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Chromatic symmetric functions

Let A = (V ,E ) be a graph. A proper coloring of A is a function
κ : V → Z>0 such that, if {v1, v2} ∈ E , κ(v1) ̸= κ(v2). The
chromatic symmetric function χA is the “generating function” for
proper colorings of A; i.e.

χA(x) =
∑
κ

∏
v∈V

xκ(v).

For example, if A is
then χA(x1, . . .) = 6x1x2x3 + · · ·+ x21x2 + · · · = e21 + 3e3.

Alexander Woo (Idaho) based on joint work with Erik Insko (Central) and Martha Precup (WUSTL)

Towards Hessenberg–Schubert calculus



Motivation Hessenbergs Cohomology Schuberts Calculations Closures

Stanley–Stembridge conjecture (Hikita theorem)

Pick n real numbers a1 < · · · < an ∈ R, and form a graph A on the
vertex set {1, . . . , n} where vertex i is connected to vertex j if
(ai , ai + 1) ∩ (aj , aj + 1) ̸= ∅. Call these graphs unit interval
graphs. (Picking 0 < 2/3 < 4/3 gives the graph on the previous
slide.)

Stanley and Stembridge conjectured (1993) that the chromatic
symmetric function of unit interval graphs have positive expansions
in terms of the elementary symmetric functions. (This statement is
a reduction of the original due to Guay-Paquet.)

This conjecture was recently proved by Hikita by coming up with a
probabilistic interpretation of the coefficients of the expansion.
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Flags

Fix a positive integer n. A (complete) flag is a sequence of
subspaces

V• = V1 ⊊ · · · ⊊ Vn = Cn

where dim(Vi ) = i .

The flag variety is the set of all complete flags.

We have a correspondence

g ∈ GLn(C) ↔ Span(g1) ⊊ Span(g1, g2) ⊊ · · ·

where gi is the i-th column of g . For any upper triangular matrix
b, gb and b represent the same flag. So flag variety is G/B.
(G = GLn, B is subgroup of upper triangular matrices.)
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Hessenberg varieties

Given a unit interval graph A, let hA : {1, . . . , n} → {1, . . . , n} be
defined by letting hA(i) be the largest j such that i and j share an
edge in A. By definition, i ≤ hA(i) and hG (i) ≤ hA(i + 1) for all i .

Pick some diagonal n× n matrix M with distinct entries and define

YM,A = {V• ∈ G/B | MVi ⊆ Vh(i)}.

YM,A is a (regular semisimple) Hessenberg variety.

If A is the complete graph, YM,A = G/B. If A is a path, YM,A is
isomorphic to the toric variety of the permutahedron.
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Alternate definition of Hessenberg varieties

Alternatively, let E (A) be the edges of A and let H be the
subspace of n × n matrices [mij ] where mij = 0 when i > j and
(j , i) ̸∈ E (A). Then

YM,A = {gB ∈ G/B | g−1Mg ∈ H}.

This gives
(n
2

)
−#E (A) many equations defining YM,A as a

subvariety of G/B.

This also tells us what happens when we translate YM,A by some
element g ′ ∈ G :

g ′ · YM,A = Yg ′Mg ′−1,A.

Also, if t is a diagonal matrix, and gB ∈ YM,A, then tgB ∈ YM,A

(since t−1Mt = M).
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(Equivariant) cohomology of Hessenberg varieties

The equivariant cohomology ring H∗
T (YM,A) can be defined as

follows.
Create a graph (the GKM graph) whose vertices are all the
permutations in Sn, with an edge between v ,w ∈ Sn if vrij = w for
some transposition rij where vertices i and j are connected in G .
Label that edge by the polynomial tk − tℓ where rkℓv = w .

A labelling (σ |w )w∈Sn of the vertices by polynomials in
C[t1, . . . , tn] is an element of H∗

T (YM,A) if, whenever v and w
share an edge e in this graph, σ |w −σ |v is divisible by the label
on e.

