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Hypergraphs and transversals

We start with some definitions

• A hypergraph 𝐻 is a pair (𝑉, 𝐸) where 𝑉 is the vertex set and 𝐸 ⊂ 2𝑉

• 𝐻 is 𝑑-uniform if every element of 𝐸 has size 𝑑

• A transversal of 𝐻 is a subset of 𝑉 that intersects every element of 𝐸

• The transversal number 𝑇 𝐻 of 𝐻 is the minimum size of a transversal of 𝐻

• The transversal ratio 𝜏 𝐻 of 𝐻 is 
𝑇(𝐻)

|𝑉|



Examples

• 𝐻 = (𝑉, 𝐸), where 𝑉 = 9 , 𝐸 = { 1,2,3 , 4,5,6 , 7,8,9 }
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•  𝑉 = 6 , 𝐸 = {123, 126, 156, 135, 234, 246, 456, 345}
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𝒅-Uniform hypergraphs

𝑇(𝐻) is related to other combinatorial invariants of 𝐻, e.g. (strong and weak) 
independence number, (strong and weak) chromatic number

Tur ƴan’s problem (1961): Determine 𝑓 𝑛, 𝑚, 𝑑 ≔ max 𝑇(𝐻), where 𝐻 = (𝑉, 𝐸) 
ranges over all 𝑑-uniform hypergraphs with 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑑 ≥ 2 

A lot of work has been done when 𝑚 is at most linear in 𝑛:

Alon, 1990: 𝑇 𝐻 ≤
ln 𝑑

𝑑
𝑛 + 𝑚

Chv ƴatal-McDiarmid, 1992: 𝑇 𝐻 ≤  (𝑛 +
𝑑

2
𝑚)/⌊

3𝑑

2
⌋

We are interested in 𝑑-uniform hypergraphs with 𝑚 ≫ 𝑛 and in hypergraphs 
coming from topology/geometry



Pure simplicial complexes

• A simplicial complex Δ on a finitefinite vertex set 𝑉 Δ = [𝑛] is a collection of 
subsets of [𝑛] that is closed under inclusion: 𝐹 ∈ Δ, 𝐺 ⊂ 𝐹 ⇒ 𝐺 ∈ Δ

• Elements 𝐹 of ∆ are called faces; dim 𝐹 = 𝐹 − 1 (so a vertex has 
dimension 0); maximal under inclusion faces are facets

•  dim Δ = max{dim 𝐹 ∶ 𝐹 ∈ Δ}

•  Δ is pure if all facets of Δ have the same dimension as Δ

Note: {𝑑-uniform hypergraphs} ֞ {pure (𝑑 − 1)-dimensional complexes}

We define 𝑇 Δ = 𝑇(hypergraph of facets of Δ), and similarly for 𝜏(Δ) 



Geometric realizations

Simplicial complex Δ → Topological space Δ  = geometric realization of Δ

𝑉 = {1,2, … , 𝑛}  → 𝑒1, 𝑒2, … , 𝑒𝑛 ∈ ℝ𝑛, 

𝐹 = {𝑖1, … , 𝑖𝑘} ∈ Δ → 𝑇𝐹 ≔ conv{e𝑖1
, … , 𝑒𝑖𝑘

} 

Δ ≔∪𝐹∈Δ 𝑇𝐹    (𝑇𝐹 is a geometric simplex)

Δ is called a simplicial sphere if Δ  is homeomorphic to a sphere

Simplicial spheres are pure simplicial complexes
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Polytopes

Example: a simplex is the convex hull of affinely independent points

A polytope 𝑃 is the convex hull of finitely many points in ℝ𝑑. 
 

The dimension of a polytope 𝑃 is the dimension of its affine hull

A (proper) face of 𝑃 is the intersection of 𝑃 with a supporting hyperplane

A face 𝐹 of 𝑃 is itself a polytope. Any polytope 𝑃 has finitely many faces
A (𝑑 − 1)-face of a 𝑑-polytope is called a facet; 0-faces are vertices

A polytope 𝑃 is simplicial if all proper faces of 𝑃 are simplices



Simplicial polytopes vs simplicial spheres

Definition Let 𝑃 be a simplicial polytope. The boundary complex of 𝑃 is 
𝜕𝑃 ≔ {vertex sets of proper faces of 𝑃} 

• The boundary complex of any simplicial 𝑑-polytope is a simplicial (𝑑 − 1)-sphere

