Totally nonnegative matrices, chain enumeration and zeros of polynomials

Petter Brändén

KTH Royal Institute of Technology

joint work with Leonardo Saud Maia Leite

Cascade lectures in combinatorics, March 8, 2025

Totally nonnegative matrices

- A matrix with real entries is totally nonnegative (TN) if all its minors are nonnegative.
- Important in linear algebra, statistics, analysis, geometry, algebraic combinatorics and physics.

Felix Gantmacher

Mark Krein

Samuel Karlin

A general theorem about totally nonnegative matrices

- ▶ Let $R = (r_{n,k})_{n,k=0}^N$, where $N \in \mathbb{N} \cup \{\infty\}$, be a lower triangular matrix whose diagonal entries are all equal to one.
- Define a sequence of polynomial: $p_0(t) = 1$, and

$$p_n(t) = t \sum_{k=0}^{n-1} r_{n,k} \cdot p_k(t), \quad n > 0.$$

- Theorem (B., Saud, 2024). If R is TN, then all zeros of p_n(t) are real and located in the interval [-1,0].
- If $r_{n,k} = 1$, then $p_n(t) = t(1+t)^{n-1}$.
- ▶ If $r_{n,k} = \binom{n}{k}$, then $p_n(t) = \sum_{k=0}^n k! S(n,k) t^k$, where S(n,k) are the Stirling numbers of the second kind.

Face numbers of simplicial complexes

► Recall the *f*-polynomial of a (d-1)-dimensional simplicial complex Δ : $f_{1}(t) = \sum_{i=1}^{d} f_{i-1}(\Delta)t^{i} = \sum_{i=1}^{d} t^{|S|}$

$$f_{\Delta}(t) = \sum_{i=0} f_{i-1}(\Delta)t' = \sum_{S \in \Delta} t^{|S|},$$

where $f_{-1}(\Delta) = 1$, and

 $f_j(\Delta) =$ number of *j*-dimensional faces of Δ .

• The h-vector of Δ is the vector $(h_0(\Delta), \ldots, h_d(\Delta))$ for which

$$f_{\Delta}(t) = \sum_{i=0}^d h_i(\Delta) \cdot t^i (1+t)^{d-i}.$$

We are interested in inequalities for *f*-vectors and *h*-vectors for various families of complexes.

h-vectors of simplicial complexes

- For many important classes of simplicial complexes, the *h*-vectors are nonnegative:
- for example face lattices of simplicial polytopes.

Zeros and inequalities

Let $A = a_0, a_1, \dots, a_n$ be a sequence of positive numbers. (U) A is unimodal if there is an index m such that

 $a_0 \leq a_1 \leq \cdots \leq a_m \geq a_{m+1} \geq \cdots \geq a_n.$

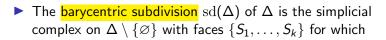
(LC) \mathcal{A} is log-concave if $a_i^2 \ge a_{i-1}a_{i+1}$ for all $1 \le i < n$. (ULC) \mathcal{A} is ultra log-concave if

$$rac{oldsymbol{a}_i^2}{inom{n}{i}inom{2}{i}} \geq rac{oldsymbol{a}_{i-1}}{inom{n}{i-1}}rac{oldsymbol{a}_{i+1}}{inom{n}{i+1}}$$

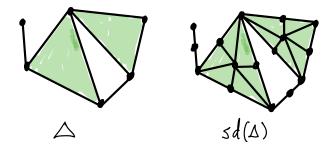
for all $1 \leq i < n$.

(RR) The polynomial $a_0 + a_1t + \cdots + a_nt^n$ is real-rooted. (RR) \Longrightarrow (ULC) \Longrightarrow (LC) \Longrightarrow (U)

Barycentric subdivision



$$\varnothing \subset S_1 \subset S_2 \subset \cdots \subset S_k \in \Delta.$$



► $\Delta \mapsto \operatorname{sd}(\Delta)$ defines a linear map $\operatorname{SD} : \mathbb{R}[t] \to \mathbb{R}[t]$ for which $\operatorname{SD}(f_{\Delta}(t)) = f_{\operatorname{sd}(\Delta)}(t)$: $t^n \mapsto \sum_{k=0}^n k! S(n,k) t^k.$

Barycentric subdivision

• Theorem (B., 2006). If f(t) is a polynomial of the form

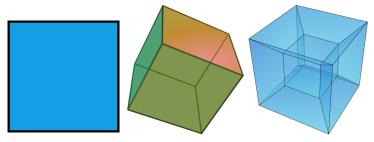
$$f(t) = \sum_{i=0}^d h_i \cdot t^i (1+t)^{d-i}, \quad ext{ where } h_i \geq 0 ext{ for all } i,$$

then SD(f(t)) is real-rooted.

