/479 é‘f"fﬁ/{é [tx 7 U
%? Pl Wi Al

In the last refation of Eq (3.14) we have expressed the differences as forward
differences to agree with our lozenge-diagram notation, using V" = E™"A". We
shall use symbolic methods to derive derivative formulas in the next chapter,

174 Interpolating polynomials

3.8 INTERPOLATION WITH NONUNIFORMLY SPACED x-VALUES

When the x-values are not evenly spaced, our methods of writing an interpolating
polynomial fail. A parallel development using the concept of divided differences®
is possible, but perhaps the simplest approach is the Lagrangian polynomial, Data
where the x-values are not equispaced often occur as the result of experimental
observations, or when historical data is examined.

Suppose we have a table of data, of x- and f(x)-values:

x flx)
X1 fi
Xa fa
Xz fa
Xy fa

Here we do not assume uniform Ax, nor do we need the x-values arranged in
a particular order. The x-values must all be distinct, however. Through these four
data pairs we can pass a cubic. The Lagrangian form for this is:

(x = x){x — x:5)(x — x) f
(xz - xl)(xz - x3)(x2 - Xg) ?

(x = x)(x — x3)(x — x4}
(2 — x5)(x; — x3)(x1 - x4)

Pylx) = fit

(x — x)(x — x,)(x — x3)
(xa — x)(xq — 2)(x4 — x3)

(x = x:){x — x)x ~ x,) !
(x5 — X3 — %M — x2) >

4.

Note that it is made up of four terms, each of which is a cubic in x; hence the sum
is a cubic. The pattern of each term is to form the numerator as a product of
linear factors of the form {(x — x,), omitting one x; in each term, the omitted value

* The first-order divided difference relative to x-values x, and x, is defined as fx,, x,] =
[f(x:} = flxo)}(x, — x5). The higher-order divided differences are defined in terms of the
lower-order differences:

Flxas %1, Xo] = M ,
X — Xa

_ f[x3: X2, xl] = Fl%a, %1, Xo]
FIxs, X0, %3, %0d = .

Xg — Xy

The Newton interpolating polynomials can be written in terms of these divided differences
in the fashion of Section 3.3. When the x-values are evenly spaced, the formulas are
identical.

+ factors, In each term, we multiply by the f, corresponding to the x, omitted in the

- numerator factors. The Lagrangian polynomial for other degrees of interpolating

» polynomials employs this same pattern of forming a sum of polynomials all of the
desired degree. '

Ol 18- 28

3.8 Interpolation with nonuniformly spaced x-values 175

being used to form the denominator by replacing x in each of the numerator

Example Interpolate for f(2.3) from the table:

x flx)
£ 106
177 152
30 203

With only three pairs of data, a quadratic is the highest~degree polynomial
possible. It is:
(x — 1.7z — 3.0)
(L1 -17(1.1 — 3.0
(x—1LDx-17
(3.0 -1.D)3.0-17

At x = 2.3, we get P,(2.3) = 18.38.
The arithmetic in this method is tedious, although electronic calculators are

convenie.nt for this type of computation. A computer program at the end of this
chapter implements the method. : .

_ We develop the error term in the same way as in Section 3.6. Write E(x) to
exhibit the fact that the error of P,(x) is zero at the 1 + 1 values of x that are
fitted exactly:

E(x) = flx) — P.(x) = (x — x){(x — X} {x - xm—l)g(x)'
The auxiliary function W(z) is '
W) = f(£) - P.(8) = (¢ — x)(t — x,) oot) g(x).

Wft) =0fort=1x,%,...,x5, ,andatf = x,foratotal of n + 2 zeros. Hence
W(5) has n zeros, W"{r) has n - 1 zeros, . . ., W*D(1) has one zero. Let & be
the value of ¢ at which W*9(y) = 0. Hence,

W(n+1)(€3) = 0= fmD(g) — 0 — (n + Dlg(x),

(x — 1L.D(x = 3.0)

Py(x) =
(1.7 — 1L.1)1.7 -:\3.0)

(10:6) +

(15.2)

(20.3).

ey
glx) = (n+ D"
The error is then
E(O) = (6 — x)(x ~ x)- - (x — 3o & (3.15)

(n+ 1)t

176 Interpolating polynomials

The interval containing £ lies between the largest and smallest of the x; for
interpolation. The error can be bracketed between a maximum and a minimum
value only if we have information on the (n + L)st derivative of the actual
function fix).

