Background in Topological Combinatorics, Coxeter Goups : Total Positivity

Patricia Hersh,
University of Oregon & ICERM

· An abstract simplicial complex is a set V of vertices and a set ΔV of subsely of V such that

(1) Se () and TES=) TED

(2) 2v3 ED Y VEV

Remark: For each $S \in \Delta$, dim(5) := |5|-1. We regard \emptyset as the migue (1)-dim 0 free

encoders as: \[\frac{2}{2}\langle \langle \langle \frac{2}{2}\langle \langle \frac{2}{2}\langle \langle \frac{2}{2}\langle \langle \frac{2}{2}\langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \frac{2}{2}\langle \langle \lan

The reduced Enter characteristic of Δ is $\mathbb{Z}_{[1]}$: $\pm i$ -dim't fixes in Δ i2-1

e.s. -1+4-5+1=-1

· A simplicie Complex is 39 lbery-connected if there is path from any maximal face (i.e. "facef") F; to any other facet F; through a somes of facets s.t. each consecutive pair share a codimension one face. - Fi to Fi but not Fi to Fi so not gallong connected Fact: Thellable (defined next) implies galley-connected

- · A simplicial complex is pure of dimension of it all maximal faces are d-dimensional
- · A simplicial complex is shellable if there is a total order Fifz,..., Fix on its maximal faces (called "faceds") such that

 Fin (UFi) is a pure (dim Fi-1)-dimensional "cadimension one"

subromplex of Fj for each j=2.

e.s.

a such orders fings are

Key Proporty: Each For (v.F.) is either contractible (due to having "cone point") or equals of. When it is contractible, then attaching Fi does not change the homotopy

type of Δ , whereas when it guess $\overline{\partial f_j}$ then F_j attaches along entire boundary, dosing of f a sphere.

Upshot: A Shellable => homotopy equivalent to wedge of spheres with #i-spheres = # maximal frees that are i-dim affecting along entire body. Thus,

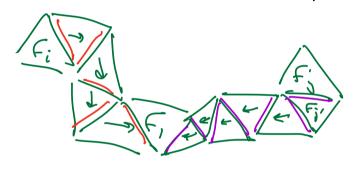
X(\(\D) = \(\times \) (-1) \(\pm \) \(\pm \) i = \(\times \) \(\pm \) theres is wedge of spheres

reduced

Enlor characteristic

is shellable with $\frac{2}{2}(\Delta) = (-1)^{\frac{1}{2}} \cdot \frac{1}{2} = -1$ # 1-5pheres

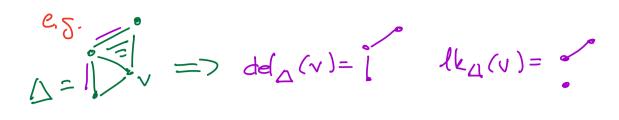
On: Why shellable => galley-connected?



Next: "Vertex down posibility", a property implying shellability ("galleny-connectedness)

Defn: For vertex v & A, define

 $||E_{\Delta}(u)|| = \{G \in \Delta | G \cup \{v\} \in \Delta, G \cap \{v\} = \emptyset\}\}$ "link of $v \text{ in } \Delta$ " $||G \cap \{v\}|| = \{G \in \Delta | G \cap \{v\} \in \Delta\}\}$ "vartex deleting of $v \text{ in } \Delta$ "



· A d-dimensional simplicand complex 1 is Vertex downposable If A is pure and either (a) / is d-simplex, or (b) there exists vertex $V \in \Delta$ such that link (v) } del (u) are vertex decomposible.

Thm (Billon-Provan): Vertex decomposable implies shellable.

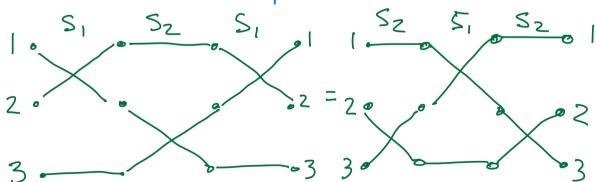
Usefulness: if family of simplicand complexes has vatex orderny such that last vertex v in each △ has lk v t del v both in family (with suitable "base cases"), Then all singlicial complexes in Lamily are vertex documposable.

