Macdonald polynomials and the multispecies zero range process

Olya Mandelshtam
University of Waterloo

April 2, 2022
joint with Arvind Ayyer and James Martin, arXiv:2022.06117 + upcoming

overview

(1) Motivation: Macdonald polynomials and interacting particle systems
(2) A new combinatorial formula for $\widetilde{H}_{\lambda}(X ; q, t)$
(3) Multispecies Totally Asymmetric Zero Range Process (mTAZRP)
(4) Markov chain on tableaux
(5) Observables

exactly solvable interacting particle systems

- integrable systems include a class of dynamical systems with a certain restricted structure, in particular making them solvable

exactly solvable interacting particle systems

- integrable systems include a class of dynamical systems with a certain restricted structure, in particular making them solvable
- the field was initiated by Spitzer in his 1970 paper where he defined the ASEP (Asymmetric Simple Exclusion Process) and the ZRP (Zero Range Process)

exactly solvable interacting particle systems

- integrable systems include a class of dynamical systems with a certain restricted structure, in particular making them solvable
- the field was initiated by Spitzer in his 1970 paper where he defined the ASEP (Asymmetric Simple Exclusion Process) and the ZRP (Zero Range Process)
- canonical example: the ASEP describes particles hopping on a finite 1D lattice with ≤ 1 particle at each site

exactly solvable interacting particle systems

- integrable systems include a class of dynamical systems with a certain restricted structure, in particular making them solvable
- the field was initiated by Spitzer in his 1970 paper where he defined the ASEP (Asymmetric Simple Exclusion Process) and the ZRP (Zero Range Process)
- canonical example: the ASEP describes particles hopping on a finite 1D lattice with ≤ 1 particle at each site

- we are interested in studying integrable systems whose exact solutions (stationary distributions) can be expressed in terms of combinatorial formulas or special functions (e.g. Macdonald polynomials)

Macdonald polynomials

- Let $X=x_{1}, x_{2}, \cdots$ be a family of indeterminates, and let $\Lambda=\Lambda_{\mathbb{Q}}$ be the algebra of symmetric functions in X over \mathbb{Q}

Macdonald polynomials

- Let $X=x_{1}, x_{2}, \cdots$ be a family of indeterminates, and let $\Lambda=\Lambda_{\mathbb{Q}}$ be the algebra of symmetric functions in X over \mathbb{Q}
- Λ has several nice bases: e.g. $\left\{m_{\lambda}\right\},\left\{e_{\lambda}\right\},\left\{h_{\lambda}\right\},\left\{p_{\lambda}\right\}$, indexed by partitions λ.

Macdonald polynomials

- Let $X=x_{1}, x_{2}, \cdots$ be a family of indeterminates, and let $\Lambda=\Lambda_{\mathbb{Q}}$ be the algebra of symmetric functions in X over \mathbb{Q}
- \wedge has several nice bases: e.g. $\left\{m_{\lambda}\right\},\left\{e_{\lambda}\right\},\left\{h_{\lambda}\right\},\left\{p_{\lambda}\right\}$, indexed by partitions λ.

Let \langle,$\rangle be the standard inner product on \Lambda$. Then $\left\{s_{\lambda}\right\}$ is the unique basis of Λ that is:
i. orthogonal with respect to \langle,
ii. upper triangular with respect to $\left\{m_{\lambda}\right\}$:

$$
s_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} c_{\mu \lambda} m_{\mu}
$$

where $<$ is with respect to dominance order on partitions.

Macdonald polynomials

- Let $X=x_{1}, x_{2}, \cdots$ be a family of indeterminates, and let $\Lambda=\Lambda_{\mathbb{Q}}$ be the algebra of symmetric functions in X over \mathbb{Q}
- \wedge has several nice bases: e.g. $\left\{m_{\lambda}\right\},\left\{e_{\lambda}\right\},\left\{h_{\lambda}\right\},\left\{p_{\lambda}\right\}$, indexed by partitions λ.

Let \langle,$\rangle be the standard inner product on \Lambda$. Then $\left\{s_{\lambda}\right\}$ is the unique basis of Λ that is:
i. orthogonal with respect to \langle,
ii. upper triangular with respect to $\left\{m_{\lambda}\right\}$:

$$
s_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} c_{\mu \lambda} m_{\mu}
$$

where $<$ is with respect to dominance order on partitions.

- $s_{\lambda}=\sum_{\sigma} x^{\sigma}$ where σ is a semi-standard filling of the Young diagram of shape λ E.g. the following are the fillings of shape $(2,1)$ on 3 letters:

$s_{(2,1)}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}=m_{(2,1)}+m_{(1,1,1)}$

Macdonald polynomials $P_{\lambda}(X ; q, t)$

- Let $\Lambda=\Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q}

Macdonald polynomials $P_{\lambda}(X ; q, t)$

- Let $\Lambda=\Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q}
- Macdonald '88 introduced a family of homogeneous symmetric polynomials $\left\{P_{\lambda}(X ; q, t)\right\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at $q=t=0$), Hall-Littlewood polynomials (at $q=0$), and Jack polynomials (at $t=q^{\alpha}$ and $q \rightarrow 1$)

Macdonald polynomials $P_{\lambda}(X ; q, t)$

- Let $\Lambda=\Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q}
- Macdonald '88 introduced a family of homogeneous symmetric polynomials $\left\{P_{\lambda}(X ; q, t)\right\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at $q=t=0$), Hall-Littlewood polynomials (at $q=0$), and Jack polynomials (at $t=q^{\alpha}$ and $q \rightarrow 1$)

Let $\langle,\rangle_{q, t}$ be the inner product on $\Lambda(q, t)$ given by:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{q, t}=\delta_{\lambda, \mu} z_{\lambda} \prod_{i \geq 1} \frac{1-q^{\lambda_{i}}}{1-t^{\lambda_{i}}}
$$

Then $\left\{P_{\lambda}\right\}$ is the unique basis of $\Lambda(q, t)$ that is uniquely determined by:
i. orthogonal basis for $\Lambda(q, t)$ with respect to $\langle,\rangle_{q, t}$
ii. upper triangular with respect to $\left\{m_{\lambda}\right\}$:

$$
P_{\lambda}(X ; q, t)=m_{\lambda}(X)+\sum_{\mu<\lambda} c_{\mu \lambda}(q, t) m_{\mu}(X)
$$

Macdonald polynomials $P_{\lambda}(X ; q, t)$

- Let $\Lambda=\Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q}
- Macdonald '88 introduced a family of homogeneous symmetric polynomials $\left\{P_{\lambda}(X ; q, t)\right\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at $q=t=0$), Hall-Littlewood polynomials (at $q=0$), and Jack polynomials (at $t=q^{\alpha}$ and $q \rightarrow 1$)

