowing calculation of the oxygen fugacity at
any pressure and temperature. The programs consider hundreds of gas, solid, and liquid
species in systems of up to 42 components as a function of temperature and pressure
using the basic formulations of equilibrium calculations of Reed (1982) modified by
Reed and Symonds (1990) for gases. The calculations are constrained by thermochemical
data (below) and consist of solving simultaneously a series of mass balance and mass
action equations using a Newton-Raphson method.

Both the homogeneous and heterogeneous equilibrium models calculate the
distribution of all possible gas species (of those included in our data base) for a given set
of components. In contrast of homogeneous equilibrium, computing heterogeneous
equilibrium involves a selection process whereby only supersaturated solids and liquids
are equilibrated with the gas. To choose the supersaturated solids and liquids from many
possible ones, GASWORKS calculates for each solid and liquid a saturation index,
log(Q/K), where Q is the calculated activity quotient and K is the appropriate
equilibrium constant {Reed, 1982; Symonds and others, 1987). After incorporating any
supersaturated (log(Q/K) > 0.0} solids and liquids, GASWORKS computes heterogeneous
equilibrium and then, once again, tests for supersaturated phases. This process is

repeated until the overall equilibrium assemblage is identified. Therefore, the computed
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gas, solid, and liquid species are truly the most stable ones of those considered given the
various input parameters.

These models have been applied previously to the volcanic gases, condensates,
and sublimates at Merapi Volcano, Indonesia (Symonds and others, 1987); the speciation
of Cl and F in volcanic gases (Symonds and others, 1988); the possible gas-phase
transport of Hg, As, and Sb in geothermal systems (Spycher and Reed, 1989), the
restoration of the 1979-1987 Augustine gas samples (Symonds and others, 1990;
Kodosky, Motyka, and Symonds, 1990); the speciation of Mo, W, and Re in magmatic
fluids (Bernard, Symonds, and Rose, 1990); and to the speciation and origin of trace
elements in Augustine volcanic gases (Symonds, Reed, and Rose, 1950).

Assumptions and Uncertainties.-The thermodynamic calculations are done
assuming equilibrium, although the extent to which equilibrium applies to volcanic gases
in not entirely known. Another uncertainty is whether the quality and quantity of
thermochemical data is sufficient to predict the most stable gas, mineral, or liquid
species. One reason for doing these calculations is to test these assumptions.

Thermodynamic evaluations of high-temperature (> 500°C) volcanic gases are
consistent with initial equilibrium for the major gas species (H,0, H,, CO,, CO, H,S,
80,, HCl, HF) at or above the measured temperature at the collection site (Gerlach,
1980a, 1980b; Gerlach and Casadevall, 1986a). The relevance of the equilibrium to trace
species in high-temperature volcanic gases can be also evaluated thermodynamically by
comparing numerical calculations with the observed fumarole sublimates and the
measured contents of trace elements in volcanic gases (Symonds and others, 1987). Since
the models can be used to predict the speciation and zoning of solids, a good match with
the observed sublimate sequence is evidence for the validity of the equilibrium model.
A good agreement between calculated volatilities and the analyzed concentrations of
trace elements in the volcanic gases also supports the equilibrium degassing model. Such

comparisons at Merapi Volcano suggest that the equilibrium calculations do provide a



7

means to understand the natural process, even though the calculations do not exactly

reproduce the observed results (Symonds and others, 1987).

THERMOCHEMICAL DATA

The validity of numerical calculations from SOLVGAS and GASWORKS ‘depend
on the quality and quantity of the thermochemical data. Large uncertainties or missing
species in the thermochemical data base can lead to erroneous computations of the
distribution of gas species. By testing the models on well-constrained systems, we can
identify imperfections in the thermochemical data.

