On Counting by
Inclusion-Exclusion: Möbius
Functions, Shellability &
Discrete Morse Theory

Patricia Hersh
University of Oregon
Counting by Inclusion-Exclusion

e.g. "counting" points in the \(\mathbb{R}^2 \) complement of \(\gamma \)
yields: counted \(\frac{1}{1-1-1-1+2} = 0 \) times

\[\mathbb{R}^2 \]

* Coefficients \(1, 1, 1, 1, 2 \) in such inclusion-exclusion counting formula
given by "Möbius function" \(\mu \) (upcoming).
Calculating these coefficients with Möbius function \(M \)

- we’ll want:
 \[
 M(\mathbb{R}^2, \mathbb{R}^2) = 1 = \text{wef. of } \mathbb{R}^2 \\
 M(\mathbb{R}^2, l_1) = -1 = \text{wef. of } l_1 \\
 M(\mathbb{R}^2, l_2) = -1 = \text{wef. of } l_2 \\
 M(\mathbb{R}^2, l_3) = -1 = \text{wef. of } l_3 \\
 M(\mathbb{R}^2, p) = 2 = \text{wef. of } p
 \]
- how to achieve this:
 \[
 M(\mathbb{R}^2, u) = -\sum M(\mathbb{R}^2, v) \\
 \text{v contains } u
 \]

½ more generally....
Defn: Given any finite partially ordered set (poset) \(P \), recursively define "Möbius function" \(M : P \times P \to \mathbb{Z} \) by:

\[
M_p(u, u) = 1
\]
\[
M_p(u, v) = -\sum_{u \leq z < v} M_p(u, z)
\]

E.g.

\[
P = e_1 \cap e_2 \cap e_3
\]
\[
P = \mathbb{R}^2
\]

\[
M_p(\mathbb{R}^2, -)
\]
Defn: The order complex of poset \(P \) is the abstract simplicial complex, denoted \(\Delta(P) \), whose \(i \)-dim' faces are the \((i+1)\)-chains \(u_0 < u_1 < \ldots < u_i \) in \(P \).

Key Property (due to Hall & popularized by Rota):

\[
M_p(x,y) = \sum (\Delta_p(x,y)) = -1 + \# \text{0-chains} - \# \text{1-chains} + \ldots
\]

\[
\Delta_p(x,y) = \Delta(\exists z \in P \mid x < z < y^3)
\]

- \#2-dim' hole baby's
(Reduced) Euler Characteristic

- The reduced Euler characteristic of K, denoted $\widetilde{\chi}(K) = -1 + \#\text{vertices} - \#\text{edges} + \#\text{triangles}$...

E.g., $\widetilde{\chi}(\triangle) = -1 + 4 - 6 + 4 = 1$ $\widetilde{\chi}(\square) = -1 + 5 - 9 + 6 = 1$ $\widetilde{\chi}(2\text{-sphere})$

Adding faces without changing "Topology" won't change $\widetilde{\chi}$!

\[\chi = -1 + 3 - 3 + 1 = -1 + 4 - 5 + 2 = -1 + 5 - 8 + 4 \]
"Topological Proof" of Möbius Function for Poset of Subsets

poset of subsets of \(\{v_1, v_2, v_3\} \) = \(F(K) \)

\[\Delta(\emptyset, S) = v_1 \]

\[sd(2K) \]

\[s_1 \]

\[s_2 \]
Intersection Posets

e.g.,

\[A = \mathbb{R}^2 \]

\[l_1, l_2, l_3, l_4 \]

\[P_{12}, P_{14}, P'_{12}, P''_{12} \]

\[\sim \sim \sim \sim \]

\[l_1, l_2, l_3, l_4 \]

\[\mathbb{R}^2 \]

\[\text{(intersection poset)} \]

\[H, H_1, H_1 l_1, H_2, l_1 l_2, l_1 l_3 \]

\[\mathbb{R}^3 \]
Intersection Poset \(L_A \) for
\[A = \{ x_i = x_j \mid 1 \leq i < j \leq n \} \]
the "Partition Lattice"

\[\hat{\tau} = 1234 \]

\[\begin{align*}
123|4 & \quad 12|34 & \quad 1|234 & \quad 13|24 & \quad 124|3 & \quad 23|14 & \quad 2|134 \\
12|3|4 & \quad 13|2|4 & \quad 14|2|3 & \quad 23|1|4 & \quad 24|1|3 & \quad 34|1|2 \\
\tau_1 = x_2 & \quad \tau_1 = x_3 & \quad \tau_1 = x_4 & \quad \tau_2 = x_3 & \quad \tau_2 = x_4 & \quad \tau_3 = x_4
\end{align*} \]

\[\Pi_4 = \hat{\tau} = 1234 \]

\[M_{\Pi_4} (\hat{\tau}, \hat{\tau}) = -6 \]
Some Applications of Möbius Functions & "Shellability"