Let $\langle,\rangle_{q, t}$ be the inner product on $\Lambda(q, t)$ given by:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{q, t}=\delta_{\lambda, \mu} z_{\lambda} \prod_{i \geq 1} \frac{1-q^{\lambda_{i}}}{1-t^{\lambda_{i}}}
$$

Then $\left\{P_{\lambda}\right\}$ is the unique basis of $\Lambda(q, t)$ that is uniquely determined by:
i. orthogonal basis for $\Lambda(q, t)$ with respect to $\langle,\rangle_{q, t}$
ii. upper triangular with respect to $\left\{m_{\lambda}\right\}$:

$$
P_{\lambda}(X ; q, t)=m_{\lambda}(X)+\sum_{\mu<\lambda} c_{\mu \lambda}(q, t) m_{\mu}(X)
$$

- Example:

$$
P_{(2,1)}(X ; q, t)=m_{(2,1)}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} m_{(1,1,1)}
$$

modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X ; q, t)$ as a combinatorial version of the P_{λ} 's

modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X ; q, t)$ as a combinatorial version of the P_{λ} 's

- obtained from a normalized form of $P_{\lambda}(X ; q, t)$ by plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

where J_{λ} is a scalar multiple of P_{λ}.
Example: $\widetilde{H}_{(2,1)}(X ; q, t)=m_{(3)}+(1+q+t) m_{(2,1)}+(1+2 q+2 t+q t) m_{(1,1,1)}$

modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X ; q, t)$ as a combinatorial version of the P_{λ} 's

- obtained from a normalized form of $P_{\lambda}(X ; q, t)$ by plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

where J_{λ} is a scalar multiple of P_{λ}.
Example: $\tilde{H}_{(2,1)}(X ; q, t)=m_{(3)}+(1+q+t) m_{(2,1)}+(1+2 q+2 t+q t) m_{(1,1,1)}$

- Haglund-Haiman-Loehr '04 gave formulas for P_{λ} and \widetilde{H}_{λ} as sums over tableaux with statistics maj and (co)inv:
- $P_{\lambda}(X ; q, t)=\sum_{\substack{\sigma \in \operatorname{dg}(\lambda) \\ \sigma \text { non-attacking }}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{coinv}(\sigma)} x^{\sigma} \prod_{u} \frac{1-t}{1-q^{\operatorname{leg}(u)+1} t^{\operatorname{arm}(u)+1}}$
- $\widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma \in \operatorname{dg}(\lambda)} q^{\operatorname{maj}(\sigma)} t^{\operatorname{inv}(\sigma)} x^{\sigma}$

Combinatorial formulas

- Corteel-M-Williams '18 gave a new formula for P_{λ} in terms of multiline queues, which also give formulas for the stationary distribution of the ASEP

Combinatorial formulas

- Corteel-M-Williams '18 gave a new formula for P_{λ} in terms of multiline queues, which also give formulas for the stationary distribution of the ASEP
- Garbali-Wheeler '20 gave a formula for \widetilde{H}_{λ} using integrability, in terms of colored paths

Combinatorial formulas

- Corteel-M-Williams '18 gave a new formula for P_{λ} in terms of multiline queues, which also give formulas for the stationary distribution of the ASEP
- Garbali-Wheeler '20 gave a formula for \widetilde{H}_{λ} using integrability, in terms of colored paths
- Corteel-Haglund-M-Mason-Williams '20 gave a "compressed" formula for \widetilde{H}_{λ}. Using multiline queues and the plethystic relationship between \widetilde{H}_{λ} and P_{λ}, also conjectured a new formula for \widetilde{H}_{λ} with statistics maj and a new statistic quinv:

$$
\widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma \in \operatorname{dg}(\lambda)} q^{\mathrm{maj}(\sigma)} t^{\mathrm{quinv}(\sigma)} x^{\sigma}
$$

multiline queues and the ASEP

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.

multiline queues and the ASEP

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- It can be represented by a queueing system, or described as a coupled system of 1-ASEPs

multiline queues and the ASEP

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- It can be represented by a queueing system, or described as a coupled system of 1-ASEPs

Angel '08, Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- The weight $\operatorname{wt}(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:
- a string of length ℓ corresponds to an ASEP particle of species ℓ. The labels of the balls in that string are ℓ

multiline queues and the ASEP

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- It can be represented by a queueing system, or described as a coupled system of 1-ASEPs

Angel '08, Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- The weight $\operatorname{wt}(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:
- a string of length ℓ corresponds to an ASEP particle of species ℓ. The labels of the balls in that string are ℓ
- the bottom row corresponds to a state of the ASEP of type λ, n

multiline queues and the ASEP

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- It can be represented by a queueing system, or described as a coupled system of 1 -ASEPs

Angel '08, Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- The weight $\operatorname{wt}(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:
- a string of length ℓ corresponds to an ASEP particle of species ℓ. The labels of the balls in that string are ℓ
- the bottom row corresponds to a state of the ASEP of type λ, n
- the j 'th column of the MLQ corresponds to the variable x_{j} (a MLQ with n columns corresponds to an ASEP on n sites and uses n variables x_{1}, \ldots, x_{n})

multiline queues and the ASEP

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- It can be represented by a queueing system, or described as a coupled system of 1-ASEPs

Angel '08, Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- The weight $\operatorname{wt}(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:
- a string of length ℓ corresponds to an ASEP particle of species ℓ. The labels of the balls in that string are ℓ
- the bottom row corresponds to a state of the ASEP of type λ, n
- the j 'th column of the MLQ corresponds to the variable x_{j} (a MLQ with n columns corresponds to an ASEP on n sites and uses n variables x_{1}, \ldots, x_{n})
- skipped balls in the MLQ "correspond" to a coinv statistic in t

multiline queues and the ASEP

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- It can be represented by a queueing system, or described as a coupled system of 1-ASEPs

Angel '08, Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- The weight $\operatorname{wt}(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:
- a string of length ℓ corresponds to an ASEP particle of species ℓ. The labels of the balls in that string are ℓ
- the bottom row corresponds to a state of the ASEP of type λ, n
- the j 'th column of the MLQ corresponds to the variable x_{j} (a MLQ with n columns corresponds to an ASEP on n sites and uses n variables x_{1}, \ldots, x_{n})
- skipped balls in the MLQ "correspond" to a coinv statistic in t
- wrapping balls in the MLQ correspond to a maj statistic in q

multiline queues and the ASEP

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- It can be represented by a queueing system, or described as a coupled system of 1-ASEPs

Angel ' 08 , Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- The weight $\operatorname{wt}(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:
- a string of length ℓ corresponds to an ASEP particle of species ℓ. The labels of the balls in that string are ℓ
- the bottom row corresponds to a state of the ASEP of type λ, n
- the j 'th column of the MLQ corresponds to the variable x_{j} (a MLQ with n columns corresponds to an ASEP on n sites and uses n variables x_{1}, \ldots, x_{n})
- skipped balls in the MLQ "correspond" to a coinv statistic in t
- wrapping balls in the MLQ correspond to a maj statistic in q
- Can be represented by a non-attacking tableau, where each string is mapped to a column of the same height, recording the position of each ball in the MLQ.