3.9 INVERSE INTERPOLATION

Suppose we have a table of data such as in Table 3.6, and we are required to find

the x-value corresponding to a certain value of the function, say at y = 5.0. We

have two approaches. We can consider the y’s to be the independent variable
(unevenly spaced) and interpolate for x with a Lagrangian polynomial. Doing so
gives x = 2.312. This technique is straightforward, but in some instances gives
poor results, the reason being that x considered as a function of y may not be well
-approximated by a polynomial. This may be true even though y itself behaves
quite like a polynomial. (Try inverse interpolation among three or four points on
the function y = %, especially for y-values outside the given range.}

Table 3.6
x y Ay A%y Aty Aty

1.6 2.3756
0.8926

1.9 1.2682 0.2963
1.1889 0.1079

22 4.4571 0.4042 0.0365
1.5931 0.1444

2.5 6.0502 0.5486
2.1417

2.8 8.1919

The second method is to write y as a polynomial in x and then use the
methods of Chapter 1. This will generally make it necessary to multiply out the
interpolating polynomial so as to express the function in- the usual polynomial
form. If we use the Gauss forward polynomial, with x, = 2.2, we have

(s)s — 1)

yo = Palx) = 4.4571 + s(1.5931) + “————(0.4042)

(s+ Ds)Xs— 1
L E—

N (s + 1)(s)(s — 1)(s — 2)
24
= (0.00152s* + 0.02103s> + 0.20065% + 1.3700s + 4.4571.

(0.1444)

(0.0365)

3.9 Inverse interpolation 177

[We have left the polynomial in terms of § to save work; after determining the

value of s corresponding to y = 5.0, we get x from s = {(x — 2.2)/0.3] The
polynomial of Eq. (3.16) could, of course, be determined through the Lagrangian
‘polynomial, but the arithmetic effort is much greater. To complete the problem,
we must find the root near zero of a fourth-degree polynomial in s, which is rather
tedious.

The equivalent of this second technique for inverse interpolation can be
accomplished more readily by the method of successive approximations. Cur
Gauss forward polynomial is

s(s = 1)

(s + D(s)s — 1) N

Yo = Yo +. sAy, + 5 A%y, + 6 -1
(s + 1})s — Dis — 2)
-} 4

24 A%y

We rearrange to solve for s in the second term:
_ 1 £y, APy,
S = Ay, [ys Yo = sls = D= = (s + DOYs — H——

Ay,
— (s + 1)(&‘)(3 - D5 — 2)"“2T . ' (317)

The method of successive approximations finds s by first neglecting all the terms
in 5 on the right, to give

N i

- 6.0502 — 4.4571

5y

(5.0 — 4.4571) = 0.34.

The second approximation is obtained using s, on the right side of Eq. (3.17),
including now one more term: '

o = 1

* o 1.5931

[5.0 — 44571 — (0.34)(0.34 — 1)t0.2021)] = (.369.

The next approximation uses s, on the right and picks up another term:

1
= 5937 50 — 44571 — (0.369)(~0.631)(0.2021)

83
~ (1.369)(0.369)(~0.6310.02407)] = 0.375.

In the same fashion, s, = 0.3748, giving
x = 2.2 +(0.3)(—0.3748) = 2.31244,

(The data in Table 3.6 are for y = sinh x. Substitution in the hyperbolic sine

function gives sinh (2.31244) = 5.00001.)

