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Totally nonnegative matrices

I A matrix with real entries is totally nonnegative (TN) if all its
minors are nonnegative.

I Important in linear algebra, statistics, analysis, geometry,
algebraic combinatorics and physics.

Felix Gantmacher Mark Krein Samuel Karlin



A general theorem about totally nonnegative matrices

I Let R = (rn,k)Nn,k=0, where N ∈ N ∪ {∞}, be a lower
triangular matrix whose diagonal entries are all equal to one.

I Define a sequence of polynomial: p0(t) = 1, and

pn(t) = t
n−1∑
k=0

rn,k · pk(t), n > 0.

I Theorem (B., Saud, 2024). If R is TN, then all zeros of pn(t)
are real and located in the interval [−1, 0].

I If rn,k = 1, then pn(t) = t(1 + t)n−1.

I If rn,k =
(n
k

)
, then pn(t) =

∑n
k=0 k!S(n, k)tk , where S(n, k)

are the Stirling numbers of the second kind.



Face numbers of simplicial complexes

I Recall the f -polynomial of a (d − 1)-dimensional simplicial
complex ∆:

f∆(t) =
d∑

i=0

fi−1(∆)t i =
∑
S∈∆

t |S |,

where f−1(∆) = 1, and

fj(∆) = number of j-dimensional faces of ∆.

I The h-vector of ∆ is the vector (h0(∆), . . . , hd(∆)) for which

f∆(t) =
d∑

i=0

hi (∆) · t i (1 + t)d−i .

I We are interested in inequalities for f -vectors and h-vectors
for various families of complexes.



h-vectors of simplicial complexes

I For many important classes of simplicial complexes, the
h-vectors are nonnegative:

I Cohen-Macaulay complexes, ⇐ shellable complexes,

I for example face lattices of simplicial polytopes.



Zeros and inequalities

Let A = a0, a1, . . . , an be a sequence of positive numbers.

(U) A is unimodal if there is an index m such that

a0 ≤ a1 ≤ · · · ≤ am ≥ am+1 ≥ · · · ≥ an.

(LC) A is log-concave if a2
i ≥ ai−1ai+1 for all 1 ≤ i < n.

(ULC) A is ultra log-concave if

a2
i(n
i

)2
≥ ai−1( n

i−1

) ai+1( n
i+1

)
for all 1 ≤ i < n.

(RR) The polynomial a0 + a1t + · · ·+ ant
n is real-rooted.

(RR) =⇒ (ULC) =⇒ (LC) =⇒ (U)



Barycentric subdivision

I The barycentric subdivision sd(∆) of ∆ is the simplicial
complex on ∆ \ {∅} with faces {S1, . . . ,Sk} for which

∅ ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sk ∈ ∆.

 

I ∆ 7−→ sd(∆) defines a linear map SD : R[t]→ R[t] for which
SD(f∆(t)) = fsd(∆)(t):

tn 7−→
n∑

k=0

k!S(n, k)tk .



Barycentric subdivision

I Theorem (B., 2006). If f (t) is a polynomial of the form

f (t) =
d∑

i=0

hi · t i (1 + t)d−i , where hi ≥ 0 for all i ,

then SD(f (t)) is real-rooted.

I Corollary (Brenti, Welker, 2008). If the h-vector of ∆ is
nonnegative, then all zeros of the f -polynomial of sd(∆) are
real.

I Corollary. If P is a simplicial polytope, then the f -polynomial
of the barycentric subdivision of P is real-rooted.

I Conjecture (Brenti, Welker, 2008). The f -polynomial of the
barycentric subdivision of a polytope is real-rooted.



Barycentric subdivision

I Athanasiadis (2021) proved Brenti and Welker’s conjecture for
cubical polytopes, i.e., polytopes whose facets are
n-dimensional (hyper-)cubes [0, 1]n.

I Can we generalize these results to other complexes such as
q-complexes, cubical complexes, CW-complexes,...?



Order complexes of posets

I A chain in a poset P is a totally ordered subset of P.