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)
The (unnormalized) stationary probability of state α of the mASEP is

$$
\widetilde{\operatorname{Pr}}(\alpha)(t)=\sum_{M: \text { row } 1=\alpha} w t(M)(1, \ldots, 1 ; 1, t)
$$

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state α of the mASEP is

$$
\widetilde{\operatorname{Pr}}(\alpha)(t)=\sum_{M: \text { row } 1=\alpha} w t(M)(1, \ldots, 1 ; 1, t)
$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of $\operatorname{ASEP}(\lambda, n)$ is a specialization of the Macdonald polynomial:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\mathcal{Z}_{\lambda, n}(t)=\sum_{\alpha \in S_{n} \cdot \lambda} \widetilde{\operatorname{Pr}}(\alpha)(t)
$$

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state α of the mASEP is

$$
\tilde{\operatorname{Pr}}(\alpha)(t)=\sum_{M: \text { row } 1=\alpha} w t(M)(1, \ldots, 1 ; 1, t)
$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of $\operatorname{ASEP}(\lambda, n)$ is a specialization of the Macdonald polynomial:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\mathcal{Z}_{\lambda, n}(t)=\sum_{\alpha \in S_{n} \cdot \lambda} \tilde{\operatorname{Pr}}(\alpha)(t)
$$

Theorem (Corteel-M-Williams '18)

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{M \in \operatorname{MLQ}(\lambda, n)} w t(M)\left(x_{1}, \ldots, x_{n} ; q, t\right)
$$

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state α of the mASEP is

$$
\widetilde{\operatorname{Pr}}(\alpha)(t)=\sum_{M: \text { row } 1=\alpha} w t(M)(1, \ldots, 1 ; 1, t)
$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of $\operatorname{ASEP}(\lambda, n)$ is a specialization of the Macdonald polynomial:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\mathcal{Z}_{\lambda, n}(t)=\sum_{\alpha \in S_{n} \cdot \lambda} \widetilde{\operatorname{Pr}}(\alpha)(t)
$$

Theorem (Corteel-M-Williams '18)

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; \boldsymbol{q}, t\right)=\sum_{M \in \operatorname{MLQ}(\lambda, n)} w t(M)\left(x_{1}, \ldots, x_{n} ; \boldsymbol{q}, t\right)
$$

This formula essentially coincides with that of Lenart '09 for λ with distinct parts.

Example for $P_{(2,1)}\left(x_{1}, x_{2}, x_{3} ; q, t\right)$

$$
P_{(2,1)}\left(x_{1}, x_{2}, x_{3} ; q, t\right)=m_{(2,1)}+\frac{(2+t+q+2 q t)(1-t)}{\left(1-q t^{2}\right)} m_{(1,1,1)}
$$

From multiline queues to a new formula for \widetilde{H}_{λ}

- Recall: $\widetilde{H}_{\lambda}(X ; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

From multiline queues to a new formula for \widetilde{H}_{λ}

- Recall: $\widetilde{H}_{\lambda}(X ; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

- $P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)$ should correspond to a multiline queue with countably many columns labeled by

$$
x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots
$$

From multiline queues to a new formula for \widetilde{H}_{λ}

- Recall: $\widetilde{H}_{\lambda}(X ; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

- $P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; q, t^{-1}\right)$ should correspond to a multiline queue with countably many columns labeled by

$$
x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots
$$

- this leads to a new "queue inversion" statistic for t that we call quinv (Corteel-Haglund-M-Mason-Williams '20, Ayyer-M-Martin '21)

From multiline queues to a new formula for \widetilde{H}_{λ}

- Recall: $\widetilde{H}_{\lambda}(X ; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

- $P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; q, t^{-1}\right)$ should correspond to a multiline queue with countably many columns labeled by

$$
x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots
$$

- this leads to a new "queue inversion" statistic for t that we call quinv (Corteel-Haglund-M-Mason-Williams '20, Ayyer-M-Martin '21)
- the resulting objects are of the same flavor as multiline queues, except that multiple balls are allowed at each location. (This translates to removing the "non-attacking" condition from the corresponding tableaux)

tableaux formulas: notation and statistics

- $\operatorname{dg}(\lambda)$ (the diagram of $\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right)$ consists of k bottom justified columns with λ_{i} boxes, from left to right

tableaux formulas: notation and statistics

- $\operatorname{dg}(\lambda)$ (the diagram of $\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right)$ consists of k bottom justified columns with λ_{i} boxes, from left to right

$$
\lambda=(4,3,3,1)
$$

$\sigma=$| 4 | | | |
| :--- | :--- | :--- | :---: |
| 2 | 2 | 4 | | | | | |
| :--- | :--- | :--- |
| 3 | 1 | 1 |

- a tableau of type (λ, n) is a filling $\sigma: \operatorname{dg}(\lambda) \rightarrow[n]$ of the cells

tableaux formulas: notation and statistics

- $\operatorname{dg}(\lambda)$ (the diagram of $\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right)$ consists of k bottom justified columns with λ_{i} boxes, from left to right

$$
\lambda=(4,3,3,1)
$$

$\sigma=$			
	2	4	
3	1	1	
2	3	3	4

- a tableau of type (λ, n) is a filling $\sigma: \operatorname{dg}(\lambda) \rightarrow[n]$ of the cells
- $\operatorname{inv}(\sigma)$ is the number of inversions in the configuration

$$
\begin{array}{|l|l|l|}
\hline x & \cdots & z \\
y & & \text { where } x<y<z(\text { cyclically } \bmod n) \\
\hline y &
\end{array}
$$

tableaux formulas: notation and statistics

- $\operatorname{dg}(\lambda)$ (the diagram of $\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right)$ consists of k bottom justified columns with λ_{i} boxes, from left to right

$$
\sigma=
$$

- a tableau of type (λ, n) is a filling $\sigma: \operatorname{dg}(\lambda) \rightarrow[n]$ of the cells
- $\operatorname{inv}(\sigma)$ is the number of inversions in the configuration

$$
\begin{array}{|l|l|}
\hline x & \cdots \\
y & z
\end{array} \quad \text { where } x<y<z(\text { cyclically } \bmod n)
$$

tableaux formulas: notation and statistics

- $\operatorname{dg}(\lambda)$ (the diagram of $\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right)$ consists of k bottom justified columns with λ_{i} boxes, from left to right
- a tableau of type (λ, n) is a filling $\sigma: \operatorname{dg}(\lambda) \rightarrow[n]$ of the cells
- $\operatorname{inv}(\sigma)$ is the number of inversions in the configuration

$$
\begin{array}{|l|l|}
\hline x & \cdots \\
y & z \\
\hline
\end{array} \quad \text { where } x<y<z(\text { cyclically } \bmod n)
$$