• Every simplicial 2-sphere is the boundary of a 3-polytope

However
Theorem (Goodman-Pollack, 1986; Kalai, 1988; Pfeifle-Ziegler, 2004) For  𝑑 ≥ 4, 
most of simplicial 𝑑 − 1 -spheres are not realizable as the boundary complex of a 
simplicial 𝑑-polytope

Simplicial 
polytopes Simplicial 

spheres



Main questions for this talk

What can we say about the transversal numbers and transversal ratios of 

Define:

 𝜏𝑑
𝑃(n) = max {𝜏 Δ ∶ Δ = 𝜕𝑃, 𝑃 is a simplicial 𝑑-polytope with 𝑛 vertices}

𝜏𝑑
𝑆(n) = max {𝜏 Δ ∶ Δ is a simplicial (𝑑 − 1)-sphere with 𝑛 vertices}

𝜏𝑑
𝑃 = lim sup

𝑛→∞
 𝜏𝑑

𝑃(n), and 𝜏𝑑
𝑆 = lim sup

𝑛→∞
 𝜏𝑑

𝑆(n)

How do 𝜏𝑑
𝑃 and 𝜏𝑑

𝑆 behave? [This problem was raised by Alon, Kalai, Matou Ǎ𝑠ek, 
Meshulam, and also by Briggs, Dobbins, Lee]

simplicial polytopes ⊂ simplicial spheres ⊂ pure complexes  



Small dimensions

• 𝑑 = 2: 𝑇(𝑛-gon) = ⌈
𝑛

2
⌉, so 𝜏2

𝑃 = 𝜏2
𝑆 =

1

2

• 𝑑 = 3: The graph of a 3-polytope is planar, hence 4-colorable. The union of 

any two color-sets is then a transversal. Thus 𝜏3
𝑃 = 𝜏3

𝑆 ≤
1

2

Theorem (Briggs-Dobbins-Lee): 𝜏3
𝑃 = 𝜏3

𝑆 =
1

2

Proof: construct simplicial 3-polytopes with all four color-sets of the same size

(one such example is the regular icosahedron)



Cyclic polytopes

Moment curve: 𝑀 = 𝑀𝑑: ℝ → ℝ𝑑

𝑡 ↦ (t, t2, t3, … , 𝑡𝑑)

Let  𝑛 > 𝑑. The cyclic polytope, 𝐶(𝑑, 𝑛), is defined as
conv(𝑀(1), 𝑀(2), … , 𝑀(𝑛))

Theorem (Gale evenness condition)

• 𝐶𝑑 𝑛  is a 𝑑-dimensional simplicial polytope on 𝑛 vertices 

• A 𝑑-subset 𝐹 of [𝑛] forms a facet of 𝜕𝐶(𝑑, 𝑛) if and only if any two elements 
of 𝑛 ∖ 𝐹 are separated by an even number of elements from 𝐹 

• In particular, 𝜕𝐶𝑑(𝑛) is ⌊
𝑑

2
⌋-neighborly: every set of ≤ ⌊

𝑑

2
⌋ vertices  forms a face



Transversal numbers of cyclic polytopes

The Gale evenness condition implies that most of facets of 𝐶(2𝑘, 𝑛) are of 
the form 𝑖1, 𝑖1 + 1, 𝑖2, 𝑖2 + 1, … , 𝑖𝑘 , 𝑖𝑘 + 1 ⊂ [𝑛] 

While all facets of 𝐶(2𝑘 + 1, 𝑛) are of the form

1, 𝑖1, 𝑖1 + 1, … , 𝑖𝑘 , 𝑖𝑘 + 1  ⊂ [𝑛] or 𝑖1, 𝑖1 + 1, … , 𝑖𝑘 , 𝑖𝑘 + 1, 𝑛 ⊂ [𝑛] 

Theorem (Briggs-Dobbins-Lee, 2023)

• 𝑇 𝐶 2𝑘, 𝑛 =
𝑛−2𝑘

2
+ 1 but 𝑇 𝐶 2𝑘 + 1, 𝑛 = 2. In particular, 𝜏2𝑘

𝑃 ≥ 1/2 for 
all 𝑘 ≥ 2 

• There exists a non-polytopal 3-sphere Δ with 21 vertices and 𝑇 Δ = 11. In fact, 
𝜏4

𝑆 ≥ 11/21



Siblings of cyclic polytopes
Recall:  most of facets of 𝐶(2𝑘, 𝑛) are of the form 

𝑖1, 𝑖1 + 1, 𝑖2, 𝑖2 + 1, … , 𝑖𝑘 , 𝑖𝑘 + 1 ⊂ [𝑛] 

