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exactly solvable interacting particle systems

integrable systems include a class of dynamical systems with a certain restricted

structure, in particular making them solvable

the field was initiated by Spitzer in his 1970 paper where he defined the ASEP

(Asymmetric Simple Exclusion Process) and the ZRP (Zero Range Process)

canonical example: the ASEP describes particles hopping on a finite 1D lattice

with ≤ 1 particle at each site
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we are interested in studying integrable systems whose exact solutions

(stationary distributions) can be expressed in terms of combinatorial formulas or

special functions (e.g. Macdonald polynomials)
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Macdonald polynomials

Let X = x1, x2, · · · be a family of indeterminates, and let Λ = ΛQ be the algebra of

symmetric functions in X over Q

Λ has several nice bases: e.g. {mλ}, {eλ}, {hλ}, {pλ}, indexed by partitions λ.

Let 〈, 〉 be the standard inner product on Λ. Then {sλ} is the unique basis of

Λ that is:

i. orthogonal with respect to 〈, 〉

ii. upper triangular with respect to {mλ}:

sλ = mλ +
∑
µ<λ

cµλmµ

where < is with respect to dominance order on partitions.

sλ =
∑
σ
xσ where σ is a semi-standard filling of the Young diagram of shape λ

E.g. the following are the fillings of shape (2, 1) on 3 letters:
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2 3

s(2,1) = x2
1 x2 + x2

1 x3 + x1x
2
2 + x1x2x3 + x1x2x3 + x1x

2
3 + x2

2 x3 + x2x
2
3 = m(2,1) + m(1,1,1)
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Macdonald polynomials Pλ(X ; q, t)

Let Λ = ΛQ(q, t), the algebra of symmetric functions with parameters q, t over Q

Macdonald ’88 introduced a family of homogeneous symmetric polynomials {Pλ(X ; q, t)}
in Λ(q, t), simultaneously generalizing the Schur polynomials (at q = t = 0),

Hall-Littlewood polynomials (at q = 0), and Jack polynomials (at t = qα and q → 1)

Let 〈, 〉q,t be the inner product on Λ(q, t) given by:

〈pλ, pµ〉q,t = δλ,µzλ
∏
i≥1

1− qλi

1− tλi
.

Then {Pλ} is the unique basis of Λ(q, t) that is uniquely determined by:

i. orthogonal basis for Λ(q, t) with respect to 〈, 〉q,t

ii. upper triangular with respect to {mλ}:

Pλ(X ; q, t) = mλ(X ) +
∑
µ<λ

cµλ(q, t)mµ(X )

Example:

P(2,1)(X ; q, t) = m(2,1) +
(1− t)(2 + q + t + 2qt)

1− qt2
m(1,1,1).
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modified Macdonald polynomials H̃λ(X ; q, t)

Garsia and Haiman ’96 introduced the modified Macdonald polynomials, denoted by

H̃λ(X ; q, t) as a combinatorial version of the Pλ’s

obtained from a normalized form of Pλ(X ; q, t) by plethystic substitution:

H̃λ(X ; q, t) = tn(λ)Jλ

[
X

1− t−1
; q, t−1

]
where Jλ is a scalar multiple of Pλ.

Example: H̃(2,1)(X ; q, t) = m(3) + (1 + q + t)m(2,1) + (1 + 2q + 2t + qt)m(1,1,1)

Haglund-Haiman-Loehr ’04 gave formulas for Pλ and H̃λ as sums over tableaux

with statistics maj and (co)inv:

• Pλ(X ; q, t) =
∑

σ∈dg(λ)
σ non-attacking

qmaj(σ)tcoinv(σ)xσ
∏
u

1− t

1− qleg(u)+1tarm(u)+1

• H̃λ(X ; q, t) =
∑

σ∈dg(λ)

qmaj(σ)t inv(σ)xσ
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Combinatorial formulas

Corteel-M-Williams ’18 gave a new formula for Pλ in terms of multiline queues,

which also give formulas for the stationary distribution of the ASEP

Garbali-Wheeler ’20 gave a formula for H̃λ using integrability, in terms of

colored paths

Corteel-Haglund-M-Mason-Williams ’20 gave a ”compressed” formula for H̃λ.