Key Example: Submord complexes (defined)
Today Shortly, after reviewing Coxoler quorps)

A group W is a Coxeter group if it is generated by a set S with relations exactly $S_i^2 = e \ \forall \ S_i \in S$ and $(S_i S_j)^{m(G_j)} = e \ \text{for some } m(i,j) \in \{7,3,4,-,\infty\}$ for each $S_i,S_j \in S$ with $S_i \neq S_j$.

Note: $m(i,j) = \infty$ when no power of $s_i s_j$ equals e $e_i s_i$. $W = S_7 = set$ of poundations of 1,2,...,7S = 2(1,2),(2,3),(3,4),(4,5),(5,6),(6,7) s_i s_i

> M(1,3) = 2 since $(5,5_3)^2 = 5,5_35,5_3 = 5,5_3^25, = e$ M(1,2) = 3 since $5,5_25, = 5,2_15_2 = 5,5_2^3 = e$



· The set S of generators is called the set of simple reflections of W

- The length of weW is the smallest r such that $w = s_i s_i$ for some $s_i, -s_i \in S$.
- A reduced expression for $\omega \in \mathcal{W}$ where length $(\omega) = v$ is any product $s_{i_1} s_{i_r}$ of exactly v simple reflections with $s_{i_1} s_{i_r} = \omega$ e.s. $\omega = 321 = veulse$ permetation in s_3 has reduced expressions $s_1 s_2 s_3$ and $s_2 s_3 s_4 s_5$ since length $s_3 s_4 s_5 s_5$
 - An expression $S_{i,--}S_{i,\xi}$ for ω is a nonreduced expression for ω if $\omega = S_{i,--}S_{i,\xi}$ but $t > longth(\omega)$.
 - e.s. $S_1S_1S_1$ is nonveduced expression for S_1 since $S_2S_1^3$ but length $(S_1)=1<3$
 - Any (reduced) expression S_i, S_{i_2} . $-S_{i_3}$ can be written name compactly as (reduced) wind $(i_3, i_2, -, i_d)$ e.s. (1,2,1) for $S_1S_2S_1$

Defn (Knutson-Miller): Given Coxeter group (W,S), clowert weW, and word Q, the Suburrel complex given by Q and w is: $\triangle (Q, \omega) = \frac{2}{5}Q' \subseteq Q | Q - Q' \text{ contains } q$ Submodel reduced word for ω e.s. Q = (1,2,1,2,1) with $w = 5,525, \in 5_3$ (-,-,-,1) (-,-,2,1) (-,-,3-)

Thm (Knutson-Millox): (Q, w) is vertex decomposable, hence Shellaste (thence galley connected)

Idea: Order vertices v,v2,-,vr by position

e.s. (1,-,-,-)<(-,2,-,-)<... < (-,-,-,-)

Show del D(Q,w) (Vr) telle D(Q,w) (Vr) are smaller

Subwed complexes, so in same family of complexes.

(-,2,-,-)

Note: first anse as "Stanley-Reisner ideals" of initial ideals of coordinate mys of matrix Schubert vanieties (Which helped Knutsur-Miller prove these vanieties neve "Cohen-Macaulay")

Thun (Knutson-Miller) If $S(Q)=\omega$, then $\Delta(Q,\omega)$ is homeomorphic to a sphere. If $S(Q)\neq\omega$, then

△(Q,w) is homeomorphic to a closed ball.

e.g.
$$Q = (1,2,1,2,1)$$
 $S(Q) = w$
 $w = 55252$

$$\triangle(Q, \omega) = \sum_{sphere} \sum_{sphere} |-dimensional$$

Proof: Follows from shellability of subwell complexes + property of being "pseudomanifold", namely each coolin one face contained in at most two max'l faces