178 Interpolating polynomials

3.10 POLYNOMIAL INTERPOLATION IN TWO DIMENSIONS

When a function u is a polynomial function® of two variables x and y, say of
degree three in x and of degree two in y, we would have
U= flx,y) = ag + a;x + a,y + ax> + axy + a;y7 + a.x°

+ @ X%y + agxy® + apx®y + ax%y* + ax*y: (3.18)
The functional relation is seen to involve many terms. If we are concerned with
four independent variables (three space dimensions plus time, say), even low-
degree polynomials would be quite intractable. Except for special purposes, such
as when we need an explicit representation, perhaps to permit ready differentia-
tion at an arbitrary point, we can avoid such complications by handling each
variable separately. We shall treat only this case.

Note the immediate simplification of Eq. (3.18) if we let y take on a constant

value, say y = y;. Combining the y factors with the coefficients, we get

uly_. = b + bix + byx? + byx”.

This will be our attack in interpolating at the point (&, b} in a table of two
variables—hold one variable constant, say y = y,, and the table becomes a
single-variable problem. The above methods then apply to give f(a, yi). If we
repeat this at various values of ¥, ¥ = vy, ¥a, - .., ¥, we will get a table with x
constant at the value x = g and with y varying. We then interpolate at y = b,

Example Estimate f(1.6,0.33) from the values in Table 3.7, Use quadratic
interpolation in the x-direction and cubic interpolation for y. We select one of the
variables to hold constant, say x. [This choice is arbitrary since we would get the
same result (except for differences due to round-off) if we had chosen to hold y
constant.] We decide to interpolate for y within the three rows of the table at
x = 1.0, 1.5, and 2.0 since the desired value at x = 1.6 is most nearly centered
within this set. We choose y-values of 0.2, 0.3, 0.4, and 0.5 so that y = 0.33 is
ceniralized. The shading in Table 3.7 shows the region of fit for our polynomials.

Table 3.7 Tabulation of a function of two variables, u = f(x, y).

Y
x 0.1 0.2 0.3 0.4 0.5 0.6

0.5 0.165 0.428 0.687 0.942 1.190 1.431
1.0 0.271 | oa 0 2.035
15 0.447 3.031
2.0 0.738 4,672
2.3 1.216) 7.379
3.0 2.005 10.030 11.841
3.5 3.306 6.679 9,936 13.196 16.277 19.198

* We approximate a nonpolynomial function by a polynomial that agrees with the function,
just as we have done with a function of one variable,

3.10 Polynomial interpolation in two dimensions 179

We may either.use Lagrangian interpolation or derive the interpolated values
using the lozenge diagram, Fig. 3.1 after making difference tables. Let us use the
later method:

y u Au Ay Ay
0.2 0.640
0.363
0.3 1.003 -0.007
x =10 0.356 -0.005
0.4 1.359 -0.012
0.344
0.5 1.703
0.2 0.990
0.534
0.3 1.524 -0.013
x =151 0.521 —0.004
0.4 2.045 -0.017
0.504
0.5 2.549
(0.2 1.568
0.816
0.3 2.384 -0.023 _
x =20 0.793 -0.004
0.4 3.177 ~0.027 :
0.766
0.5 3.943

.. We neeq the subtablgs from y = 0.2 to y = 0.5 since, for a cubic interpola-
{tion, f(_)ur points are required. Using any convenient path through the tables with
coefficients given by the lozenge, we arrive at the results:

x U Au Au
1.0 1.1108
0.5710
y=0.334{1.5 1.6818 0.3717
0.9427
2.0 2.6245

In the {ast tabulation we carry one extra decimal to gnard against round-off
eITOTS. Int~erpo‘latmg again, we get u = 1.8406, which we report as u = 1.841. '
The function tabulated in Table 3.7 is flx,y) = e*siny + y — 0.1, so the

: tl“ue value is f(1.6, 0.33) = 1.8350. Our error of —0.006 occurs because quadratic

130 Interpolating polynomials

interpolation for x is inadequate in view of the large second‘ difference: In
retrospect, it would have been better to use quadratic interpolation f(?r ¥y, since
the third differences of the y-subtables are small, and let x take on a third-degree
relationship. '

It is instructive to observe which of the values in Table 3.7 entered into our
computation. The shaded rectangle covers these values. This i:“? th.e “region of f'it”
for the interpolating polynomial that we have used. The pnr}clple o.f choosing
values so that the point at which the interpolating polynomial is used is centered
in the region of fit obviously applies here in exact analogy to the one-way table
situation, Tt also applies to tables of three and four variables in the same way. Of
course, the labor of interpolating in such multidimensional cases soon becomes
. burdensome.