Theorem (Haglund-Haiman-Loehr '05)

The modified Macdonald polynomial is given by

$$
\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow[n]} q^{\operatorname{maj}(\sigma)} t^{\operatorname{inv}(\sigma)} x^{\sigma} .
$$

a new statistic: queue-inversion

$$
\left.\sigma=\right) 4 .
$$

- an L-triple is a triple of cells in the configuration:

$$
\begin{array}{|c|c|cc|c|}
\hline x \\
\hline y & \cdots & \begin{array}{c}
\\
\hline
\end{array} \quad \text { or } \quad \begin{array}{|c}
y \\
\hline
\end{array} & \cdots & z \\
\hline
\end{array}
$$

a new statistic: queue-inversion

$$
\sigma= 4 \begin{aligned}
& 4 \\
& \hline
\end{aligned}
$$

- an L-triple is a triple of cells in the configuration:

$$
\begin{array}{|c|ccc|c|}
\hline x \\
\hline y & \cdots & z & \text { or } & y \\
& \cdots & z \\
\hline
\end{array}
$$

- an L-triple forms a quinv (queue-inversion) if $x<y<z$ cyclically $\bmod n$ (ties are broken by a top-to-bottom and right-to-left reading order)

a new statistic: queue-inversion

$$
\left.\sigma=\right) 4 .
$$

- an L-triple is a triple of cells in the configuration:

- an L-triple forms a quinv (queue-inversion) if $x<y<z$ cyclically mod n (ties are broken by a top-to-bottom and right-to-left reading order)
- quinv (σ) is the total number of queue-inversions in σ.

a new statistic: queue-inversion

$\sigma=$| 4 | | | |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 4 | |
| 3 | 1 | 1 | |
| 2 | 3 | 3 | 4 |

- an L-triple is a triple of cells in the configuration:

- an L-triple forms a quinv (queue-inversion) if $x<y<z$ cyclically mod n (ties are broken by a top-to-bottom and right-to-left reading order)
- quinv (σ) is the total number of queue-inversions in σ.

Theorem (Ayyer-M-Martin '20)

Let λ be a partition. The modified Macdonald polynomial equals

$$
\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow[n]} q^{\operatorname{maj}(\sigma)} t^{\text {quinv }(\sigma)} x^{\sigma}
$$

a new statistic: queue-inversion

$\sigma=$| 4 | | | |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 4 | |
| 3 | 1 | 1 | |
| 2 | 3 | 3 | 4 |

- an L-triple is a triple of cells in the configuration:

- an L-triple forms a quinv (queue-inversion) if $x<y<z$ cyclically mod n (ties are broken by a top-to-bottom and right-to-left reading order)
- quinv (σ) is the total number of queue-inversions in σ.

Theorem (Ayyer-M-Martin '20)

Let λ be a partition. The modified Macdonald polynomial equals

$$
\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow[n]} q^{\operatorname{maj}(\sigma)} t^{\text {quinv }(\sigma)} x^{\sigma}
$$

a new statistic: queue-inversion

$\sigma=$| 4 | | | |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 4 | |
| 3 | 1 | 1 | |
| 2 | 3 | 3 | 4 |

- an L-triple is a triple of cells in the configuration:

- an L-triple forms a quinv (queue-inversion) if $x<y<z$ cyclically mod n (ties are broken by a top-to-bottom and right-to-left reading order)
- quinv (σ) is the total number of queue-inversions in σ.

Theorem (Ayyer-M-Martin '20)

Let λ be a partition. The modified Macdonald polynomial equals

$$
\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow[n]} q^{\operatorname{maj}(\sigma)} t^{\text {quinv }(\sigma)} x^{\sigma}
$$

a new statistic: queue-inversion

$\sigma=$| 4 | | |
| :--- | :--- | :--- |
| 2 | 2 | 4 | \(\left.\begin{array}{|l|l|}\hline \& 1

2 \& 1\end{array}\right)\)

$$
\text { quinv }(\sigma)=4
$$

- an L-triple is a triple of cells in the configuration:

- an L-triple forms a quinv (queue-inversion) if $x<y<z$ cyclically $\bmod n$ (ties are broken by a top-to-bottom and right-to-left reading order)
- quinv (σ) is the total number of queue-inversions in σ.

Theorem (Ayyer-M-Martin '20)

Let λ be a partition. The modified Macdonald polynomial equals

$$
\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow[n]} q^{\operatorname{maj}(\sigma)} t^{\text {quinv }(\sigma)} x^{\sigma}
$$

Example: $\tilde{H}_{(2,1)}(X ; q, t)$

$\widetilde{H}_{(2,1)}\left(x_{1}, x_{2} ; q, t\right)=m_{(3)}+(1+t+q) m_{(2,1)}+(1+2 t+2 q+q t) m_{(1,1,1)}$

- (AMM) $\quad \widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma: \mathrm{dg}(\lambda) \rightarrow \mathbb{Z}_{+}} q^{\operatorname{maj}(\sigma)} t^{q \mathrm{qunv}(\sigma)} x^{\sigma}$

- (HHL) $\quad \widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow \mathbb{Z}_{+}} q^{\operatorname{mi}(\sigma)} t^{\min (\sigma)} x^{\sigma}$

1	2	1	1	1	2	3	2	1	3
11	11	12	21	23	13	12	31	32	21
m_{3}	$q m_{21}$	m_{21}	$t m_{21}$	m_{111}	$q m_{111}$	$q m_{111}$	$t m_{111}$	$t m_{111}$	qt m_{111}

Example: $\tilde{H}_{(2,1)}(X ; q, t)$

$$
\widetilde{H}_{(2,1)}\left(x_{1}, x_{2} ; q, t\right)=m_{(3)}+(1+t+q) m_{(2,1)}+(1+2 t+2 q+q t) m_{(1,1,1)}
$$

- (AMM) $\quad \widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma: \mathrm{dg}(\lambda) \rightarrow \mathbb{Z}_{+}} q^{\operatorname{maj}(\sigma)} t^{q u i n v(\sigma)} x^{\sigma}$

- (HHL) $\quad \widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow \mathbb{Z}_{+}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{inv}(\sigma)} x^{\sigma}$

$$
\left.\begin{array}{cccccccccccccccccc}
1 & & 2 & & 1 & 1 & 1 & 2 & 3 & 2 & 1 & 3 & \\
1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 2 & 3 & 1 & 3 & 1 & 2 & 3 & 1 & 3 & 2
\end{array}\right] 2 \begin{gathered}
1 \\
m_{3}
\end{gathered}
$$

- while the inv and quinv statistics appear very similar, there does not seem to be an easy way to go from one to the other - is there a bijective proof?

