Discrete Morse Theory
for Poset Order Complexes
(及其他抽象紧致性复形)

Patricia Hersh, North Carolina State University
(joint work with Eric Babson)
CW Complexes & Their Face Posets

Example:

- K: Ball
- K': Projective Plane (\mathbb{RP}^2)

$F(K)$: Faces

$F(K')$: "Closure poset" or "Face poset"

$(u \leq v \iff u \subseteq \overline{v})$

Recall: A CW complex: cells $e_d = \mathbb{R}^{d+d}$, characteristic maps $f_d: B^{\dim(e_d)} \rightarrow u \in \partial e_d$

attaching maps $f_d|_{\partial B^{\dim(e_d)}}$

- *regular*: f_d's are homeomorphisms
Face Poset Reformulation of Discrete Morse Theory (M. Chari)

Given any regular CW complex Δ, construct an acyclic matching a.k.a. Morse matching on its face poset, i.e.,

an edge orientation s.t. "up edges" give a matching and directed graph has no cycles.

Useful Fact for Proving Acyclicity:

Any directed cycle must alternate "up" & "down" steps
Observations:

1. Discrete Morse fn on Δ induces acyclic matching w/ arrows in direction fn decreases

2. Every acyclic matching on face poset is induced by a nonempty set of discrete Morse fn's

$\Delta^\approx \Delta_M$ a CW complex comprised of the unmatched cells, called critical cells.

E.g., $\circ \approx \bullet$ critical pts of index i
First Examples

1. Boolean algebra of subsets of $\{1,2,\ldots,n\}$, face poset of simplex, matching $S \setminus \Xi \cup \Xi$ with $S \cup \Xi \setminus \Xi$.

Diagram:

- Base pt
- Critical
- O-cell

Matching edge in "reduced homology" version of discrete Morse theory.
2. Any union of acyclic matchings on $F(\Delta_2 \setminus \Delta_1), F(\Delta_3 \setminus \Delta_2), \ldots$, for $\Delta_1 \subseteq \Delta_2 \subseteq \ldots \subseteq \Delta_k = \Delta$ a filtration of subcomplexes is an acyclic matching for Δ

\[\text{e.g.} \quad \bar{F}_1 \subseteq \bar{F}_1 \cup \bar{F}_2 \subseteq \bar{F}_1 \cup \bar{F}_2 \cup \bar{F}_3 \]

3. Shelling \Rightarrow Discrete Morse fn with homology facets as critical cells

(using a 2nd definition of shelling as total order F_1, F_2, \ldots, F_k s.t. each $F_j \setminus \left(\cup_{i<j} F_i \right)$ has unique minimal face)
Critical cell cancellation via Gradient Path Reversal

- Critical cells τ and σ may be cancelled if there is a unique directed path σ to τ (by reversing path to incorporate endpoints)
- Similar to birth/death of homology classes
Shellability

- Simplicial complex is pure of dim. \(d\) if all maximal faces ("facets") are \(d\)-dimensional.
- Simplicial complex is shellable if there is a total order \(F_1, F_2, \ldots, F_k\), a shelling, on facets s.t. \(\overline{F_j} \cap \bigcup_{i < j} F_i\) is pure, codimension one subcomplex of \(\overline{F_j}\) for each \(j \geq 1\) (hence is \(2\overline{F_j}\) or has a cone point).

- Each facet attachment preserves homotopy type or closes off a new sphere.
Examples from RIPS Complexes

- shellable example

- non-shellable example

- shellable example
Defn: The order complex (or nerve) of poset P is the abstract simplicial complex whose i-dim' faces are the poset $(i+1)$-chains $v_0 < v_1 < \ldots < v_i$.

Example:

- $\Delta(F(K)) = sd(K) \cong K$
- Shellable \Rightarrow link of each face homotopy equivalent to wedge of spheres
Question (H.): Is there a good way to "complete the square":

lexicographic shelling => ??

↓ ↓ ↓
shelling => discrete Morse function

to understand posets that fail to be shellable (e.g. not wedge of spheres)?

Proposed Answer: "lexicographic discrete Morse functions"
Lexicographic Discrete Morse Functions: A General Construction
(partly joint work with E. Babson)

Step 1: Any edge labeling on poset P induces lexicographic order F_1, F_2, \ldots, F_m on maximal faces (facets) of $\Delta(P)$.

Example: $P = \{1, 2, 3\}$ with labels $\{5, 4, 7\}$ gives $F_1 = 135$, $F_2 = 147$, $F_3 = 297$.

(Usually not EL-labeling!)
Step 2: Morse matching on each $\overline{F}_j \setminus (u, \overline{F}_i)$ s.t.

1. Each $\overline{F}_j \setminus (u, \overline{F}_i)$ has 0 or 1 unmatched (critical) cells
2. Union of these matchings is Morse matching for $\Delta(P)$

Theorem (Babson-H.) Any edge labeling on any finite poset gives rise to a lexicographic discrete Morse fn \mathfrak{s}.t. critical cells \leftrightarrow facets whose attachment changes the homotopy type of complex.
Description of Critical Cells

"interval system"
\[I \sim \rightarrow J \]

\[\text{critical cell} \rightarrow \text{lowest element of each (truncated) interval} \]

\[\{ \text{Faces in } F_j \} \rightarrow \{ \text{Subsets of ranks in } F_j \text{ that "hit" all intervals in } I\text{-system} \} \]

- \[\{ F_j \setminus (\cup_{i \in j} \bar{F}_i) \} \]
- No critical cell unless truncated interval system J fully covers F_j
Remarks: (1) Lexicographic shellability is a special case with all intervals in I of size one

(2) Saturated chain does not contribute critical cell unless fully covered by J-system

match by include/exclude uncovered rank

(3) Critical cell dimension is $|J|-1$, since it consists of $\{i \mid i = \min(j) \text{ for some } j \in J\}$

(4) Upper bd on interval size for all $F_j \Rightarrow$ lower bd on connectivity of $\Delta(\bar{P})$

(5) Match based on uncovered elt or lowest J-interval differing from critical cell
Truncation Algorithm

Start with interval system I and initialize truncated system J to \emptyset.

E.g. $I = \{ [1,2], [2,3], [3,4] \} \uparrow J = \emptyset$

Repetedly: (1) move $\min(I)$ to truncated system J after truncating all other elements of I to eliminate overlap w/ $\min(I)$

(2) throw away elements of I no longer minimal

E.g.

$I = \left\{ \begin{array}{c}
[1,2] \\
[2,3] \\
[3,4] \\
\end{array} \right\}$

(1) $\rightarrow \left\{ \begin{array}{c}
[3] \\
[3,4] \\
\end{array} \right\}$

(2) $\rightarrow \left\{ \begin{array}{c}
[3] \\
\end{array} \right\}$

$J = \emptyset \rightarrow \left\{ [1,2] \right\} \rightarrow \left\{ [1,2], [3] \right\}$

(4 uncovered, so no critical cell)
Natural Labeling & Lexic. Discrete Morse Fn for Monoidal Posets

e.g. $R[x_1, x_2, x_3, x_4, x_5, x_6] / (x_2 x_6 - x_1^2)$

$R[a, b, a^2, c, d, e, b^2]$

\[
\begin{align*}
\text{1: Interval system given by:} \\
\text{1. "descents" such as } x_0 x_5 = x_3 x_0 \\
\text{2. "syzgygies" such as } x_3 (x_2 x_6 - x_1^2) = 0
\end{align*}
\]