Using multiline queues and the plethystic relationship between H̃λ and Pλ, also

conjectured a new formula for H̃λ with statistics maj and a new statistic quinv:

H̃λ(X ; q, t) =
∑

σ∈dg(λ)

qmaj(σ)tquinv(σ)xσ
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multiline queues and the ASEP

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a n × λ1

lattice, with λ′j balls in row j .

It can be represented by a queueing system, or described as a coupled system of 1-ASEPs
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row 3

row 2

row 1

1 2 3 4 5 6

2 4

6 3 1

6 5 1 2 4

λ = (3, 3, 2, 1, 1, 0)

α = (2, 1, 0, 1, 3, 3)

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

The weight wt(M) of a multiline queue depends on the parameters t, q, x1, . . . , xn:

a string of length ` corresponds to an ASEP particle of species `. The labels of the balls in that

string are `

the bottom row corresponds to a state of the ASEP of type λ, n

the j ’th column of the MLQ corresponds to the variable xj (a MLQ with n columns corresponds to

an ASEP on n sites and uses n variables x1, . . . , xn)

skipped balls in the MLQ ”correspond” to a coinv statistic in t

wrapping balls in the MLQ correspond to a maj statistic in q

Can be represented by a non-attacking tableau, where each string is mapped to a column of

the same height, recording the position of each ball in the MLQ.
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a string of length ` corresponds to an ASEP particle of species `. The labels of the balls in that

string are `

the bottom row corresponds to a state of the ASEP of type λ, n

the j ’th column of the MLQ corresponds to the variable xj (a MLQ with n columns corresponds to

an ASEP on n sites and uses n variables x1, . . . , xn)

skipped balls in the MLQ ”correspond” to a coinv statistic in t

wrapping balls in the MLQ correspond to a maj statistic in q

Can be represented by a non-attacking tableau, where each string is mapped to a column of

the same height, recording the position of each ball in the MLQ.
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From ASEP to Macdonald polynomials

Theorem (Martin ’18, Corteel-M-Williams ’18)

The (unnormalized) stationary probability of state α of the mASEP is

P̃r(α)(t) =
∑

M: row 1=α

wt(M)(1, . . . , 1; 1, t)

Theorem (Cantini–de Gier–Wheeler ’15)

The partition function of ASEP(λ, n) is a specialization of the Macdonald polynomial:

Pλ(1, . . . , 1; 1, t) = Zλ,n(t) =
∑

α∈Sn·λ

P̃r(α)(t).

Theorem (Corteel–M–Williams ’18)

Pλ(x1, . . . , xn; q, t) =
∑

M∈MLQ(λ,n)

wt(M)(x1, . . . , xn; q, t)

This formula essentially coincides with that of Lenart ’09 for λ with distinct parts.
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Example for P(2,1)(x1, x2, x3; q, t)

P(2,1)(x1, x2, x3; q, t) = m(2,1) +
(2 + t + q + 2qt)(1− t)

(1− qt2)
m(1,1,1)

1 1 1
1− t

1− tq2
1

1− t

1− qt2

1

1 2

1

1 3

2

2 1

2

3 1

3

3 1

1

2 3

1 1
q(1− t)

1− qt2

t(1− t)

1− qt2

qt(1− t)

1− qt2

qt(1− t)

1− qt2

2

2 3

3

3 2

3

1 2

1

3 2

3

2 1

2

1 3



From multiline queues to a new formula for H̃λ

Recall: H̃λ(X ; q, t) is obtained from the integral form of Pλ via plethysm:

H̃λ(X ; q, t) = tn(λ)Jλ

[
X

1− t−1
; q, t−1

]
= fλ(q, t) Pλ

(
x1, x1t

−1
, x1t

−2
, . . . , x2, x2t

−1
, x2t

−2
, . . . ; q, t−1

)

Pλ
(
x1, x1t

−1, x1t
−2, . . . , x2, x2t

−1, x2t
−2, . . . ; q, t−1

)
should correspond to a

multiline queue with countably many columns labeled by

x1, x1t
−1
, x1t

−2
, . . . , x2, x2t

−1
, x2t

−2
, . . .