Motivation

What is the analogous interacting particle system whose partition function is a specialization of \widetilde{H}_{λ} ?

Motivation

What is the analogous interacting particle system whose partition function is a specialization of \widetilde{H}_{λ} ?

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

$$
\begin{gathered}
\text { Here, } n=5, k=7 \\
\tau=(11|\cdot| 111|1| 1)
\end{gathered}
$$

- simplest case: there are k indistinguishable particles, moving counter-clockwise. A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the k particles on the n sites.

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

- simplest case: there are k indistinguishable particles, moving counter-clockwise. A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j+1 \bmod n$ with rate $f\left(\tau_{j}\right)$ for some $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

$$
\leftarrow 3,3,1
$$

$$
\begin{gathered}
\text { Here, } n=5, k=7 \\
\tau=(2,2|\cdot| 3,3,1|2| 1)
\end{gathered}
$$

- simplest case: there are k indistinguishable particles, moving counter-clockwise. A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j+1 \bmod n$ with rate $f\left(\tau_{j}\right)$ for some $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$
- multispecies variant: we now allow different particle types, labeled by integers (particles of the same type are still indistinguishable)

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

$$
3,3,1
$$

$$
\begin{gathered}
\text { Here, } n=5, k=7 \\
\tau=(2,2|\cdot| 3,3,1|2| 1)
\end{gathered}
$$

- simplest case: there are k indistinguishable particles, moving counter-clockwise. A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j+1 \bmod n$ with rate $f\left(\tau_{j}\right)$ for some $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$
- multispecies variant: we now allow different particle types, labeled by integers (particles of the same type are still indistinguishable)
- Kuniba-Maruyama-Okado (2015+) (and others) have studied many multispecies variants of the TAZRP. All of these are integrable! The version we will describe was first studied by Takayama '15

the mTAZRP: states

- Fix a (circular 1D) lattice on n sites and a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{k}>0\right)$ for the particle types

the mTAZRP: states

- Fix a (circular 1D) lattice on n sites and a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{k}>0\right)$ for the particle types
- $\operatorname{TAZRP}(\lambda, n)$ is a Markov chain whose states are multiset compositions τ of type λ, with n (possibly empty) parts

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$
- The rates depend on a fixed parameter $0 \leq t<1$, and on the content of the site containing the particle

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$
- The rates depend on a fixed parameter $0 \leq t<1$, and on the content of the site containing the particle
- For $1 \leq j \leq n$ and $k \in \lambda$, call $f_{j}(k)$ the rate of the jump of particle k from site j to site $j+1$. If site j has d particles larger than k and c particles of type k, then

$$
f_{j}(k)=x_{j}^{-1} t^{d} \sum_{u=0}^{c-1} t^{u}
$$

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$
- The rates depend on a fixed parameter $0 \leq t<1$, and on the content of the site containing the particle
- For $1 \leq j \leq n$ and $k \in \lambda$, call $f_{j}(k)$ the rate of the jump of particle k from site j to site $j+1$. If site j has d particles larger than k and c particles of type k, then

$$
f_{j}(k)=x_{j}^{-1} t^{d} \sum_{u=0}^{c-1} t^{u}
$$

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$
- The rates depend on a fixed parameter $0 \leq t<1$, and on the content of the site containing the particle
- For $1 \leq j \leq n$ and $k \in \lambda$, call $f_{j}(k)$ the rate of the jump of particle k from site j to site $j+1$. If site j has d particles larger than k and c particles of type k, then

$$
f_{j}(k)=x_{j}^{-1} t^{d} \sum_{u=0}^{c-1} t^{u}
$$

For example: If site j contains the particles $\{4,3,3,1,1,1\}$, then:

$$
\begin{array}{lll}
k=1: & d=3, & c=3, \\
k=3: & d=1, & c=2, \\
k=4: & d=0, & c=1,
\end{array}
$$

Lumping of tableaux to mTAZRP

- Given a filling σ, read the state $\tau \in \operatorname{TAZRP}(\lambda, n)$ from the bottom row of σ as follows:
τ_{j} is the multiset $\left\{\lambda_{i}: \sigma(1, i)=j\right\}$

Lumping of tableaux to mTAZRP

- Given a filling σ, read the state $\tau \in \operatorname{TAZRP}(\lambda, n)$ from the bottom row of σ as follows:
τ_{j} is the multiset $\left\{\lambda_{i}: \sigma(1, i)=j\right\}$
- For example, for $\lambda=(2,1,1)$ and $n=3$, the following are all the tableaux that correspond to the state $\tau=(21|\cdot| 1)$:

1			2		3			1			2			3		
1	1		1	13	1	1	3	1	3	1	1	3	1	1	3	1

TAZRP probabilities and tableaux

Theorem (Ayyer-M-Martin '21)

Fix λ, n. The (unnormalized) stationary probability of $\tau \in \operatorname{TAZRP}(\lambda, n)$ is

$$
\widetilde{\operatorname{Pr}}(\tau)=\sum_{\substack{\sigma: \mathrm{dg}(\lambda) \rightarrow[n] \\ \sigma \text { has type } \tau}} x^{\sigma} t^{\mathrm{quinv}(\sigma)} .
$$

Corollary

The so-called partition function of $\operatorname{TAZRP}(\lambda, n)$ is

$$
\mathcal{Z}_{\lambda, n}\left(x_{1}, \ldots, x_{n} ; t\right)=\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1, t\right)
$$

an example for $\lambda=(2,1,1)$ and $n=2$

The stationary distribution is:

Example computation for $(21 \mid 1)$:

1		
1	1	2

\& t^{2},\end{aligned}\)

$$
\begin{array}{|l|l|l}
\hline 2 & & \\
\hline 1 & 1 & 2 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l}
\hline 1 & & \\
\hline 1 & 2 & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l}
\hline 2 & & \\
\hline 1 & 2 & 1 \\
\hline
\end{array}
$$

the total is:

$$
\widetilde{\operatorname{Pr}}(21 \mid 1)=x_{1}^{2} x_{2}\left(t x_{1}+x_{2}\right)(1+t) .
$$

why queue inversions? multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings: the lattice paths are representing the coupling of individual single species TAZRPs

why queue inversions? multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings: the lattice paths are representing the coupling of individual single species TAZRPs

"plethystic version" of certain non-attacking fillings
"plethystic version" of multiline queues

why queue inversions? multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings: the lattice paths are representing the coupling of individual single species TAZRPs

"plethystic version" of certain non-attacking fillings
\longleftrightarrow
\longleftrightarrow

why queue inversions? multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings: the lattice paths are representing the coupling of individual single species TAZRPs