I The order complex ∆(P) is the simplicial complex consisting
of all chains of P.

 

I Notice that sd(∆) is the order complex of P = ∆ \ {∅}.
I The chain polynomial of P is the f -polynomial of ∆(P).

1 + 5t + 7t2 + 3t3 = (1 + 3t)(1 + t)(1 + t)



Real-rooted chain polynomials

I Conjecture (Neggers, 1978). P is a distributive lattice.
(counterexamples by Stembridge, 2007).

I (Stanley, 1998) P is (3 + 1)-free.

I (B., 2006, Brenti-Welker, 2008) P is a simplicial complex with
nonnegative h-vector.

I (Athanasiadis, 2021) P is a cubical complex with nonnegative
cubical h-vector.

I Conjecture (Athanasiadis, Kalampogia-Evangelinou, 2023). P
is a geometric lattice.



Graded posets

I A poset P with a minimal element 0̂ is
ranked if there exists a function
ρ : P → N such that
I ρ(0̂) = 0, and
I ρ(y) = ρ(x) + 1 whenever y covers x

in P.

I ρ is the rank function of P, and ρ(x) is the rank of x .

I The f -polynomial of a finite ranked poset P is

fP(t) =
∑
x∈P

tρ(x).

I What is the h-vector of a poset?



Rank uniform posets

I A locally finite ranked poset P is called rank uniform if for all
x , y ∈ P with ρ(x) = ρ(y),

{z ∈ P : z ≤ x} ∼= {z ∈ P : z ≤ y}.

I Infinite boolean algebra: B is the set of all finite subsets of N.
Partial order: containment.

I Its q-analog: B(q) is the set of all finite dimensional
subspaces of ⊕∞k=1Fq, where Fq is a finite field. Partial order:
containment.

I Cubical posets C , i.e., {z ∈ C : z ≤ x} is isomorphic to a
hypercube for each x ∈ C .

I Dual partition lattice Π′ of all partitions of N with finitely
many blocks.



Rank uniform posets

I Define a matrix R(P) = (rn,k(P))n,k by: Let y ∈ P, ρ(y) = n
be fixed

rn,k(P) = |{x : x ≤ y and ρ(x) = k}|.
 

 



Rank uniform posets

I rn,k(P) = |{x : x ≤ y and ρ(x) = k}|, where ρ(y) = n.

rn,k(B) =

(
n

k

)
, rn,k(B(q)) =

(
n

k

)
q

, rn,k(Π′) = S(n+1, k+1),

rn,k(C ) =

{
1 if k = 0,

2n−k
(n−1
k−1

)
if k ≥ 1.

I What do these matrices have in common?

I They are totally nonnegative (TN).

I We say that a rank uniform poset P is TN if R(P) is TN.

I Examples: Chains, B, B(q), face lattice of a hypercube, Π′.



TN-matrices and TN-posets

I Recall the definition: p0(t) = 1, and

pn(t) = t
n−1∑
k=0

rn,k · pk(t), n > 0.

I If R = R(P), then

pn(t) =
∑
j≥1

|{0̂ = x0 < x1 < · · · < xj−1 < xj = x}| · t j ,

where x is a fixed element of rank n.

I Theorem (B., Saud, 24). If P is TN, then all zeros of pn(t)
are real and located in the interval [−1, 0].

I Corollary (B., Saud, 24). The chain polynomial of any finite
TN-poset is real-rooted.



Resolvable matrices

I Let R = (rn,k)Nn,k=0, where N ∈ N ∪ {∞}, be a lower
triangular matrix whose diagonal entries are all equal to one.

I We call R resolvable if there are polynomials Rn,k(t),
0 ≤ k ≤ n ≤ N, and nonnegative real numbers λn,k for which
I Rn,0(t) =

∑n
k=0 rn,kt

k and Rn,n(t) = tn,
I Rn,k(t) is monic of degree n,
I tk divides Rn,k(t),
I Rn+1,k(t) = Rn+1,k+1(t) + λn,kRn,k(t).