this leads to a new “queue inversion” statistic for t that we call quinv

(Corteel–Haglund–M–Mason–Williams ’20, Ayyer–M–Martin ’21)

the resulting objects are of the same flavor as multiline queues, except that multiple balls

are allowed at each location. (This translates to removing the “non-attacking” condition

from the corresponding tableaux)
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tableaux formulas: notation and statistics

dg(λ) (the diagram of λ = (λ1, . . . , λk )) consists of k bottom justified columns

with λi boxes, from left to right

dg(λ) =

σ =

4

2 2 4

3 1 1

2 3 3 4

2

3

4

λ = (4, 3, 3, 1)

xσ = x2
1 x

3
2 x

3
3 x

3
4

maj(σ) = 6

inv(σ) = 1

a tableau of type (λ, n) is a filling σ : dg(λ)→ [n] of the cells

inv(σ) is the number of inversions in the configuration

x

y

z· · ·
where x < y < z (cyclically mod n)

Theorem (Haglund–Haiman–Loehr ’05)

The modified Macdonald polynomial is given by

H̃λ(x1, . . . , xn; q, t) =
∑

σ:dg(λ)→[n]

qmaj(σ)t inv(σ)xσ .
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a new statistic: queue-inversion

σ =

4

2 2 4

3 1 1

2 3 3 4

2 2 4

3 1 1

3 4

quinv(σ) = 4

an L-triple is a triple of cells in the configuration:

x

y z· · · or y z

∅
· · ·

an L-triple forms a quinv (queue-inversion) if x < y < z cyclically mod n (ties

are broken by a top-to-bottom and right-to-left reading order)

quinv(σ) is the total number of queue-inversions in σ.

Theorem (Ayyer–M–Martin ’20)

Let λ be a partition. The modified Macdonald polynomial equals

H̃λ(x1, . . . , xn; q, t) =
∑

σ:dg(λ)→[n]

qmaj(σ)tquinv(σ)xσ

(first conjectured by Corteel–Haglund–M–Mason–Williams ’19)
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Example: H̃(2,1)(X ; q, t)

H̃(2,1)(x1, x2; q, t) = m(3) + (1 + t + q)m(2,1) + (1 + 2t + 2q + qt)m(1,1,1)

• (AMM) H̃λ(X ; q, t) =
∑

σ:dg(λ)→Z+

qmaj(σ)tquinv(σ)xσ

1

1 1

2

1 1

1

1 2

1

2 1

1

2 3

2

1 3

3

1 2

2

3 1

1

3 2

3

2 1

m3 q m21 t m21 m21 t m111 q m111 qt m111 t m111 m111 q m111

• (HHL) H̃λ(X ; q, t) =
∑

σ:dg(λ)→Z+

qmaj(σ)t inv(σ)xσ

1

1 1

2

1 1

1

1 2

1

2 1

1

2 3

2

1 3

3

1 2

2

3 1

1

3 2

3

2 1

m3 q m21 m21 t m21 m111 q m111 q m111 t m111 t m111 qt m111

• while the inv and quinv statistics appear very similar, there does not seem to be an

easy way to go from one to the other – is there a bijective proof?
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Motivation

stat mech/probability:
ASEP (exclusion)

symmetric functions:
Macdonald polynomials Pλ

combinatorics:
multiline queues

tableaux with quinvmodified Macdonald H̃λ

?

TAZRP (zero range)

What is the analogous interacting particle system whose partition
function is a specialization of H̃λ?
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totally asymmetric zero range processes (TAZRP)

continuous-time stochastic processes (Spitzer ’70), can be defined on arbitrary

graphs. In our case, we have a circular lattice with n sites.

• •

•

• • • •

• •

•

• • • •

2, 2

1

2 3, 3, 1

∅ Here, n = 5, k = 7

τ = ( 11
∣∣ · ∣∣ 111

∣∣ 1
∣∣ 1 )τ = ( 2, 2

∣∣ · ∣∣ 3, 3, 1
∣∣ 2
∣∣ 1 )

simplest case: there are k indistinguishable particles, moving counter-clockwise.

A configuration τ = (τ1, . . . , τn) is any allocation of the k particles on the n

sites.

transitions: a particle jumps from site j to site j + 1 mod n with rate f (τj ) for

some f : N→ R+

multispecies variant: we now allow different particle types, labeled by integers

(particles of the same type are still indistinguishable)

Kuniba–Maruyama–Okado (2015+) (and others) have studied many

multispecies variants of the TAZRP. All of these are integrable! The version we

will describe was first studied by Takayama ’15
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the mTAZRP: states