"plethystic version" of certain non-attacking fillings
\longleftrightarrow
\longleftrightarrow

a Markov chain on tableaux: notation

- the arm of a cell, denoted by arm(c),

a Markov chain on tableaux: notation

- the arm of a cell, denoted by arm(c),

$$
\operatorname{arm}(\sigma, c)=3
$$

- $\operatorname{arm}(\sigma, c)=$ the number of cells in $\operatorname{arm}(c)$ with the same content as c.

a Markov chain on tableaux: notation

- the arm of a cell, denoted by arm(c),

$$
\operatorname{arm}(\sigma, c)=3
$$

- $\operatorname{arm}(\sigma, c)=$ the number of cells in $\operatorname{arm}(c)$ with the same content as c.
- each cell c such that $\sigma(\operatorname{South}(c)) \neq \sigma(c)$ is equipped with an exponential clock with rate

$$
f(\sigma, c)=t^{\operatorname{arm}(\sigma, c)} x_{\sigma(c)}^{-1}
$$

a Markov chain on tableaux: notation

- the arm of a cell, denoted by $\operatorname{arm}(c)$,

$$
\operatorname{arm}(\sigma, c)=3
$$

- $\operatorname{arm}(\sigma, c)=$ the number of cells in $\operatorname{arm}(c)$ with the same content as c.
- each cell c such that $\sigma(\operatorname{South}(c)) \neq \sigma(c)$ is equipped with an exponential clock with rate

$$
f(\sigma, c)=t^{\operatorname{arm}(\sigma, c)} \chi_{\sigma(c)}^{-1}
$$

- If $c=(1, j)$ is in the bottom row, then $\operatorname{arm}(\sigma, c)$ is equal to the number of particles larger than or equal to λ_{j} at site $\sigma(c)$ of the corresponding state of the TAZRP. Thus $f(\sigma, c)$ is equal to the rate of the correponding TAZRP jump.

a Markov chain on tableaux: transitions

A transition M_{c} triggered by a cell c : if $\sigma(c) \neq \sigma($ South $(c))$, take the maximal contiguous (cyclically) increasing chain of cells weakly above c in its column, and increment the content of each cell by 1 . (This is sometimes called a ringing path)

a Markov chain on tableaux: transitions

A transition M_{c} triggered by a cell c : if $\sigma(c) \neq \sigma($ South $(c))$, take the maximal contiguous (cyclically) increasing chain of cells weakly above c in its column, and increment the content of each cell by 1 . (This is sometimes called a ringing path)

a Markov chain on tableaux: transitions

A transition M_{c} triggered by a cell c : if $\sigma(c) \neq \sigma($ South $(c))$, take the maximal contiguous (cyclically) increasing chain of cells weakly above c in its column, and increment the content of each cell by 1 . (This is sometimes called a ringing path)

4				
2	1			$\xrightarrow{t x_{3}^{-1}}$
1	1			
3	4	3		
3	3	4	1	

Theorem (Ayyer-M-Martin '21)

The stationary distribution of the Markov process on the tableaux is

$$
w t(\sigma)=x^{\sigma} t^{\mathrm{quinv}(\sigma)}
$$

a Markov chain on tableaux: transitions

A transition M_{c} triggered by a cell c : if $\sigma(c) \neq \sigma($ South $(c))$, take the maximal contiguous (cyclically) increasing chain of cells weakly above c in its column, and increment the content of each cell by 1 . (This is sometimes called a ringing path)

4				
2	1			$\xrightarrow{t x_{3}^{-1}}$
1	1			
3	4	3		
3	3	4	1	

Theorem (Ayyer-M-Martin '21)

The stationary distribution of the Markov process on the tableaux is

$$
w t(\sigma)=x^{\sigma} t^{\mathrm{quinv}(\sigma)}
$$

- if $c=(1, j)$ is in the bottom row, the rate $f(\sigma, c)$ matches the transition rate $f_{\sigma(c)}\left(\lambda_{j}\right)$ of the corresponding particle in the TAZRP.
- (when λ has repeated parts, we need to do some more work!)

a Markov chain on tableaux: proof

$$
M(\sigma)=\left\{M_{c}(\sigma): c \in \operatorname{dg}(\lambda), \sigma(c) \neq \sigma(\operatorname{South}(c))\right\}
$$

2	
1	2

a Markov chain on tableaux: proof

$$
M(\sigma)=\left\{M_{c}(\sigma): c \in \operatorname{dg}(\lambda), \sigma(c) \neq \sigma(\operatorname{South}(c))\right\}
$$

a Markov chain on tableaux: proof

$$
\begin{aligned}
M(\sigma) & =\left\{M_{c}(\sigma): c \in \operatorname{dg}(\lambda), \sigma(c) \neq \sigma(\operatorname{South}(c))\right\} \\
R(\sigma) & =\left\{\sigma^{\prime} \in \operatorname{PQT}(\lambda, n): T \in M\left(\sigma^{\prime}\right)\right\}
\end{aligned}
$$

balance equation

if each $\sigma \in \operatorname{dg}(\lambda) \rightarrow[n]$ satisfies:

$$
\sum_{\sigma^{\prime} \in R(\sigma)} w t\left(\sigma^{\prime}\right) \operatorname{rate}\left(\sigma^{\prime} \rightarrow \sigma\right)=\mathrm{wt}(\sigma) \sum_{\sigma^{\prime} \in M(\sigma)} \operatorname{rate}\left(\sigma \rightarrow \sigma^{\prime}\right),
$$

then the stationary distribution of the M.C. on tableaux is $\mathrm{wt}(\sigma)$.

Observables: partition function

- The partition function of the mTAZRP of type λ, n is defined to be the normalizing constant, or the sum of the unnormalized stationary probabilities:

$$
Z_{\lambda, n}=\sum_{\tau} \tilde{\operatorname{Pr}}(\tau)
$$

Observables: partition function

- The partition function of the mTAZRP of type λ, n is defined to be the normalizing constant, or the sum of the unnormalized stationary probabilities:

$$
Z_{\lambda, n}=\sum_{\tau} \tilde{\operatorname{Pr}}(\tau)
$$

- We have

$$
\begin{aligned}
Z_{\lambda, n} & =\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1, t\right)=\prod_{j=1}^{\lambda_{1}} \widetilde{H}_{\left(1^{\lambda_{j}^{\prime}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right) \\
& =\prod_{j=1}^{\lambda_{1}} \sum_{\mu \vdash \lambda_{j}^{\prime}}\left[\begin{array}{c}
\lambda_{j}^{\prime} \\
\mu
\end{array}\right]_{t} m_{\mu}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Notice that Z might have extra factors, e.g. when the gcd of the probabilities $\widetilde{\operatorname{Pr}}(\tau)$ is not 1 .