I Example. If rn,k =
(n
k

)
, then Rn,k(t) = tk(1 + t)n−k .

I Theorem(B., Saud, 24). R is resolvable if and only if R is TN.

I Example. For R(C ) where C is the hypercube:

Rn,k(t) =


1 + t(2 + t)n−1 if k = 0,

tk(1 + t)(2 + t)n−k−1 if 0 < k < n,

tn if k = n.



Generalized h-vectors for general “complexes”

I Let P be a fixed TN-poset.

I A poset Q is a P-poset if

{z ∈ Q : z ≤Q x} ∼= {z ∈ P : z ≤P y}

whenever x ∈ Q and y ∈ P have the same rank.

I For example if ∆ is a simplicial complex, then ∆ is a B-poset.

I We may now extend the notion of h-vectors to TN-posets:

I If Q is a P-poset of rank n, then the h-vector of Q is the
vector (h0(Q), . . . , hn(Q)) for which

fQ(t) =
∑
x∈Q

tρ(x) =
n∑

k=0

hk(Q) · Rn,k(t).

I This notion extends the usual notion of h-vectors as well as
cubical h-vectors (Adin, 1996).



Generalized h-vectors

I Let P be a fixed TN-poset.

I Theorem (B., Saud, 2024). If Q is a P-poset with nonnegative
h-vector, then the chain polynomial of Q is real-rooted.

I This is a vast generalization of the theorems of Brenti-Welker
and Athanasiadis.

I Applies to boolean posets, cubical posets, q-analogs of
boolean algebras, partition lattices,...

I Corollary. If P is a cubical poset with nonnegative h-vector,
then the chain polynomial of P is real-rooted.

I First proved by other methods by Athanasiadis, 2021.



Rank selection of ranked posets

I For S ⊂ N, let PS = {x ∈ P : ρ(x) ∈ S}.
I If P is TN and 0 ∈ S , then PS is TN.

I Recall the flag f -vector of P is αP : 2{1,2,...} → Z,

αP(S) = # maximal chains of PS ,

I and the flag h-vector, βP : 2{1,2,...} → Z,

βP(S) =
∑
T⊆S

(−1)|S\T |αP(T ).



Rank selection

I Theorem (B., Saud, 2024). Let P be a bounded rank uniform
poset of rank n. If S = {s1 < s2 < · · · < sk} ⊆ [n − 1], then

βP(S) = det(R[{s1, . . . , sk , n}, {0, s1, . . . , sk}]),

where R = R(P).

I The flag h-vector of any Cohen-Macaulay poset is
nonnegative. The same is true for TN-posets.

I Corollary (B., Saud, 2024). The flag h-vector of a TN-poset
is nonnegative.



Shellings of simplicial complexes

I Let ∆ be a pure simplicial complex of dimension d .

I A total order F1,F2, . . . ,Fm of the facets of ∆ is called a
shelling if for all j > 1:

〈Fj〉 ∩
⋃
i<j

〈Fi 〉, 〈F 〉 = {S : S ⊆ F},

is pure of dimension d − 1.

 

I Shellable complexes are Cohen-Macaulay and have
nonnegative h-vectors.



q-posets

I Recall that B(q) is the set of all finite dimensional subspaces
of ⊕∞k=1Fq.

I In our terminology, a q-poset P is a B(q)-poset, i.e.,
{y ∈ P : y ≤ x} is isomorphic to the lattice of subspaces of
Fn
q, where n = ρ(x).

I q-posets were introduced by Rota, and recently studied by
Alder, Ghorpade, Pratihar, Randrianarisoa, Verdure,...

I Recall R(B(q)) =
((n

k

)
q

)∞
n,k=0

.

I R(B(q)) is resolvable (TN) with

Rn,k(t) = qk(n−k)tk
n−k∑
i=0

q−ki
(
n

k

)
q

t i .



Shellings of q-posets

I Let P be a pure q-poset of rank d .