· The Demazure product $S(s_i, ..., s_{i_E})$ is product which omits any steps which decrease bougth

e.S. $S(S_1, S_2, S_3, S_3, S_3)$

 $S_1S_2S_1 = S_3 = S_3$ Smither steps

Formally: S(s;)=s; $S(\omega,s;)=\sum_{i=1}^{n} if l(\omega s;) < l(\omega)$ $S(\omega_{i},s;)=\sum_{i=1}^{n} if l(\omega s;) > l(\omega)$ $S(s_{i},s_{i},s_{i})=S(S(s_{i},s_{i},s_{i}),s_{i};)$

Useful fact: If $S_{i,-}S_{i,-}$ is reduced expression, then $S(S_{i,3},S_{i,-})=S_{i,-}S_{i,-}S_{i,-}$

Matsumoto Theorem: Any two reduced expressions for same WEW are connected by a series of commutation moves? braid moves

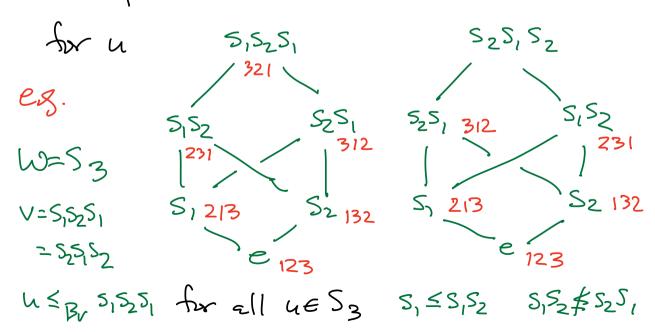
Any expression for well can be converted to a reduced expression for w by a series of commentation moves, baid nowes and "nil-moves" sine.

C.S. $S_1S_2S_1S_2S_3$ $\longrightarrow S_1S_2S_1S_2$ braid $S_2S_1S_2S_2$ $S_2S_1S_2S_2$

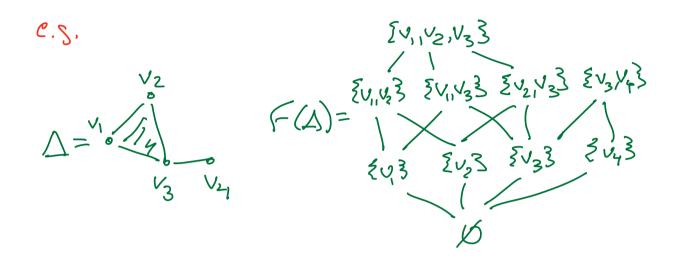
Donazure Product Variation: Any sequence $S_{i,1}-7S_{i,r}$ of simple reflections can be converted to one with the same Damazure product that is reduced expression by Series of braid moves, commutation moves and "modified vil-nures" $S_{i}S_{i} \rightarrow S_{i}$

$$\begin{array}{ll}
e.g. & S(S_{1},S_{2},S_{3},S_{2},S_{3},S_{2},S_{3}) \\
&= S(S_{2},S_{1},S_{2},S_{2},S_{3}) \\
&= S(S_{2},S_{1},S_{2},S_{3}) \\
&= S(S_{2},S_{1},S_{2},S_{3}) \\
&= S_{2}S_{1}S_{2}S_{3}
\end{array}$$

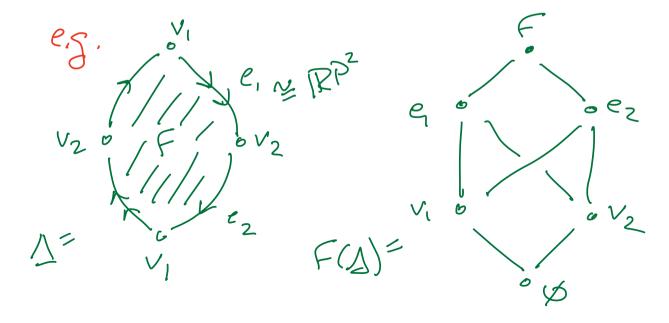
British Order on Coxeter Group W: Given any u, v & W, we say $u \leq_{Br} v$ if and only if every reduced expression for v has a subexpression that is reduced expression