In fact, the subcomplex of 𝜕𝐶(2𝑘, 𝑛) generated by these facets is a simplicial

2𝑘 − 1 -ball, 𝐵(2𝑘, 𝑛), and the boundary of this ball is 𝜕𝐶(2𝑘 − 1, 𝑛)

New definition: Let 𝑘 ≥ 2. Let Γ 2𝑘 + 1, 𝑛  and Γ(2𝑘 + 2, 𝑛), be complexes whose 
facets are all sets of the form 𝑖1, 𝑖1 + 1, 𝑖2, 𝑖2 + 1, … , 𝑖𝑘 , 𝑖𝑘 + 1, 𝑖𝑘 + 2 ⊂ 𝑛 ,  and 
𝑖1, 𝑖1 + 1, 𝑖2, 𝑖2 + 1, … , 𝑖𝑘 , 𝑖𝑘 + 1, 𝑖𝑘 + 2, 𝑖𝑘 + 3 ⊂ [𝑛], respectively

Theorem (N-Zheng, 2024+) 

Γ 2𝑘 + 1, 𝑛  and Γ(2𝑘 + 2, 𝑛) are simplicial balls; their boundary complexes are 
polytopal spheres 



Transversal numbers of odd-dimensional polytopes

We denote the corresponding polytopes by 𝐷(2𝑘, 𝑛) and 𝐷(2𝑘 + 1, 𝑛) and 
call them “siblings of cyclic polytopes”

Theorem (N-Zheng, 2024+):

• 𝐷(2𝑘, 𝑛) and 𝐷(2𝑘 + 1, 𝑛) are 𝑘-neighborly polytopes of dimension 2𝑘 
and 2𝑘 + 1, respectively 

• 𝑇 𝐷 2𝑘, 𝑛 =
𝑛

2
− 𝑂(1) and 𝑇 𝐷 2𝑘 + 1, 𝑛 =

2𝑛

5
− 𝑂(1) 

In particular, 𝜏2𝑘+1
𝑃 ≥ 2/5 for all 𝑘 ≥ 2 



Bistellar flips

• A bistellar flip on a pure simplicial complex Δ of dimension 𝑑 − 1 replaces 
an induced subcomplex of Δ of the form ҧ𝐴 ∗ 𝜕 ത𝐵 with 𝜕 ҧ𝐴 ∗ ത𝐵. Here 𝐴 +
𝐵 = 𝑑 + 1, and ҧ𝐴 and ത𝐵 are simplices on 𝐴 and 𝐵.

• Example: 𝑑 = 3

 

Theorem (Pachner, 1991) 
Every two PL (𝑑 − 1)-spheres can be connected by a sequence of flips



Transversal numbers of small-dimensional spheres

So far, we saw that for 𝑘 ≥ 2,

 𝜏2𝑘
𝑆 ≥ 𝜏2𝑘

𝑃 ≥ 1/2 and 𝜏2𝑘+1
𝑆 ≥ 𝜏2𝑘+1

𝑃 ≥ 2/5, while 𝜏4
𝑆 ≥ 11/21 

By applying bistellar flips to cyclic polytopes and their siblings, we obtain

Theorem (N-Zheng, 2024+)  𝜏4
𝑆 ≥ 5/8, 𝜏5

𝑆 ≥ 1/2, 𝜏6
𝑆 ≥ 6/11

Proof idea for 𝑑 = 4: apply flips to 𝜕𝐶(4,8𝑚) in a way that (1) many of the sets 
{𝑖, 𝑖 + 1, 𝑗, 𝑗 + 1} remain facets, and (2) all sets of the form 1,3,5,7 + 8𝑖, 
2,4,6,8 + 8𝑖 (0 ≤ 𝑖 ≤ 𝑚 − 1) become new facets



Back to pure complexes

• Recall that Tur ƴan’s problem asks to investigate transversal numbers of pure 
complexes of dimension 𝑑 − 1 with 𝑛 vertices and 𝑚 facets