Fix a (circular 1D) lattice on n sites and a partition λ = (λ1 ≥ · · · ≥ λk > 0) for

the particle types

TAZRP(λ, n) is a Markov chain whose states are multiset compositions τ of

type λ, with n (possibly empty) parts

∅

3,1,1

∅ 4,2,2

3,2,1
n = 5

λ = (4, 3, 3, 2, 2, 1, 1, 1)

τ =
(
·
∣∣ 321

∣∣ 422
∣∣ · ∣∣ 311

)
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the mTAZRP: transition rates

Each particle is equipped with an exponential clock. Transitions are jumps from

site j to site j + 1

The rates depend on a fixed parameter 0 ≤ t < 1, and on the content of the

site containing the particle

For 1 ≤ j ≤ n and k ∈ λ, call fj (k) the rate of the jump of particle k from site j

to site j + 1. If site j has d particles larger than k and c particles of type k, then

fj (k) = x−1
j td

c−1∑
u=0

tu

For example: If site j contains the particles {4, 3, 3, 1, 1, 1}, then:

k = 1 : d = 3, c = 3, fj (1) = x−1
j t3(1 + t + t2).

k = 3 : d = 1, c = 2, fj (3) = x−1
j t(1 + t).

k = 4 : d = 0, c = 1, fj (4) = x−1
j .
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Lumping of tableaux to mTAZRP

Given a filling σ, read the state τ ∈ TAZRP(λ, n) from the
bottom row of σ as follows:

τj is the multiset {λi : σ(1, i) = j}

For example, for λ = (2, 1, 1) and n = 3, the following are all
the tableaux that correspond to the state τ =

(
21
∣∣ · ∣∣ 1

)
:

1
1 1 3

2
1 1 3

3
1 1 3

1
1 3 1

2
1 3 1

3
1 3 1
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TAZRP probabilities and tableaux

Theorem (Ayyer–M–Martin ’21)

Fix λ, n. The (unnormalized) stationary probability of τ ∈ TAZRP(λ, n) is

P̃r(τ) =
∑

σ:dg(λ)→[n]
σ has type τ

xσtquinv(σ).

Corollary

The so-called partition function of TAZRP(λ, n) is

Zλ,n(x1, . . . , xn; t) = H̃λ(x1, . . . , xn; 1, t).



an example for λ = (2, 1, 1) and n = 2

The stationary distribution is:(
211

∣∣ · ) x3
1 (x1 + x2)(

11
∣∣ 2
)

x2
1x2(t2x2 + x1)(

21
∣∣ 1
)

x2
1x2(tx1 + x2)(1 + t)(

1
∣∣ 21

)
x1x

2
2 (x1 + tx2)(1 + t)(

2
∣∣ 11

)
x1x

2
2 (t2x1 + x2)(

·
∣∣ 211

)
x3

2 (x1 + x2)

Example computation for
(

21
∣∣ 1
)
:

1
1 1 2

: t2, 2
1 1 2

: t, 1
1 2 1

: t, 2
1 2 1

: 1

the total is: P̃r(21|1) = x2
1x2(tx1 + x2)(1 + t).



why queue inversions? multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of

lattice paths/strings: the lattice paths are representing the coupling of individual

single species TAZRPs

2

2 2

1 1

3 4 3

2 2 4 1

3

4 1

1

3 4

quinv ←→ “refusal”

“plethystic version” of certain
non-attacking fillings ←→ “plethystic version” of

multiline queues
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a Markov chain on tableaux: notation

the arm of a cell, denoted by arm(c),

c

k

k

k k k

k k k

arm(σ, c) = 3

arm(σ, c) = the number of cells in arm(c) with the same content as c.

each cell c such that σ(South(c)) 6= σ(c) is equipped with an exponential clock

with rate

f (σ, c) = tarm(σ,c)x−1
σ(c)

If c = (1, j) is in the bottom row, then arm(σ, c) is equal to the number of

particles larger than or equal to λj at site σ(c) of the corresponding state of

the TAZRP. Thus f (σ, c) is equal to the rate of the correponding TAZRP jump.
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a Markov chain on tableaux: transitions

A transition Mc triggered by a cell c: if σ(c) 6= σ(South(c)), take the maximal

contiguous (cyclically) increasing chain of cells weakly above c in its column, and

increment the content of each cell by 1. (This is sometimes called a ringing path)

4

2 1

1 1

3 4 3

3 3 4 1

4

1
tx−1

3

4

2 1

1 2

3 1 3

3 4 4 1

Theorem (Ayyer–M–Martin ’21)

The stationary distribution of the Markov process on the tableaux is

wt(σ) = xσtquinv(σ)

if c = (1, j) is in the bottom row, the rate f (σ, c) matches the transition rate

fσ(c)(λj ) of the corresponding particle in the TAZRP.