A rectangular region of fit is not the only possibility. We may change thg
degree of interpolation as we subtabulate the different rows or columns. Intui-
tively, it would seem best to use higher-degree polynomials for the rows near'the
interpolating point, decreasing the degree as we get farther away. The coefficient
of the error term, when this is done, will be found to be minimized thereby,
though for multidimensional interpelating polynomials the error term is quite
complex. The region of fit wili be diamond-shaped when such tapered degree
functions are used.

We may adapt the Lagrangian form of interpolating polynomial to the
multidimensional case also. It is perhaps easiest to employ a process similar to the
above example. Holding one variable constant, we write a series of Lagrangian
polynomials for interpolation at the given value of the other variable, and tt}en
combine these values in a final Lagrange form. The net result is a Lagrangian
polynomial in which the function factors are replaced by Lagrangian polynomials,
The resulting expression for the above example would be:

(v — 0.3}y — 0.4}y — 0.5)
(0.2 20302 = 0402 - 0.5)

(x — 1.5}x — 2.0} (x — 1.0} —2.0) (x.— 1.0)(x — 1.5) 1568
X[HD—LQUO—lmmﬁM)+Uj—1mﬂj—lmw9%)+aﬂwLmQﬂgLﬂ(ﬂ
(y — 0.2)(y — 0.4)(y — 0.5}
(0.3 — 0.2)(0.3 — 0403 — 0.5
(x — 1.5)(x — 2.00 (x — LO¥x —2.0) {x ~ 1L.0)(x — 1.5 2,384
[ﬂﬂ—Lﬁuﬂ—zmuﬂmy+ﬂj—Lmuj—lma5M}W10—Lm@0~L$(ﬂ
(y ~0.2)(y ~ 0.3)(y — 0.5)
0.4 0.2)04 - 0.3)(04 — 05) ,
(x - L5)x — 2.0) (s — 10 — 2.0 G 10 =18 o
[Gﬂ—Lﬁﬂﬂ*lmuﬁwy+057Lmﬂjflmeﬂﬁ)+&ﬂfLmQD—Lﬂ(ﬂ

(-0 - 03)y - 0.4)
0.5~ 0.2)(05 — 0305 — 04
[(x — 1.5}x — 2.0)

110 = 1510 = 2.0)

{x - 1L0O){x —-1.9)
2.0 — 1.0}2.0 — 1.5)

{x — 1.0)(x — 2.0}
(1.5 —1.0)(1.5 —2.0)

(1.703) + (2549)+{

@M@}

3.11 Interpolation in a com,ter program 181

The equation is easy to write, but its evaluation by hand is laboricus. If one is

_“'writing @ computer program for interpolation in such multivariate situations, the
:“Lagrangian form is recommended. There is a special advantage in that equal

spacing in the table is not required. The Lagrangian form is also perhaps the most

_ straightforward way to write out the polynomial as an explicit function.

The cubic spline {described in Chapter 10) could also be used to interpolate

~ in multivariate tables. Here again holding all but one variable fixed so that a series

of one-way table problems is solved is perhaps the best approach. The computa-

-tional effort to employ spline interpolation would be very severe.

3.11 INTERPOLATION IN A COMPUTER PROGRAM

The first of the following subroutines (Program 1, Fig. 3.2) interpolates using the
Lagrangian form of interpolating polynomial. The coefficients of each term are

- built up as the ratio of (x — x)/(x; — x;) with j varying from 1 to N but omitting

the factor when i = j. Up to a ninth-degree pelynomial can be employed, The x,
y-pairs can be in any order, but the number must be just one more than the
degree of the interpolating polynomial. In other words, a polynomial that fits
exactly through afll N points is used.