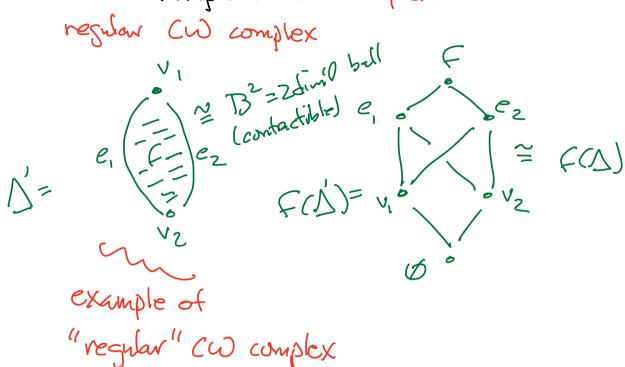
The face poset $F(\Delta)$ of simplicial complex Δ is the partial order on faces with $f_1 \le f_2 < \Longrightarrow f_1 \le f_2$



More generally, the face poset of statistical space (e.s., "regular CW complex" is partial order on stata (e.g. cells) with $\sigma \leq 2 < 3$ $\sigma \leq \overline{c}$



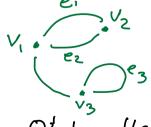
· Above example is CW complex but not regular CW complex



· Roughly speaking, K is regular an complex if built by attaching "m-cells" (pieces homeomorphic to (0,1) for m=0, Then m=1, then m=2, etc. with each m-cell gued to union of lower cells via continuous map called "attaching map" that is homeon. (so mjective!)

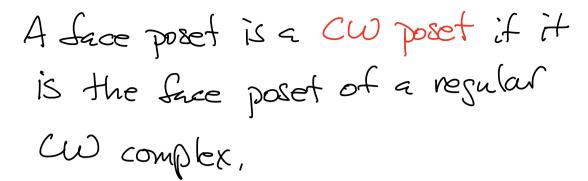
e.s. v1 ,5

O-cells



04,1-cells

0,1 \$ 2-cells



P= 100 poset

Vi 100 vs not CW poset

(would need edge with 3 vertices)

Note: CW poset can also be face poset for other statified space rice for the

Total Positivity

A real matrix is totally positive if all its minors are positive. It is totally nonnegative if all minors are numerature.

e.g. (137) is totally nonnegative since

all entries (1×1 minus) are nonnegative, 2×2 minus (e.s., 1,34 = 5 and 1,3 = 1) are nonnegative and 3×3 minor is 1,50 nonneg.

· Any product of totally nonnegative matrices is totally nonneg. Each minor in A.B is a sum of products of minor of A & B

$$9.5. \left(\begin{array}{c} 13 \\ 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 13+73.5 \\ 15 \\ 1 \end{array} \right)$$

ronnez watrices, statisfied based on
Which minus strictly positive

Maps to Space of Totally Normegative Matrices

Given any reduced and (iniz). 3id) for TIESn,

define met f
(iniz). 7id): R=0 Mn×n) =0

totally unmaretive
n×n matrices

column it $I \longrightarrow (t_1, t_4) \longrightarrow x_i(t_1) - x_i(t_1)$

where $X_i(t) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \prod_{n \neq i} t \in i_{i,i+1}$

e.g. $f_{(1,2,1)}(t_1,t_2,t_3) = \begin{pmatrix} 1 & t_1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & t_2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & t_3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & t_3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & t_3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Myss anse in work

es. of Lusztig on = | titts tets |

dual canonical bases.

We'll discuss a

Statification of the fibous, heavily relying upon subured compexes & Demazure product to describe the structure.