- Corollary (Brenti, Welker, 2008). If the *h*-vector of Δ is nonnegative, then all zeros of the *f*-polynomial of sd(Δ) are real.
- ► Corollary. If P is a simplicial polytope, then the *f*-polynomial of the barycentric subdivision of P is real-rooted.
- Conjecture (Brenti, Welker, 2008). The *f*-polynomial of the barycentric subdivision of a polytope is real-rooted.

Barycentric subdivision

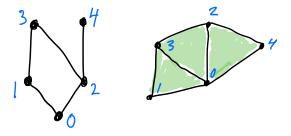
Athanasiadis (2021) proved Brenti and Welker's conjecture for cubical polytopes, i.e., polytopes whose facets are *n*-dimensional (hyper-)cubes [0, 1]ⁿ.



Can we generalize these results to other complexes such as q-complexes, cubical complexes, CW-complexes,...?

Order complexes of posets

- A chain in a poset P is a totally ordered subset of P.
- The order complex Δ(P) is the simplicial complex consisting of all chains of P.



Notice that sd(Δ) is the order complex of P = Δ \ {Ø}.
The chain polynomial of P is the *f*-polynomial of Δ(P).

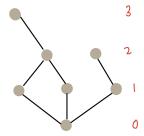
$$1 + 5t + 7t^{2} + 3t^{3} = (1 + 3t)(1 + t)(1 + t)$$

Real-rooted chain polynomials

- Conjecture (Neggers, 1978). P is a distributive lattice. (counterexamples by Stembridge, 2007).
- ▶ (Stanley, 1998) *P* is (3 + 1)-free.
- (B., 2006, Brenti-Welker, 2008) P is a simplicial complex with nonnegative h-vector.
- (Athanasiadis, 2021) P is a cubical complex with nonnegative cubical h-vector.
- Conjecture (Athanasiadis, Kalampogia-Evangelinou, 2023). P is a geometric lattice.

Graded posets

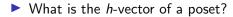
A poset P with a minimal element Ô is ranked if there exists a function ρ : P → N such that
ρ(Ô) = 0, and
ρ(y) = ρ(x) + 1 whenever y covers x in P.



• ρ is the rank function of *P*, and $\rho(x)$ is the rank of *x*.

The f-polynomial of a finite ranked poset P is

$$f_P(t) = \sum_{x \in P} t^{
ho(x)}.$$



Rank uniform posets

A locally finite ranked poset P is called rank uniform if for all x, y ∈ P with ρ(x) = ρ(y),

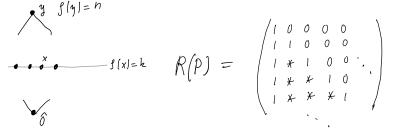
$$\{z \in P : z \le x\} \cong \{z \in P : z \le y\}.$$

- Infinite boolean algebra: B is the set of all finite subsets of N. Partial order: containment.
- Its *q*-analog: B(*q*) is the set of all finite dimensional subspaces of ⊕[∞]_{k=1} 𝔽_{*q*}, where 𝔽_{*q*} is a finite field. Partial order: containment.
- Cubical posets C, i.e., {z ∈ C : z ≤ x} is isomorphic to a hypercube for each x ∈ C.
- ► Dual partition lattice Π' of all partitions of ℕ with finitely many blocks.

Rank uniform posets

▶ Define a matrix R(P) = (r_{n,k}(P))_{n,k} by: Let y ∈ P, ρ(y) = n be fixed

$$r_{n,k}(P) = |\{x : x \leq y \text{ and } \rho(x) = k\}|.$$



Rank uniform posets

►
$$r_{n,k}(P) = |\{x : x \le y \text{ and } \rho(x) = k\}|, \text{ where } \rho(y) = n.$$

 $r_{n,k}(\mathbb{B}) = \binom{n}{k}, \quad r_{n,k}(\mathbb{B}(q)) = \binom{n}{k}_q, \quad r_{n,k}(\Pi') = S(n+1, k+1),$
 $r_{n,k}(C) = \begin{cases} 1 & \text{if } k = 0, \\ 2^{n-k}\binom{n-1}{k-1} & \text{if } k \ge 1. \end{cases}$

- What do these matrices have in common?
- They are totally nonnegative (TN).
- We say that a rank uniform poset P is TN if R(P) is TN.
- Examples: Chains, \mathbb{B} , $\mathbb{B}(q)$, face lattice of a hypercube, Π' .

TN-matrices and TN-posets

• Recall the definition:
$$p_0(t) = 1$$
, and

$$p_n(t) = t \sum_{k=0}^{n-1} r_{n,k} \cdot p_k(t), \quad n > 0.$$

• If
$$R = R(P)$$
, then

$$p_n(t) = \sum_{j \ge 1} |\{\hat{0} = x_0 < x_1 < \cdots < x_{j-1} < x_j = x\}| \cdot t^j,$$

where x is a fixed element of rank n.