• Also, observe that 𝐶(𝑑, 𝑛) has 
𝑛−⌊

𝑑+1

2
⌋

𝑛−𝑑
+

𝑛−⌊
𝑑+2

2
⌋

𝑛−𝑑
≈ 𝑛⌊

𝑑

2
⌋ facets

That’s why we are interested in the case of 𝑚 ≫ 𝑛, and, in particular, 𝑚 ≈ 𝑛𝑑/2

Proposition (N-Zheng)
Let Δ be a pure complex of dimension 𝑑 − 1 with 𝑛 vertices and 𝑚 

facets. Then for 𝑛 sufficiently large, 𝑇 Δ ≤ 𝑛 + 1 −
1

𝑒
𝑛𝑚−1/𝑑 

Corollary: If Δ is a (2𝑘 − 1)-dimensional Eulerian complex with 𝑛 vertices, then 
𝑇 Δ ≤ 𝑛 − 𝑐𝑘 𝑛, where 𝑐𝑘 is a constant independent of 𝑛



Transversal numbers of pure complexes

Notation: 𝑓 𝑛 = Θ 𝑔(𝑛)  means that there exist constants 𝐶1, 𝐶2 > 0 s.t. 
𝐶1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2𝑔(𝑛) for all 𝑛 ≫ 0

Theorem (N-Zheng) 

Let 𝑑 ≥ 2. For all 𝑛 ≫ 0, there exists a pure simplicial complex Δ(𝑑, 𝑛) of 
dimension 𝑑 − 1 with 𝑛 vertices and Θ 𝑛(𝑑+1)/2  facets whose transversal 
number is 𝑛 − Θ( 𝑛). In particular, lim

𝑛→∞
 𝜏 Δ 𝑑, 𝑛 = 1

 Proof: For 𝑑 = 2𝑘, let Δ(𝑑, 𝑛) be the complex whose facets are

{ 𝑖1, 𝑖1 + ℓ, 𝑖2, 𝑖2 + ℓ, … , 𝑖𝑘 , 𝑖𝑘 + ℓ ⊂ 𝑛 ∶ 1 ≤ ℓ ≤ 𝑛} 

(There are similar bounds for complexes with Θ 𝑛𝑑/2  facets) 



Summary and open problems

As we saw, for 𝑘 ≥ 2, 𝜏2𝑘
𝑆 ≥ 𝜏2𝑘

𝑃 ≥ 1/2 and 𝜏2𝑘+1
𝑆 ≥ 𝜏2𝑘+1

𝑃 ≥ 2/5

In addition, 𝜏4
𝑆 ≥ 5/8, 𝜏5

𝑆 ≥ 1/2, 𝜏6
𝑆 ≥ 6/11

The biggest open problem is that we have no non-trivial upper bounds 
on 𝜏𝑑

𝑃 and 𝜏𝑑
𝑆 !

On the other hand, there exist pure complexes with parameters 

(𝑑, 𝑛, 𝑛
𝑑

2) and 𝜏 approaching 1



Open problems

1. Is 𝜏𝑑
𝑃 = 𝜏𝑑

𝑆 for all 𝑑 ≥ 4?

2. For a fixed 𝑑 ≥ 4, are 𝜏𝑑
𝑃 and 𝜏𝑑

𝑆 bounded away from 1?

3. Is lim
𝑑→∞

 𝜏𝑑
𝑃 = lim

𝑑→∞
 𝜏𝑑

𝑆 = 1?

4. Are the sequences 𝜏2𝑘
𝑃 , 𝜏2𝑘+1

𝑃 , 𝜏2𝑘
𝑆 , 𝜏2𝑘+1

𝑆  weakly increasing?

5. What can we say about transversal ratios of special classes of spheres such as, 
for instance, flag spheres?



There are many more remaining mysteries, but let me stop here

THANK YOU!


	Slide 1: Transversal numbers of polytopes, spheres, and pure simplicial complexes
	Slide 2: Hypergraphs and transversals
	Slide 3: Examples
	Slide 4: bold italic d-Uniform hypergraphs
	Slide 5: Pure simplicial complexes
	Slide 6: Geometric realizations
	Slide 7: Polytopes
	Slide 8: Simplicial polytopes vs simplicial spheres
	Slide 9: Main questions for this talk
	Slide 10: Small dimensions
	Slide 11: Cyclic polytopes
	Slide 12: Transversal numbers of cyclic polytopes
	Slide 13: Siblings of cyclic polytopes
	Slide 14: Transversal numbers of odd-dimensional polytopes
	Slide 15: Bistellar flips
	Slide 16: Transversal numbers of small-dimensional spheres
	Slide 17: Back to pure complexes
	Slide 18: Transversal numbers of pure complexes
	Slide 19: Summary and open problems
	Slide 20: Open problems
	Slide 21