Multiplication of classes is pointwise.
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Examples of cohomology classes

If A is

the GKM graph is a class is

321

231

213

123

132

312

t3 − t2

t3 − t1

t2 − t1 t3 − t2

t3 − t1

t2 − t1

t2 − t1

t2 − t1

t2 − t1

0

0

0
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Two important classes

The constant class t2 the class x1 (xi |w= tw(i))

t2

t2

t2

t2

t2

t2

t3

t2

t2

t1

t1

t3
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Ordinary cohomology

Ordinary cohomology is equivariant cohomology modulo
⟨t1, . . . , tn⟩. Equivariant cohomology is a free C[t1, . . . , tn]-module
over ordinary cohomology.

One can also look at equivariant cohomology modulo ⟨x1, . . . , xn⟩,
and equivariant cohomology is a free C[x1, . . . , xn] over this ring.
There is an equivalent statement of the Stanley–Stembridge
conjecture in terms of this unicellular LLT polynomials which is
about this ring.
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Dot action on cohomology

The group Sn acts on H∗
T (YM,A) on the left by both permuting the

variables ti and moving the labels around.
A class σ The class (213) · σ

(t3 − t2)(t2 − t1)

0

(t3 − t1)(t2 − t1)

0

0

0

0

0

0

(t3 − t2)(t1 − t2)

0

(t3 − t1)(t1 − t2)
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Connection to Stanley–Stembridge conjecture

Shareshian–Wachs conjectured, and Brosnan–Chow and
Guay-Paquet (independently) proved that

ωχA(x) = F(H∗(YM,A))

Here, F is the map that sends the irrep V λ to the symmetric
function sλ (and direct sum to addition).

Shareshian–Wachs also defined χA(x, t) which gives a graded
version of the Stanley–Stembridge conjecture; this has also been
proved.
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Dream proof of (graded) Stanley–Stembridge conjecture

Under the map F , we have

F(IndSnSµ1) = hµ.

This means the Stanley–Stembridge conjecture could be proved by
finding a basis of H∗(YM,A) on which Sn acts as it does on (the
set!) ⊕Sn/Sµ.

The rest of this talk will be about trying to write a natural
geometrically defined basis for H∗(YM,A) as labellings of GKM
graphs.
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Schubert cells

Given a permutation w ∈ Sn, we can think of w as a permutation
matrix in GLn, and let Cw = B−wB/B, the orbit of the coset
wB ∈ G/B under left multiplication by the group B− of lower
triangular matrices.

The opposite Schubert cell Cw is isomorphic to C(
n
2)−ℓ(w). For

example, if w = 41523, Cw can be identified with the set of
matrices 

0 1 0 0 0
0 b 0 1 0
0 c 0 e 1
1 0 0 0 0
a d 1 0 0

 .
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Hessenberg-Schubert cells and varieties

The opposite Schubert variety Xw is Cw It turns out

Xw =
⋃
v≥w

Cv

The Hessenberg-Schubert cell Cw ,M,A is Cw ∩ YM,A.

The Hessenberg-Schubert variety is Xw ,M,A = Cw ,M,A.

Unfortunately, Xw ,M,A ̸= Xw ∩ YM,A in general. This also means
Hessenberg-Schubert varieties are not unions of
Hessenberg-Schubert cells.

A C[t1, . . . , tn]-basis for H∗
T (YM,A) is given by the classes of the

Hessenberg-Schubert varieties.
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Hessenberg–Schubert example

If M is any diagonal matrix with distinct entries, and A is a path,
then YM,A is the set of flags F• where MFi ⊆ Fi+1 for all i .
The Hessenberg-Schubert cell C41523,M,A is isomorphic to C2; it
can be identified with the set of matrices

0 1 0 0 0
0 b 0 1 0
0 c 0 e 1
1 0 0 0 0
a d 1 0 0


where a = b = c = 0.
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Billey’s formula

For G/B = YX ,A where A is the complete graph, there is a formula
due to Andersen–Jantzen–Soergel and Billey for the classes [Xw ].
Fix a reduced word b1 · · · bℓ(v) for v ; this means each bj is the
adjacent transposition sk = (k k + 1) for some k and
v = b1 · · · bℓ(v). (Here, ℓ(v) is the length of the shortest such
expression(s) which is the number of inversions.)

[Xw ] |v=
∑

w=bi1 ···biℓ(w)

ℓ(w)∏
j=1

rij .