Reference States and Conventions.-We chose 298.15°K and 1 atmosphere pressure
as the standard state for the thermochemical data. For each species, we obtained values
for the standard enthalpy of formation from the elements, Afl-lo, and the standard
entropy, S°, both at 298.15°K and 1 atmosphere pressure; for some solid species (from
Robie, Hemingway, and Fisher, 1978; Helgeson and others, 1978; Berman, 1988), we
used the reported values at 298.15°K and 1 bar pressure. We also obtained a constant-
pressure heat capacity equation, generally of the form:

Cop =a+bT + cT'z. (1)
where, C°p is the standard heat capacity at constant pressure, T is temperature (°K),
and a, b, and ¢ are constants; for some species, a fourth term, d'rz, was added to
equation (1). Heat capacities for some solids (those from Berman and Brown, 1985, and
Berman, 1989) were described by a different equation:
O = ko + kT 054 kT2 4 kT3, (2)

where ko' k I kz, and k3 are constants. When an appropriate heat capacity equation was
not available, tabulated heat capacity data were fit to equation (1) using least-squares
regression.

Thermochemical data for the elements were taken from Pankratz (1982). In

general, we used the most stable form of each element at 298.15°K and 1 atmosphere
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pressure as the reference state; exceptions are S, Se, and Te for which we used the
nonstandard reference states of Sz(g), Se, (g), and Teo(g) for convenience because they
are used by Pankratz (1982).

Finally, we calculated the standard Gibbs free energy of formation from the

elements, ArGo. at 298.15°K and 1 atmosphere pressure using the equation:
AgG? = AGHO - TAS, (3)
where AgS was calculated using S° data for the elements from Pankratz (1982).

Sources of data.-For each gas, liquid, and solid species included in the
calculations, we attempted to use the most recent thermochemical data. Thermochemical
data for gas, solid, and liquid species were obtained from the U.S. Bureau of Mines
(Decock, 1982; Pankratz, 1982, 1984; Pankratz, Stuve, and Gokcen, 1984; Pankratz, Mah,
and Watson, 1987); the JANAF thermochemical tables (Stull and Prophet, 1971; Chase
and others, 1974, 1975, 1978, 1982); Barin and Knacke (1973); Barin, Knacke, and
Kubaschewski (1977); Berman and Brown (1985); Berman (1988); Robie, Hemingway and
Fisher (1978); Helgeson and others (1978); and Anovitz and others (1985). The specific
source for each species is listed in Table 1 and in the Appendix.

Methods.-For each of the 42 elements included in the calculations, it is necessary
to choose a component gas species. In theory, the choice of component gas species is
arbitrary; regardless of the component species chosen, the final calculated distribution of
species will be the same if the equations can be solved. With the numerical limitations
of modern computers (e.g., precision shortcomings, constraints on the size of exponents),
however, the choice of component gas species makes a difference in the computer’s
ability to solve the equations with speed and accuracy. Therefore, we chose the
dominant, or at least one of the more abundant, gas species of each element in high-
temperature volcanic gases as the component species (Table 1). Qur component species
(Table 1) are best suited for computations involving reduced volcanic gases; equilibrium

calculations involving oxidized or halogen-poor systems (e.g., underground coal fires),
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Table 1. Component gas species presently used in GASTHERM. Listed in
order of increasing atomic number.