1. Shellability of intersection posets of hyperplane arrangements due to shellability of "geometric lattices"

(Anders Björner) & "geometric semilattices"

(Michelle James Wachs Walker), yielding Möbius fns of "intersection posets" of hyperplane arrangements

\[\text{useful e.g. for...} \]
2. Zaslavsky:

Region counting formulas for the complement of IR-hyperplane aren't A

\[\# \text{regions} = \sum_{u \in L_A} |M(0, v)| \]
\[\# \text{bdd regions} = \left| \sum_{u \in L_A} M(0, v) \right| \]

\(A = \{ H_1 \cap H_2 \cap H_3 \} \)

\(\text{e.g.} \quad \# \text{regions} = 1 + 3 + 2 \) \n\(\# \text{bdd regions} = 1 - 3 + 2 \)

\(L_A = \text{"intersection poset"} \)

\(M(\mathbb{R}^2, \mathbb{R}^2) = 1 \)
\(M(\mathbb{R}^2, H_i) = -1 \text{ for } i = 1, 2, 3 \)
\(M(\mathbb{R}^2, H_1 \cap H_2 \cap H_3) = 2 \)
3. **Björner-Lovász-Yao**: lower bound via Möbius funs for deciding if there are k equal coordinates in $\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{R}^n$ by pairwise coord. comparisons, i.e. deciding whether \vec{a} lies on "k-equal arr't" of subspaces $x_i = \ldots = x_i$.
• lower bd on # leaves (and hence on \(\log_3(\text{depth}) \)) was given in terms of betti #’s (i.e. # holes in each dimension) in topological space \(IR^d \) – k-equal subspace arrangement

\[x_1 = x_2 = x_3 \]

for \(k = 3 \)

• Mark Goresky & Robert MacPherson showed how to compute these betti #’s from poset order complexes

• Björner & Welker found shellings for these poset order complexes, namely intersection posets for “k-equal arrangement”
Techniques Yielding Möbius Functions (\$?\$ Poset Topology)

- (lexicographic) shellability
 - EL-labelings (Anders Björner)
 - CL-labelings (Anders Björner \& Michelle Wachs)

\[\Delta(\mathcal{P}) \cong \hat{x} \] (telling us \(\hat{x} \) hence \(\mu \))

- Lexicographic discrete Morse functions (Babson-H.)
 (for other topol. types)
Technique: Shellability

- Simplicial complex is pure of dimension d if all maximal faces ("facets") have dim. d.
- Simplicial complex is shellable if there is facet order F_i,F_2,\ldots called a shelling s.t. $\forall j \geq 2$
 $$F_i \cap (\cup_{i < j} F_i)$$
 is pure of dimension one less than F_j.

Feature: Each attachment preserves topology, or completes a sphere.
Technique 1*: Lexicographic Shellability

(Anders Björner & Michelle Wachs)

A poset P is EL-shellable if it admits labeling λ of its cover relations $x < y$ w/ integers (called an EL-labeling) s.t. $u < v$ implies:

1) there is unique saturated chain $u < u_1 < \ldots < u_k < v$ s.t.
 \[\lambda(u, u_1) \leq \lambda(u_1, u_2) \leq \ldots \leq \lambda(u_k, v) \]
 and

2) $(\lambda(u, u_1), \lambda(u_1, u_2), \ldots, \lambda(u_k, v))$
 is lexicographically smaller than the label sequences on all other saturated chains from u to v.
Thm (Björner): EL-labeling \Rightarrow Shelling

Idea: Lexicographic order on maximal chains (breaking ties arbitrarily) induces shelling order on corresponding facets of $\Delta(P)$.

- "descents in codim one labeling" \iff overlap of facets
- "descending" \iff facets attaching along entire bary (spheres)
- $M_P(u,v) = \pm \# \text{descending chains } u \to v$ (for P graded)
Example: Intersection Posets of Hyperplane Arrangements

- Choose any total order \(H_1, H_2, \ldots, H_k \) on hyperplanes (resp. "atoms")

- Label \(u < v \) with
 \[\min \{ i \mid H_i \neq u \text{ and } H_i \leq v \} \]

\[\text{e.g.} \]

\[A = H_1, H_2, H_3 \]

\[L_4 = \frac{1}{2} \text{IR}^2 \]
Intersection Poset L_A for $A = \{x_i = x_j | 1 \leq i < j \leq n\}$ the “Partition Lattice”

\[\hat{i} = 1234 \]

\[\begin{align*}
1234 & 1234 \quad 1234 & 1243 & 1324 & 1243 & 2314 & 2134 \\
\end{align*} \]

\[\begin{align*}
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\end{align*} \]

\[\begin{align*}
x_1 &= x_2 & x_1 &= x_3 & x_1 &= x_4 & x_2 &= x_3 & x_2 &= x_4 & x_3 &= x_4 \\
\end{align*} \]

\[\Pi_4 = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \]

\[\hat{0} = 121314 \]

\[M_{\Pi_4}(\hat{0}, \hat{i}) = -6 \]
Discrete Morse Theory
(due to Forman reformulated by Chari)

Given any regular CW complex Δ, construct an acyclic matching, a.k.a. Morse matching on its face poset, i.e.,

an edge orientation s.t. "up edges" give a matching and directed graph has no cycles.