Here we sum over all subwords of b1 · · · bℓ(v) that multiply to w .
The polynomial ri = b1 · · · bi−1(tk+1 − tk), where bi = (k k + 1).
One goal of this project is to find an analogous formula for
arbitrary A.
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Billey’s formula example

Let v = 321 = s1s2s1 and w = 213 = s1. There are two subwords
that give w ; the first gives (t2 − t1) and the second gives
s1s2(t2 − t1) = (t3 − t2), so
[X213] |321= (t2 − t1) + (t3 − t2) = (t3 − t1). The entire class
[X213] is

t3 − t1

t2 − t1

t2 − t1

0

0

t3 − t1
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Calculating classes: the local Gysin map

A general result of Brion (see Anderson–Fulton) tells us that, for
any X ⊆ YM,A,

[X ]YM,A = [X ]G/B/[YM,A]
G/B ,

where division is pointwise, and

[YM,A]
G/B =

∏
(i ,j) ̸∈E(A)

(xi − xj).
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Reduction to admissible elements

A permutation is admissible if, for all i , w−1(i + 1) < w−1(i) or
(w−1(i),w−1(i + 1)) ∈ E (A).

For the graph u = 1324 is not admissible but
v = 2314 is.
Given an arbitrary w , Sommers–Tymoczko show there is a unique
admissible ŵ such that Inv(ŵ) ∩ E (A) = Inv(w) ∩ E (A). For
example, if w = 1324, then ŵ = 2314.
Let v = ŵw−1. Then Xŵ ,vMv−1,A = vXw ,M,A, and
[Xw ,M,A] = v−1[Xŵ ,M,A].
(The cohomology class statement is due to Cho–Hong–Lee; the
geometric statement is new.)
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Tymoczko dimension formula

Tymoczko gives a combinatorial rule for finding a set D(w ,A) of
non-inversions of w such that dim(Cw ,M,A) = D(w ,A). One can

also use this rule to find a set N(w ,A) ⊆ Ê (A) so that Cw ,M,A is
cut out from Cw by the equations in N(w ,A).

If D(v ,A) ≤ D(w ,A) for all v ≥ w , then

[Xw ]
∏

(i ,j)∈N(w ,A)

(xi − xj) =
∑

v :v≥w ,D(v ,A)=D(w ,A)

[Xv ,M,A],

and this can be used to calculate [Xw ,M,A].
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Reduction to partial flags

In at least some of the cases where this doesn’t work, the
definition of YM,A only depends on some of the subspaces in the
flag F•, and there are other tricks coming from working with the
partial flag variety.
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The permutahedral case

This is the special case where A is a path, and YM,A is the toric
variety of the permutahedron.
The admissible permutations are of the form w0w0,I ; we take
w0 = n · · · 1 and reverse some disjoint blocks. The set E (A)
captures precisely the descents of w and dim(Xw ,M,A) is the
number of ascents of w . For each permutation w , the permutation
ŵ is the longest one with the same ascents/descents.
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Classes in permutahedral case

Using the formula of Anderson–Tymoczko,

[Xw ,M,A]
G/B = v · ( |WP |

n!

∏
i+1<j

(xi − xj)
∏

i :w(i)<w(i+1)

(xi − xi+1)),

where P is the parabolic subgroup generated by the ascents of w .
In this case (and probably all cases?), results extend to all regular
M, meaning that the Jordan blocks of M all have different
eigenvalues.
Cho–Hong–Lee have given a “dream proof” of Stanley–Stembridge
in this case.
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Cell closures in permutahedral case

In the permutahedral case, Xw ,M,A is a product of smaller
permutahedral varieties (according to the ascents of w). In
particular, if w is admissible,

Xw ,M,A =
⋃
v≥w

Cw ,M,A.

This means, for general w , Xw ,M,A ∩ Cv ,M,A ̸= ∅ if and only if v is
obtained from w by undoing ascents of w , and
dim(Xw ,M,A ∩ Cv ,M,A) is the number of ascents of v that are also
ascents of w .
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Cell closure example

For w = 41523, Xw ,M,A intersects

▶ C41532,M,A in dimension 1

▶ C45123,M,A in dimension 1 (but C45123,M,A has dimension 2).

▶ C45132,M,A in dimension 0 (but C45132,M,A has dimension 2).
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The End

Thank you!
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