Element Component Gas Species Reference
! H H Pankrantz (1982)
2 Li Ll%l Pankrantz (1984)
3.aC CO, Pankrantz (1982)
4 N Ny Pankrantz (1982)
5 0O H,0 Pankrantz (1982)
6 F H Pankrantz (1984)
7 Na NaCl Pankrantz (1984)
8§ Mg MgCl, Pankrantz (1984)
9 Al AlF, Pankrantz (1984)
10 Si SiF Pankrantz (1984)
11 § H g Pankratz, Mah, and Watson (1987)
12 Cl HCl Pankrantz (1984)
13 K KCl Pankrantz (1984)
14 Ca CaCl, Pankrantz (1984)
15 Ti TiF, Pankrantz (1984)
16 V VCl, Pankrantz (1984)
17 Cr CrClI Pankrantz (1984)
13 Mn MnCl, Barin and Knack (1973)
19 Fe FeCl Pankrantz (1984)
20 Co CoCl, Pankrantz (1984)
21 Ni NiCl Pankrantz (1984)
22 Cu CuC Pankrantz (1984)
23 Zn ZnCl, Barin and Knack (1973)
24 Ga GaCl, Pankrantz (1984)
25 As AsCly Pankrantz (1934)
26 Se H,Se Barin, Knack, and Kubaschewski (1973)
27 Br HBr Pankrantz (1984)
28 Rb RbCl Pankrantz (1984)
29 Sr SrCl Pankrantz (1984)
30 Mo szf004 Stull and Prophet (1971)
31 Ag AgCl Barin and Knack (1973)
32 Cd Cd Pankrantz (1982)
33 8n SnClz Pankrantz (1984)
34 Sb SbCly Pankrantz (1984)
35 Te H,Te Barin, Knack, and Kubaschewski (1973)
36 Cs CsCl Pankrantz (1984)
7w HoWO, Stuit and Prophet (1971)
38 1Ir Ir Pankrantz (1982)
39 Au Au Pankrantz (1982)
40 Hg Hg Pankrantz (]1982)
41 Pb PbCl, Pankrantz (1984)
42 Bi BiCly Pankrantz (1984)
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might require different component species. Changing component species is accomplished
by simply combining the appropriate log K equations (below), =although additional
modification of SOLVGAS and GASWORKS are required to change the components
species for H (Hz) and O (H5O) since they are used to fix the 0, fugacity (see Reed
and Symonds, 1990).

For every component, we have included all the derived gas species for which we
could find thermochemical data at the time of this compilation. Our compilation of
solid and liquid species, although very substantial, is somewhat less comprehensive as we
have not included every possible species. The data base, GASTHERM, presently
incorporates 627 gas species and 398 solids and liquids in the 42 component system
(Appendix).

To calculate the distribution of gas, solid, and liquid species, we need the
equilibrium constant, K, for the reaction between each derived species and its respective
component species. First, we calculated the apparent standard Gibbs free energy of
formation from the elements, AaGT, of the ith species involved in each reaction at one
atmosphere pressure and at a given temperature, T (°K.). using the equation:

A,GT = AGC - (T-T)AFS + f1<-:°pcrr - j."(-Cop/T)dT, )
where Tr is 298.15°K and C°p is describedr using e-cll-{lations (1) or (2). Then, we
calculated the standard Gibbs free energy for the reaction, ArGT, at the same
temperature, T, with the equation:
8GT = mva,GT, (5)
where AaGT is given in equation (4) and Vi is the stoichiometric coefficient of ith
species in the reaction. Finally, we calculated the logarithm of the equilibrium constant
for the reaction, log K, at the temperature, T, with the equation:
log K = -A,GT/(2.303RT), (6)

where R is the gas constant.
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Values for log K calculated at 298.15°K (25°C) and from 373.15°K (100°C) to

1473.15°K  (1200°C) at 100°K (100°C) increments are stored in a data file,
GASTHERM, for use in our programs. To obtain log Kt values at any arbitrary
temperature over the range of data validity, it is most convenient (requires fewer
calculations) to use a function for log K rather than calculating them each time using
equations (4) through (6). Substituting equation (1), our dominant heat capacity
equation, for C‘:'p into equation (4) and combining terms in equations (4) through (6),
results in an expression for log K of the form:
log K = [, + ;T 4 15T + 15772 4 1 Jlog(T) (1),

where Ia, ! pial 3. and [ are constants. To fit the computed log K values to equation
(7), we used least-squares regression. The coefficients for equation (7), lo, Iy 1 13.

and /4, for each derived species reaction in GASTHERM are tabulated in the Appendix.
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