- ▶ Theorem (B., Saud, 24). If P is TN, then all zeros of $p_n(t)$ are real and located in the interval [-1, 0].
- Corollary (B., Saud, 24). The chain polynomial of any finite TN-poset is real-rooted.

Resolvable matrices

Generalized *h*-vectors for general "complexes"

- ▶ Let *P* be a fixed TN-poset.
- A poset Q is a P-poset if

$$\{z \in Q : z \leq_Q x\} \cong \{z \in P : z \leq_P y\}$$

whenever $x \in Q$ and $y \in P$ have the same rank.

- For example if Δ is a simplicial complex, then Δ is a \mathbb{B} -poset.
- ▶ We may now extend the notion of *h*-vectors to TN-posets:
- ► If Q is a P-poset of rank n, then the h-vector of Q is the vector (h₀(Q),..., h_n(Q)) for which

$$f_Q(t) = \sum_{x \in Q} t^{\rho(x)} = \sum_{k=0}^n h_k(Q) \cdot R_{n,k}(t).$$

This notion extends the usual notion of *h*-vectors as well as cubical *h*-vectors (Adin, 1996).

Generalized *h*-vectors

- ▶ Let *P* be a fixed TN-poset.
- Theorem (B., Saud, 2024). If Q is a P-poset with nonnegative h-vector, then the chain polynomial of Q is real-rooted.
- This is a vast generalization of the theorems of Brenti-Welker and Athanasiadis.
- Applies to boolean posets, cubical posets, *q*-analogs of boolean algebras, partition lattices,...
- Corollary. If P is a cubical poset with nonnegative h-vector, then the chain polynomial of P is real-rooted.
- First proved by other methods by Athanasiadis, 2021.

Rank selection of ranked posets

▶ For
$$S \subset \mathbb{N}$$
, let $P_S = \{x \in P : \rho(x) \in S\}$.

- If *P* is TN and $0 \in S$, then *P*_S is TN.
- Recall the flag *f*-vector of *P* is $\alpha_P : 2^{\{1,2,\ldots\}} \to \mathbb{Z}$,

 $\alpha_P(S) = \#$ maximal chains of P_S ,

▶ and the flag *h*-vector, $\beta_P : 2^{\{1,2,\ldots\}} \to \mathbb{Z}$,

$$\beta_{\mathcal{P}}(S) = \sum_{T \subseteq S} (-1)^{|S \setminus T|} \alpha_{\mathcal{P}}(T).$$

Rank selection

▶ Theorem (B., Saud, 2024). Let *P* be a bounded rank uniform poset of rank *n*. If $S = \{s_1 < s_2 < \cdots < s_k\} \subseteq [n-1]$, then

$$\beta_P(S) = \det(R[\{s_1,\ldots,s_k,n\},\{0,s_1,\ldots,s_k\}]),$$

where R = R(P).

- The flag *h*-vector of any Cohen-Macaulay poset is nonnegative. The same is true for TN-posets.
- Corollary (B., Saud, 2024). The flag *h*-vector of a TN-poset is nonnegative.

Shellings of simplicial complexes

- Let Δ be a pure simplicial complex of dimension d.
- A total order F₁, F₂,..., F_m of the facets of Δ is called a shelling if for all j > 1:

$$\langle F_j \rangle \cap \bigcup_{i < j} \langle F_i \rangle, \qquad \langle F \rangle = \{ S : S \subseteq F \},$$

is pure of dimension d - 1.

 Shellable complexes are Cohen-Macaulay and have nonnegative *h*-vectors.

q-posets

- ► Recall that B(q) is the set of all finite dimensional subspaces of ⊕[∞]_{k=1}F_q.
- ▶ In our terminology, a q-poset P is a $\mathbb{B}(q)$ -poset, i.e., $\{y \in P : y \leq x\}$ is isomorphic to the lattice of subspaces of \mathbb{F}_q^n , where $n = \rho(x)$.
- q-posets were introduced by Rota, and recently studied by Alder, Ghorpade, Pratihar, Randrianarisoa, Verdure,...

• Recall
$$R(\mathbb{B}(q)) = \left(\binom{n}{k}_q\right)_{n,k=0}^{\infty}$$

• $R(\mathbb{B}(q))$ is resolvable (TN) with

$$R_{n,k}(t) = q^{k(n-k)}t^k \sum_{i=0}^{n-k} q^{-ki} \binom{n}{k}_q t^i.$$

Shellings of *q*-posets

- Let P be a pure q-poset of rank d.
- A total order F₁, F₂,..., F_m of the facets (maximal elements) of P is called a shelling if for all j > 1:

$$\langle F_j \rangle \cap \bigcup_{i < j} \langle F_i \rangle, \qquad \langle F \rangle = \{ x : x \le F \},$$

is pure of rank d-1.