Observables: partition function

- The partition function of the mTAZRP of type λ, n is defined to be the normalizing constant, or the sum of the unnormalized stationary probabilities:

$$
Z_{\lambda, n}=\sum_{\tau} \widetilde{\operatorname{Pr}}(\tau)
$$

- We have

$$
\begin{aligned}
Z_{\lambda, n} & =\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1, t\right)=\prod_{j=1}^{\lambda_{1}} \widetilde{H}_{\left(1^{\lambda_{j}^{\prime}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right) \\
& =\prod_{j=1}^{\lambda_{1}} \sum_{\mu \vdash \lambda_{j}^{\prime}}\left[\begin{array}{c}
\lambda_{j}^{\prime} \\
\mu
\end{array}\right]_{t} m_{\mu}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Notice that Z might have extra factors, e.g. when the gcd of the probabilities $\widetilde{\operatorname{Pr}}(\tau)$ is not 1 .

- Sanity check: from the point of view of the TAZRP, having three species of particles labeled $1,2,3$ is the same process as having three species labeled $2,13,27$. Thus we should expect their stationary probabilities to be proportional.

Observables: partition function

- The partition function of the mTAZRP of type λ, n is defined to be the normalizing constant, or the sum of the unnormalized stationary probabilities:

$$
Z_{\lambda, n}=\sum_{\tau} \tilde{\operatorname{Pr}}(\tau)
$$

- We have

$$
\begin{aligned}
Z_{\lambda, n} & =\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1, t\right)=\prod_{j=1}^{\lambda_{1}} \widetilde{H}_{\left(1^{\lambda_{j}^{\prime}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right) \\
& =\prod_{j=1}^{\lambda_{1}} \sum_{\mu \vdash \lambda_{j}^{\prime}}\left[\begin{array}{c}
\lambda_{j}^{\prime} \\
\mu
\end{array}\right]_{t} m_{\mu}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Notice that Z might have extra factors, e.g. when the gcd of the probabilities $\widetilde{\operatorname{Pr}}(\tau)$ is not 1 .

- Sanity check: from the point of view of the TAZRP, having three species of particles labeled $1,2,3$ is the same process as having three species labeled $2,13,27$. Thus we should expect their stationary probabilities to be proportional.
- At the very least, we need $\widetilde{H}_{(2,13,27)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)$ to be divisible by $\widetilde{H}_{(1,2,3)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)$. This is indeed true, since $(3,2,1)^{\prime} \subset(27,13,2)^{\prime}$.

Current

- The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.

Current

- The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda=\left(1^{m}\right)$ on n sites.

$$
\begin{gathered}
\text { Here, } n=5, m=7 \\
\tau=(2,0,3,1,1)
\end{gathered}
$$

Each configuration can be written as a weak composition $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$.

Current

- The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda=\left(1^{m}\right)$ on n sites.

$$
\begin{gathered}
\text { Here, } n=5, m=7 \\
\tau=(2,0,3,1,1)
\end{gathered}
$$

Each configuration can be written as a weak composition $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$.

- The stationary probability of the configuration τ is:

$$
\pi(\tau)=\frac{1}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\left[\begin{array}{c}
m \\
\tau_{1}, \ldots, \tau_{n}
\end{array}\right]_{t} \prod_{i=1}^{n} x_{i}^{\tau_{i}}
$$

Current

- The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda=\left(1^{m}\right)$ on n sites.

$$
\begin{gathered}
\text { Here, } n=5, m=7 \\
\tau=(2,0,3,1,1)
\end{gathered}
$$

Each configuration can be written as a weak composition $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$.

- The stationary probability of the configuration τ is:

$$
\pi(\tau)=\frac{1}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\left[\begin{array}{c}
m \\
\tau_{1}, \ldots, \tau_{n}
\end{array}\right]_{t} \prod_{i=1}^{n} x_{i}^{\tau_{i}}
$$

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

$$
J=[m]_{t} \frac{\widetilde{H}_{\left\langle 1^{m-1}\right\rangle}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left\langle 1^{m}\right\rangle}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}
$$

Current

Theorem (Ayyer-M-Martin '22+)

Let $\lambda=\left(1^{m_{1}}, \ldots, k^{m_{k}}\right)$, and let $1 \leq j \leq k$. The current of the particle of type j of the TAZRP of type λ on n sites is given by

$$
J=\left[m_{j}+\cdots+m_{k}\right]_{t} \frac{\widetilde{H}_{\left(1^{m_{j}+\cdots+m_{k}-1}\right)}}{\widetilde{H}_{\left(1^{m_{j}+\cdots+m_{k}}\right)}}
$$

$$
-\left[m_{j+1}+\cdots+m_{k}\right]_{t} \frac{\widetilde{H}_{\left(1^{m_{j+1}+\cdots+m_{k}-1}\right)}}{\widetilde{H}_{\left(1^{m_{j+1}+\cdots+m_{k}}\right)}}
$$

Densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$.
- Define $z_{j}^{(\ell)}$ to be the random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$.
- Denote the expectation in the stationary distribution by $\left\langle z_{j}^{(\ell)}\right\rangle$.

Densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$.
- Define $z_{j}^{(\ell)}$ to be the random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$.
- Denote the expectation in the stationary distribution by $\left\langle z_{j}^{(\ell)}\right\rangle$.

Proposition (Translation invariance)

Suppose $\left\langle z_{1}^{(\ell)}\right\rangle=r\left(x_{1}, \ldots, x_{n}\right)$. Then for any j,

$$
\left\langle z_{j}^{(\ell)}\right\rangle=r\left(x_{j}, \ldots, x_{n}, x_{1}, \ldots, x_{j-1}\right)
$$

Densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$.
- Define $z_{j}^{(\ell)}$ to be the random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$.
- Denote the expectation in the stationary distribution by $\left\langle z_{j}^{(\ell)}\right\rangle$.

Proposition (Translation invariance)

Suppose $\left\langle z_{1}^{(\ell)}\right\rangle=r\left(x_{1}, \ldots, x_{n}\right)$. Then for any j,

$$
\left\langle z_{j}^{(\ell)}\right\rangle=r\left(x_{j}, \ldots, x_{n}, x_{1}, \ldots, x_{j-1}\right)
$$

- Thus it suffices to compute the densities of all species of particles at site 1 .

Densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$.
- Define $z_{j}^{(\ell)}$ to be the random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$.
- Denote the expectation in the stationary distribution by $\left\langle z_{j}^{(\ell)}\right\rangle$.

Proposition (Translation invariance)

Suppose $\left\langle z_{1}^{(\ell)}\right\rangle=r\left(x_{1}, \ldots, x_{n}\right)$. Then for any j,

$$
\left\langle z_{j}^{(\ell)}\right\rangle=r\left(x_{j}, \ldots, x_{n}, x_{1}, \ldots, x_{j-1}\right)
$$

- Thus it suffices to compute the densities of all species of particles at site 1 .

We begin with the special case of $\lambda=1^{m}$.