(when λ has repeated parts, we need to do some more work!)
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a Markov chain on tableaux: proof

M(σ) =
{
Mc(σ) : c ∈ dg(λ), σ(c) 6= σ(South(c))

}

R(σ) =
{
σ′ ∈ PQT(λ, n) : T ∈ M(σ′)

}

2

1 2

1

3 2

1

2 2

2

1 1

x−1
3

x−1
1

tx−1
1

3

2 2

2

1 3

3

1 2

x−1
1

x−1
2

tx−1
2

M(σ)

wt(σ)(x−1
1 + tx−1

2 + x−1
2 )

R(σ)

wt(σ)(x−1
2 + x−1

2 + tx−1
2 )

balance equation

if each σ ∈ dg(λ)→ [n] satisfies:∑
σ′∈R(σ)

wt(σ′) rate(σ′ → σ) = wt(σ)
∑

σ′∈M(σ)

rate(σ → σ′),

then the stationary distribution of the M.C. on tableaux is wt(σ).
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Observables: partition function

The partition function of the mTAZRP of type λ, n is defined to be the

normalizing constant, or the sum of the unnormalized stationary probabilities:

Zλ,n =
∑
τ

P̃r(τ)

We have

Zλ,n = H̃λ(x1, . . . , xn; 1, t) =

λ1∏
j=1

H̃(
1
λ′j

)(x1, . . . , xn; 1, t)

=

λ1∏
j=1

∑
µ`λ′j

[λ′j
µ

]
t

mµ(x1, . . . , xn).

Notice that Z might have extra factors, e.g. when the gcd of the probabilities

P̃r(τ) is not 1.

Sanity check: from the point of view of the TAZRP, having three species of

particles labeled 1, 2, 3 is the same process as having three species labeled

2, 13, 27. Thus we should expect their stationary probabilities to be proportional.

At the very least, we need H̃(2,13,27)(x1, . . . , xn; 1, t) to be divisible by

H̃(1,2,3)(x1, . . . , xn; 1, t). This is indeed true, since (3, 2, 1)′ ⊂ (27, 13, 2)′.
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The partition function of the mTAZRP of type λ, n is defined to be the

normalizing constant, or the sum of the unnormalized stationary probabilities:

Zλ,n =
∑
τ

P̃r(τ)

We have

Zλ,n = H̃λ(x1, . . . , xn; 1, t) =

λ1∏
j=1

H̃(
1
λ′j

)(x1, . . . , xn; 1, t)

=

λ1∏
j=1

∑
µ`λ′j

[λ′j
µ

]
t

mµ(x1, . . . , xn).

Notice that Z might have extra factors, e.g. when the gcd of the probabilities

P̃r(τ) is not 1.

Sanity check: from the point of view of the TAZRP, having three species of

particles labeled 1, 2, 3 is the same process as having three species labeled

2, 13, 27. Thus we should expect their stationary probabilities to be proportional.
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Current

The current of particle ` across the edge j is defined as the number of particles

of type ` traversing the edge j per unit of time in the large time limit.

Let us first look at the single species case: λ = (1m) on n sites.

• •

•

• • • •

• •

•

• • • •

Here, n = 5, m = 7

τ = (2, 0, 3, 1, 1)

Each configuration can be written as a weak composition τ = (τ1, . . . , τn).

The stationary probability of the configuration τ is:

π(τ) =
1

H̃(1m)(x1, . . . , xn; 1, t)

[ m

τ1, . . . , τn

]
t

n∏
i=1

xτii

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

J = [m]t
H̃〈1m−1〉(x1, . . . , xn; 1, t)

H̃〈1m〉(x1, . . . , xn; 1, t)
.
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Current

Theorem (Ayyer-M-Martin ’22+)

Let λ = (1m1 , . . . , kmk ), and let 1 ≤ j ≤ k. The current of the particle of type j of the

TAZRP of type λ on n sites is given by

J =
[
mj + · · ·+ mk

]
t

H̃(
1mj +···+mk−1

)
H̃(1mj +···+mk )

−
[
mj+1 + · · ·+ mk

]
t

H̃(
1mj+1+···+mk−1

)
H̃(1mj+1+···+mk )



Densities

Take TAZRP(λ, n) with content λ = (1m1 , 2m2 , . . . , kmk ).