- Question (Alder, 2010). Is there a natural notion of *h*-vectors of *q*-posets such that
 - it reduces to the usual one when q = 1, and
 - shellable q-posets have nonnegative h-vectors?
- ▶ We have a notion of *h*-vector: If *P* has rank *n*, then

$$f_P(t) = \sum_{k=0}^n h_k(P) \cdot R_{n,k}(t).$$

q-matroids

- Theorem (B., Saud, 2024). Shellable q-posets have nonnegative h-vectors.
- Corollary. Chain polynomials of shellable *q*-posets are real-rooted.
- ▶ A *q*-matroid on $\mathbb{B}_n(q)$ is map $\varphi : \mathbb{B}_n(q) \to \mathbb{N}$ such that (a) $\varphi(x) \leq \dim(x)$ for all x, (b) $\varphi(x) \leq \varphi(y)$ whenever $x \leq y$, (c) $\varphi(x \lor y) + \varphi(x \land y) \leq \varphi(x) + \varphi(y)$ for all x, y.
- Studied by Crapo, Jurrius, Pellikaan, Johnsen, Verdure,...
- The set *l*(φ) = {x ∈ B_n(q) : φ(x) = dim(x)} of "independent spaces" is a pure q-poset.
- Theorem (Ghorpade *et al.*, 2022). $I(\varphi)$ is shellable.
- Corollary (B., Saud, 2024). The chain polynomial of *I*(φ) is real-rooted.

Characteristic polynomials of hyperplane arrangements

- Let $\mathcal{H} = \{H_1, \dots, H_m\}$ be a collection of hyperplanes in \mathbb{F}_q^n .
- Recall that the characteristic polynomial of H is

$$\chi_{\mathcal{H}}(t) = \sum_{A\subseteq [m]} (-1)^{|A|} t^{\dim(\bigcap_{i\in A}H_i)} = \sum_{i=0}^n w_i t^i.$$

Problem. Describe all linear inequalities that are satisfied by the coefficients of characteristic polynomials of hyperplane arrangements in \mathbb{F}_q^n.

•
$$w_n = 1$$
,
• $(-1)^{n-i} w_i \ge 0, ...$

Characteristic polynomials of hyperplane arrangements

• Let
$$\chi_{n,0}^q(t) = t^n$$
 and
 $\chi_{n,k}^q(t) = t^{n-k}(t-1)(t-q)\cdots(t-q^{k-1}), \ 0 < k \le n.$

► Theorem (B., Saud, 2024). There are unique nonnegative numbers θ_i(ℋ) such that θ₀(ℋ) + ··· + θ_n(ℋ) = 1, and

$$\chi_{\mathcal{H}}(t) = \sum_{i=0}^{n} \theta_i(\mathcal{H}) \cdot \chi_{n,i}^q(t).$$

► Theorem (B., Saud, 2024). The convex hull of the set of all characteristic polynomials of hyperplane arrangements in Fⁿ_q is equal to the simplex

$$\left\{\sum_{k=0}^{n}\theta_{k}\cdot\chi_{n,k}^{q}(t):\theta_{k}\geq0\text{ for all }k,\text{ and }\theta_{0}+\theta_{1}+\cdots+\theta_{n}=1\right\}$$

Geometric lattices

- Conjecture (Athanasiadis, Kalampogia-Evangelinou, 2023). The chain polynomial of any geometric lattice is real-rooted
- ▶ Proved for the subspace-lattice of \mathbb{F}_a^n and partition lattices.
- Using our theorem we prove that the conjecture is true for Dowling-lattices and paving matroids.

Pólya frequency sequences

- A sequence {a_i}[∞]_{i=0} is a Pólya frequency sequence if (a_{i-j})[∞]_{i,j=0} is TN.
- How does the main theorem translate for Pólya frequency sequences?

Theorem (B., Saud, 2024). Suppose

$$f(x) = C x^{N} e^{\gamma x} \prod_{i=1}^{\infty} \frac{1 + \alpha_{i} x}{1 - \beta_{i} x},$$

 $C, \gamma, \alpha_i, \beta_i \geq 0$, and consider

$$\frac{1}{1-t(f(x)-f(0))} = \sum_{n=0}^{\infty} f_n(t) x^n \in \mathbb{R}[[x,t]].$$

Then $f_n(t)$ is real-rooted for each n.

A conjecture of Forgács and Tran

The case when

$$g(x) = rac{x^r}{\prod_{i=1}^n (1-eta_i x)}, \quad ext{where } eta_i > 0 ext{ for all } i ext{ and } r \in \mathbb{Z}_{>0}.$$

was conjectured by Forgács and Tran (2016).