(A matching is a collection of graph edges s.t. no vertex is in more than one edge)
Theorem (Forman): $\Delta^N \cong \Delta^M$ a CW complex comprised of the unmatched cells, called critical cells.

e.g., \sim

\[\text{same topological structure (same homology groups + more!)} \]

Idea: Find pairs of faces where one can be "pulled across" the other eliminating both without changing topology, via moves called "collapses".
First Examples

1. Boolean algebra of subsets of ξ_1, \ldots, η_3, face poset of simplex, matching $5 \cup \xi_13$ with $SU \xi_13$ A S

Matching edge in "reduced homology" version of discrete Morse theory
2. Any union of acyclic matchings on $F(\Delta_2 \setminus \Delta_1), F(\Delta_3 \setminus \Delta_2), \ldots$, for $\Delta_1 \leq \Delta_2 \leq \ldots \leq \Delta_k = \Delta$, a filtration of subcomplexes is an acyclic matching for Δ

c.g. $\overline{F}_1 \subseteq \overline{F}_1 \cup \overline{F}_2 \subseteq \overline{F}_1 \cup \overline{F}_2 \cup \overline{F}_3$

3. Shelling \Rightarrow Discrete Morse fn whose critical cells are the maximal faces attaching along their entire boundary
Explanation for $\Delta \simeq \Delta^m$: Matching edges specify (internal) elementary collapses preserving homotopy type.

Some Consequences of $\Delta \simeq \Delta^m$:

1. If $F(\Delta)$ has complete acyclic matching (w/ $\emptyset \in F(\Delta)$) then Δ is collapsible.

Recall: Some contractible complexes are not collapsible.

 e.g. dunæ cap
2. \(\tilde{\chi}(\Delta) = \tilde{\chi}(\Delta^m) \)

\[
= -1 + \# \text{0-cells} - \# \text{1-cells} \\
\quad + \# \text{2-cells} - \ldots \\
= -1 + \beta_0 - \beta_1 + \beta_2 - \ldots \\
\]

For Posets: \(M_p(x,y) = \tilde{\chi}(\Delta(x,y)) = \tilde{\chi}(\Delta^m(x,y)) \)

3. Morse Inequalities:

1. \(\tilde{\beta}_i(\Delta) \leq \tilde{m}_i(\Delta) = \# \text{i-dim \ 'critical cells} \)

\[
\sum_{i \leq j} \tilde{\beta}_i(\Delta) \leq \sum_{i \leq j} \tilde{m}_i(\Delta) \\
\]

(\text{for each } j \leq \text{dim}(\Delta))

Rk: "Greedy" matchings tend to satisfy acyclicity requirement.
Question (H.): Is there a good way to "complete the square":

- lexicographic shelling

\[\Rightarrow ?? \]

\[\Rightarrow \text{shelling} \Rightarrow \text{discrete Morse function} \]

... to understand posets that fail to be shellable (e.g. not wedge of spheres)?

Proposed Answer (Eric Babson & P.H.):

"lexicographic discrete Morse fn's"
Lexicographic Discrete Morse Functions: A General Construction

(partly joint work with E. Babson)

Step 1: Any edge labeling on poset P induces lexicographic order F_1, F_2, \ldots, F_m on maximal faces (facets) of $\Delta(P)$

Example:

$P = \{3\}$

$F_1 = 135$

$F_2 = 147$

$F_3 = 297$

(Usually not EL-labeling!)
Step 2: Morse matching on each $F_j \setminus \bigcup_{i < j} F_i$ s.t.

1. Each $F_j \setminus \bigcup_{i < j} F_i$ has 0 or 1 unmatched (critical) cells
2. Union of these matchings is Morse matching for $\Delta(D)$

Theorem (Babson-H.) Any edge labeling on any finite poset gives rise to a lexicographic discrete Morse fn s.t. critical cells \leftrightarrow facets whose attachment changes the homotopy type of complex.
Description of Critical Cells

"interval system"

$I \rightarrow J$

[Faces in $F_j \setminus \left(\bigcup_{i \leq j} F_i \right)$] \rightarrow [Subsets of ranks in F_j that "hit" all intervals in I-system]

- No critical cell unless truncated interval system J fully covers F_j