Define z(`)
j to be the random variable counting the number of particles of type `

at site j in a configuration of TAZRP(λ, n).

Denote the expectation in the stationary distribution by 〈z(`)
j 〉.

Proposition (Translation invariance)

Suppose 〈z(`)
1 〉 = r(x1, . . . , xn). Then for any j ,

〈z(`)
j 〉 = r(xj , . . . , xn, x1, . . . , xj−1)

Thus it suffices to compute the densities of all species of particles at site 1.

We begin with the special case of λ = 1m.

Theorem (Densities for the single species TAZRP)

The density at site 1 on TAZRP(1m, n) is given by

〈z(1)
1 〉 = x1∂x1 log H̃(1m)(x1, . . . , xn; 1, t).

In particular, when x1 = · · · = xn = 1, the density is 〈z(1)
1 〉 = m

n
.
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Densities

Theorem (Ayyer-M-Martin ’22+)

For 1 ≤ ` ≤ k, the density of the `’th species at site 1 is given by

〈z(`)
1 〉 = x1∂x1 log

(
H̃(1m`+···+mk )(x1, . . . , xn; 1, t)

H̃(1m`+1+···+mk )(x1, . . . , xn; 1, t)

)
.

Corollary

〈z(`)
1 〉 is symmetric in the variables {x2, . . . , xn}.

Proof via coloring argument:

true for base case λ = (1m)

transitions of particles of species `, . . . , k at site 1 are independent of the

number of lower species particles at site 1. Thus we can ignore the particles of

types 1, . . . , `− 1.

the density of particles of species `, . . . , k at site 1 is equivalent to the density

at site 1 of a TAZRP of type λ = (1m`+···+mk ).

to isolate species ` we subtract the density of species `+ 1, . . . , k from the

density of species `, . . . , k.
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Local correlations

Fix λ, n, and 0 ≤ ` ≤ n, and let w be a configuration of the TAZRP on the first

` sites of type µ, where µ ⊆ λ.

We consider two kinds of local correlations:

Let Pλ,n(w) be the stationary probability of having exactly the content

w1, . . . ,w` on sites 1, . . . , `.

Let Pλ,n(ŵ) be the stationary probability of having at least the content

w1, . . . ,w` on sites 1, . . . , `.

Example: let λ = (2, 2, 1, 1), n = 4, ` = 2, and w = (2|1).

Configurations contributing to Pλ,n(w) are

(2|1|12|·), (2|1|1|2), (2|1|2|1), (2|1| · |12)

Additional configurations contributing to Pλ,n(ŵ) are

(12|1|2|·), (2|11|2|·), (22|1|1|·), (2|12|1|·), (12|1| · |2), (2|11| · |2)

(22|1|·|1), (2|12|·|1), (122|1|·|·), (2|112|·|·), (22|11|·|·), (12|12|·|·)

Theorem (Ayyer-M-Martin ’22+)

Both Pλ,n(w) and Pλ,n(ŵ) are symmetric in the variables {x`+1, . . . , xn}.
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(12|1|2|·), (2|11|2|·), (22|1|1|·), (2|12|1|·), (12|1| · |2), (2|11| · |2)

(22|1|·|1), (2|12|·|1), (122|1|·|·), (2|112|·|·), (22|11|·|·), (12|12|·|·)

Theorem (Ayyer-M-Martin ’22+)
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final remarks

Explicit bijection from the inv to the quinv statistic?

x

y

z· · ·

vs

x

y z· · ·

Can we find a dynamical process that incorporates the q as a parameter?

This seems difficult because

We lose factorization of H̃λ
We lose translation invariance

Using multiline queues (for the ASEP on a circle),

Corteel-Haglund-M-Mason-Williams ’20 defined quasisymmetric Macdonald

polynomials which refine Pλ. Can we use a parallel construction to define an

interesting family of quasisymmetric polynomials that refine H̃λ?

Same as above, but for nonsymmetric Macdonald polynomials
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Modified Macdonald polynomials and the multispecies zero range process: I,

(with A. Ayyer and J. B. Martin), arXiv:2011.06117

A Markov chain on tableaux that projects to the multispecies TAZRP, and

applications, (with A. Ayyer and J. B. Martin), in preparation