Theorem (Densities for the single species TAZRP)

The density at site 1 on $\operatorname{TAZRP}\left(1^{m}, n\right)$ is given by

$$
\left\langle z_{1}^{(1)}\right\rangle=x_{1} \partial_{x_{1}} \log \widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)
$$

Densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$.
- Define $z_{j}^{(\ell)}$ to be the random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$.
- Denote the expectation in the stationary distribution by $\left\langle z_{j}^{(\ell)}\right\rangle$.

Proposition (Translation invariance)

Suppose $\left\langle z_{1}^{(\ell)}\right\rangle=r\left(x_{1}, \ldots, x_{n}\right)$. Then for any j,

$$
\left\langle z_{j}^{(\ell)}\right\rangle=r\left(x_{j}, \ldots, x_{n}, x_{1}, \ldots, x_{j-1}\right)
$$

- Thus it suffices to compute the densities of all species of particles at site 1 .

We begin with the special case of $\lambda=1^{m}$.

Theorem (Densities for the single species TAZRP)

The density at site 1 on $\operatorname{TAZRP}\left(1^{m}, n\right)$ is given by

$$
\left\langle z_{1}^{(1)}\right\rangle=x_{1} \partial_{x_{1}} \log \widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)
$$

- In particular, when $x_{1}=\cdots=x_{n}=1$, the density is $\left\langle z_{1}^{(1)}\right\rangle=\frac{m}{n}$.

Densities

Theorem (Ayyer-M-Martin '22+)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$
\left\langle z_{1}^{(\ell)}\right\rangle=x_{1} \partial_{x_{1}} \log \left(\frac{\widetilde{H}_{\left(1^{m_{\ell}}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m_{\ell+1}+\cdots+m_{k}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\right) .
$$

Densities

Theorem (Ayyer-M-Martin '22+)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$
\left\langle z_{1}^{(\ell)}\right\rangle=x_{1} \partial_{x_{1}} \log \left(\frac{\widetilde{H}_{\left(1^{m}{ }^{m}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m_{\ell+1}+\cdots+m_{k}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\right) .
$$

Corollary

$\left\langle z_{1}^{(\ell)}\right\rangle$ is symmetric in the variables $\left\{x_{2}, \ldots, x_{n}\right\}$.

Densities

Theorem (Ayyer-M-Martin '22+)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$
\left\langle z_{1}^{(\ell)}\right\rangle=x_{1} \partial_{x_{1}} \log \left(\frac{\widetilde{H}_{\left(1^{m_{\ell}}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m_{\ell+1}}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\right) .
$$

Corollary

$\left\langle z_{1}^{(\ell)}\right\rangle$ is symmetric in the variables $\left\{x_{2}, \ldots, x_{n}\right\}$.
Proof via coloring argument:

- true for base case $\lambda=\left(1^{m}\right)$
- transitions of particles of species ℓ, \ldots, k at site 1 are independent of the number of lower species particles at site 1 . Thus we can ignore the particles of types $1, \ldots, \ell-1$.
- the density of particles of species ℓ, \ldots, k at site 1 is equivalent to the density at site 1 of a TAZRP of type $\lambda=\left(1^{m_{\ell}+\cdots+m_{k}}\right)$.
- to isolate species ℓ we subtract the density of species $\ell+1, \ldots, k$ from the density of species ℓ, \ldots, k.

Local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.

Local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- We consider two kinds of local correlations:
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Let $\mathbb{P}_{\lambda, n}(\hat{w})$ be the stationary probability of having at least the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.

Local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- We consider two kinds of local correlations:
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Let $\mathbb{P}_{\lambda, n}(\hat{w})$ be the stationary probability of having at least the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Example: let $\lambda=(2,2,1,1), n=4, \ell=2$, and $w=(2 \mid 1)$.
- Configurations contributing to $\mathbb{P}_{\lambda, n}(\bar{w})$ are

$$
(2|1| 12 \mid \cdot), \quad(2|1| 1 \mid 2), \quad(2|1| 2 \mid 1), \quad(2|1| \cdot \mid 12)
$$

- Additional configurations contributing to $\mathbb{P}_{\lambda, n}(\hat{w})$ are
$(12|1| 2 \mid \cdot)$,
(2|11|2|•)
$(22|1| 1 \mid \cdot)$
(2|12|1|•)
(12|1|•|2),
(2|11|•|2)
(22|1|•|1),
$(2|12| \cdot \mid 1), \quad(122|1| \cdot \mid \cdot)$,
$(2|112| \cdot \mid \cdot), \quad(22|11| \cdot \mid \cdot)$,
(12|12|•|)

Local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- We consider two kinds of local correlations:
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Let $\mathbb{P}_{\lambda, n}(\hat{w})$ be the stationary probability of having at least the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Example: let $\lambda=(2,2,1,1), n=4, \ell=2$, and $w=(2 \mid 1)$.
- Configurations contributing to $\mathbb{P}_{\lambda, n}(\bar{w})$ are

$$
(2|1| 12 \mid \cdot), \quad(2|1| 1 \mid 2), \quad(2|1| 2 \mid 1), \quad(2|1| \cdot \mid 12)
$$

- Additional configurations contributing to $\mathbb{P}_{\lambda, n}(\hat{w})$ are
$(12|1| 2 \mid \cdot)$,
(2|11|2|•),
(22|1|1|•),
$(2|12| 1 \mid \cdot), \quad(12|1| \cdot \mid 2)$,
$(2|11| \cdot \mid 2)$
$(22|1| \cdot \mid 1)$,
$(2|12| \cdot \mid 1), \quad(122|1| \cdot \mid \cdot)$,
$(2|112| \cdot \mid \cdot)$,
$(22|11| \cdot \mid \cdot)$,
$(12|12| \cdot \mid \cdot)$

Theorem (Ayyer-M-Martin '22+)
Both $\mathbb{P}_{\lambda, n}(\bar{w})$ and $\mathbb{P}_{\lambda, n}(\hat{w})$ are symmetric in the variables $\left\{x_{\ell+1}, \ldots, x_{n}\right\}$.

final remarks

- Explicit bijection from the inv to the quinv statistic?

- Can we find a dynamical process that incorporates the q as a parameter?

This seems difficult because

- We lose factorization of \widetilde{H}_{λ}
- We lose translation invariance
- Using multiline queues (for the ASEP on a circle),

Corteel-Haglund-M-Mason-Williams '20 defined quasisymmetric Macdonald polynomials which refine P_{λ}. Can we use a parallel construction to define an interesting family of quasisymmetric polynomials that refine \widetilde{H}_{λ} ?

- Same as above, but for nonsymmetric Macdonald polynomials

- Modified Macdonald polynomials and the multispecies zero range process: I, (with A. Ayyer and J. B. Martin), arXiv:2011.06117
- A Markov chain on tableaux that projects to the multispecies TAZRP, and applications, (with A. Ayyer and J. B. Martin), in preparation