I A total order F1,F2, . . . ,Fm of the facets (maximal elements)
of P is called a shelling if for all j > 1:

〈Fj〉 ∩
⋃
i<j

〈Fi 〉, 〈F 〉 = {x : x ≤ F},

is pure of rank d − 1.
I Question (Alder, 2010). Is there a natural notion of h-vectors

of q-posets such that
I it reduces to the usual one when q = 1, and
I shellable q-posets have nonnegative h-vectors?

I We have a notion of h-vector: If P has rank n, then

fP(t) =
n∑

k=0

hk(P) · Rn,k(t).



q-matroids

I Theorem (B., Saud, 2024). Shellable q-posets have
nonnegative h-vectors.

I Corollary. Chain polynomials of shellable q-posets are
real-rooted.

I A q-matroid on Bn(q) is map ϕ : Bn(q)→ N such that

(a) ϕ(x) ≤ dim(x) for all x ,
(b) ϕ(x) ≤ ϕ(y) whenever x ≤ y ,
(c) ϕ(x ∨ y) + ϕ(x ∧ y) ≤ ϕ(x) + ϕ(y) for all x , y .

I Studied by Crapo, Jurrius, Pellikaan, Johnsen, Verdure,...

I The set I (ϕ) = {x ∈ Bn(q) : ϕ(x) = dim(x)} of “independent
spaces” is a pure q-poset.

I Theorem (Ghorpade et al., 2022). I (ϕ) is shellable.

I Corollary (B., Saud, 2024). The chain polynomial of I (ϕ) is
real-rooted.



Characteristic polynomials of hyperplane arrangements

I Let H = {H1, . . . ,Hm} be a collection of hyperplanes in Fn
q.

I Recall that the characteristic polynomial of H is

χH(t) =
∑

A⊆[m]

(−1)|A|tdim(∩i∈AHi ) =
n∑

i=0

wi t
i .

I Problem. Describe all linear inequalities that are satisfied by
the coefficients of characteristic polynomials of hyperplane
arrangements in Fn

q.

I wn = 1,

I (−1)n−iwi ≥ 0, ...



Characteristic polynomials of hyperplane arrangements

I Let χq
n,0(t) = tn and

χq
n,k(t) = tn−k(t − 1)(t − q) · · · (t − qk−1), 0 < k ≤ n.

I Theorem (B., Saud, 2024). There are unique nonnegative
numbers θi (H) such that θ0(H) + · · ·+ θn(H) = 1, and

χH(t) =
n∑

i=0

θi (H) · χq
n,i (t).

I Theorem (B., Saud, 2024). The convex hull of the set of all
characteristic polynomials of hyperplane arrangements in Fn

q is
equal to the simplex{

n∑
k=0

θk · χq
n,k(t) : θk ≥ 0 for all k, and θ0 + θ1 + · · ·+ θn = 1

}
.



Geometric lattices

I Conjecture (Athanasiadis, Kalampogia-Evangelinou, 2023).
The chain polynomial of any geometric lattice is real-rooted

I Proved for the subspace-lattice of Fn
q and partition lattices.

I Using our theorem we prove that the conjecture is true for
Dowling-lattices and paving matroids.



Pólya frequency sequences

I A sequence {ai}∞i=0 is a Pólya frequency sequence if
(ai−j)

∞
i ,j=0 is TN.

I How does the main theorem translate for Pólya frequency
sequences?

Theorem (B., Saud, 2024). Suppose

f (x) = CxNeγx
∞∏
i=1

1 + αix

1− βix
,

C , γ, αi , βi ≥ 0, and consider

1

1− t(f (x)− f (0))
=
∞∑
n=0

fn(t)xn ∈ R[[x , t]].

Then fn(t) is real-rooted for each n.



A conjecture of Forgács and Tran

I The case when

g(x) =
x r∏n

i=1(1− βix)
, where βi > 0 for all i and r ∈ Z>0.

was conjectured by Forgács and Tran (2016).