Program 2 (Fig. 3.3) employs the Newton—Gregory interpolating polynomial,
again of degree up to nine, to interpolate in a function fabulated with uniform
x-spacing. The differences are computed as they are needed, and a single array is
employed both to compute and to store them, for maximum economy of memory
use. The value of x, is automatically chosen to put the point of interpolation as
near the center of the domain as possible.

SUBROUTINE LAGINT (Xy Y, No XINTy YOUT}

C THIS SUBROUTINE PERFORMS LAGRANGIAM INTERPOLATION WITHIN A SET
C 0OF (Xy Y} PAIRS TQ GIVE THE ¥ VALUE CORRESPONDING TO XINT. THE
C DEGREE OF THE INTERPRIATING FOLYNGMEAL IS OME LESS THAN THE NUMBER OF
£ POINTS SUPPLIED
. PARAMETERS ARE ~
C X ARRLY NF VALUES (OF THE INDEPENDENT VARIARLE
G ¥ ARRAY OF FUNCTION VAILUES CORRESPONDING TO X
C M NUMBER 0OF POINTS
-C XINT THE X=-VALUE FOR WHICH ESTIMATE OF Y 1S DESIRED
C YOUT THE Y~VALUE RETURNED TO CALLER
DIMENSTION X(N}, Y(N}
YOUT = Q.0
N 20 1 = 1,N
TERM = ¥(1)
DO 10 J = 14N
IF {1 LE0. 1) 60 10 10
TERM = TERM#(XINT - X{J))/(X(I) - X{d41)
10 CONTINUE

YOUT = YOUT + TERM

20 CONTINUE)
RETURN !
END

Figure 3.2 Program 1.

DATA tst{keep=x v yinterp):;
SET row; SET col; set mbtrx2;
BRRAY xx{20) rowl-row20;
ARRAY yy {21} coll-colZl; ¢
ARRAY nm(&ytiim.) xnl-xn&y
ARRAY mtx(20,21) mml-mmdZ20;

frst x=&fratx. ; frst y= &frsty. ;

DO =row = O+frst_x to $EVAL (&xdim. -1)+frst_x;
= xx{xrow},
™
1 tof&X: ;

nm{ll} 1; am{tirs=i;
DC Jj = 1 to &ydim. ;
IF {5 ME ii) THEN

DO; nm{ii} = mm{iil*(y - yy{3j+(frst y-1)});
dm{ii} = dm{ii}* (yy{ii+(frst_y-1}} - yy{Ji+(frst y-1)});:
END;
END;
END;
yprd=0;

DO ii = 1 TO gydim. ;
yprd = yprd + (nm{ii}/dm{ii}) * mtx{xrow,iitfrst_v-1};
END;
yinterp = yprd;
QuUTRUT;
END;

proc sort; BY x y;

PROC PRINT data=tst NOcbs; VAR % y yinterp; run;
ﬂ-m__“m\

PROC TRANSPOSE DATA=tst OUT=tr7x(DROP=7name*) prefix=ﬁx; VAR x;
PROC TRANSPOSE DATA=tst OUT=tr vy (drop= name } prefix= y; VAR yinterp;

PROC PRINT DATA=tr x NOobs; run;
PROC PRINT DATA={r y NOobs; RUN;

DATA one; SET tr x; SET tr v;
ARRAY xx (gxciim,) xl- xgud
ARRAY vy (&x] yl- yax
ARRAY znm(&xdim.) xnl-xngx
v= &yds. ;
x= &xds. ;

; BRRAY xdm{&xd) xdl-xdaxdim. ;

DO 1 =1 to &xdim. ;
xnm{i}=1; xdm{i}=1;

DO 3 = 1 to &axdim. ;
IF (j ne 1) THEN
DC; znm{l} = xnm{i}*(x - =®xx{Jj}}:
2dm{il} = xdm{i}* (xx{i} - =x{i}});
END;
END;

END;

estimate=0;
Do 11 = 1 TO &xdim. ;
estimate = estimate + (wnm{ii} / xdm{ii}} * vy {ii};
END;
QUTPUT ;
RUN;

PROC PRINT data=one NOcbs; var x y estimate; RUN;

