Regular Cell Complexes in Total Positivity

Patricia Hersh
North Carolina State University

(Paper with same title, in: Inventiones Math., 197 (2014), 57-114.)

(See http://www4.ncsu.edu/~uplhersh for slides, including appendix with more details)
Topological Aspects of Total Positivity

- Lusztig initiated study of Totally nonnegative, real part of (matrix) Schubert varieties, flag varieties, ...
 (i.e. part with minors all nonnegative in spaces of matrices or of flags)
- Conjecturally/provably homeomorphic to closed balls (after deconing)
- Proving this:
 - puts restrictions on relations among (exponentiated) Chevalley generators,
 - reveals structure in canonical bases; a motivation for cluster algebras.
- **Main Result of Talk:** Proof of Fomin-Shapiro Conjecture via new tools exploiting interplay of combinatorial data & topological data.
Deducing Topological Structure from Combinatorics + Caching One Topology?

\[F(K) = e_1 \]

e.g.

\[K = \text{ball} \]

\[K' = \text{IRP}^2 \]

\[F(K') = \text{"closure poset" or "face poset"} \]

\[(u \leq v \iff u \leq \overline{v}) \]

Notations: A CW complex: cells \(e_a \), characteristic maps \(f_a : B^{\dim(e_a)} \to \bigcup_{\beta \in \overline{e_a}} \beta \)

\(\uparrow \) attaching maps \(f_a |_{\beta B^{\dim(e_a)}} \)
Recall: a poset is graded if \(u \leq v \) in \(P \) implies minimal paths \(u \to v \) all same length.

\[\text{e.g. } \begin{array}{c}
\ast \\
\ast
\end{array} \]

is not graded

- A graded poset is thin if each rank 2 interval has exactly 4 elements.

Recall: A CW complex is regular if the attaching map for each cell is a homeomorphism, i.e. cell closures are closed balls.

- \(K \) regular \(\Rightarrow K \simeq \Delta (F(K) - \sigma_0) = \text{sd}K \)
 (setting where combinatorial determines top.)
Defn (Björner): A finite, graded poset P is **CW poset** if

- P has unique min’l elt. $\hat{0}$
- P has additional element(s)
- $x \neq \hat{0}$ \implies $\Delta(\hat{0}, x) \cong S^{\text{rank}(x)-2}$

Thm (Björner): P is CW poset if and only if there exists a regular CW complex K with $P = F(K)$.

A **Goal of Mine:** Use combinatorics of $F(K)$ + manageable topological info (radim. one cell incidences) to understand K.
Some Examples of CW Posets

- Shellable & thin (Danaraj-Klee)
- Bruhat order (Björner & Wachs)
- Closure poset for double Bruhat decomp. of totally nonneg. part of flag variety (Williams)
- Closure poset of triangulation of double suspension of homology sphere with “big cell” glued in (due to work of J. Cannon & R. Edwards) (hence the focus of CW posets on intervals (δ, u))
The Bruhat order is a partial order on a Coxeter group W with $u \leq v \iff$ there exists reduced expressions (i.e., products of minimal number of adjacent transpositions) $r(u)$ and $r(v)$ with $r(u)$ subexpression of $r(v)$.

E.g., $W = S_3$ with generators $s_1 = (1,2)$ and $s_2 = (2,3)$.

- Closure poset for Schubert cell decompositions of flag varieties G/P
- Reduced word (i_1, \ldots, i_d) for $s_1 s_2 \cdots s_d$
Question (Bernstein): Find regular CW complexes naturally arising from rep'n theory which are homeomorphic to closed balls and have the (lower) Bruhat intervals as closure posets.

Conjectural Solution (Fomin & Shapiro): The Bruhat stratification of $\mathbf{Lk}(\text{id})$ in totally nonnegative, real part of unipotent radical in semisimple, simply connected algebraic group defined and split over \mathbb{R}.

Thm (Fomin-Shapiro): This has Bruhat order as closure poset. Has desired homological properties.
Theorem (H.): Fomin-Shapiro

Conjecture indeed holds.

Special Case (Running Example for Talk): Space of totally nonnegative upper triangular matrices with 1's on diagonal & entries just above diagonal summing to fixed, positive constant, stratified by which minors are positive and which are 0.

Concrete Realization: products of certain elementary matrices, by results of Whitney & Lusztig.
The Totally Nonnegative Part of a Space of Matrices

- $x_i(t) = \exp(t e_i)$ (type A)
 - $\exp(t e_i)$ (general finite type)

- $f(i, \ldots, i_d) : \mathbb{R}^d_{\geq 0} \rightarrow M_{n \times n} \subseteq \mathbb{R}^{n^2}$

 $(t, \ldots, t_d) \rightarrow x_{i_1}(t_1) \ldots x_{i_d}(t_d)$

 e.g. $f(1,2,1)(t_1, t_2, t_3) = x_1(t_1) x_2(t_2) x_1(t_3)$

 $= \begin{pmatrix} 1 & t_1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & t_2 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & t_3 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$

 $= \begin{pmatrix} 1 & t_1 + t_3 & t_1 t_2 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{pmatrix}$
"Picture" of Map $f_{(i_1, i_2, i_0)}$

$\mathbb{R}_{\geq 0}^3 \cap (\Sigma t_i = 1 \text{ hyperplane})$

$f_{(i_1, i_2, i_3)}(t_1, t_2, t_3) = \begin{pmatrix} 1 & t_1 \\ 1 & t_2 \end{pmatrix} \begin{pmatrix} 1 & t_3 \\ 1 & 1 \end{pmatrix}$

$t_2 = 0$

$f_{(i_1, i_2, i_3)}(t_1, 0, t_3) = \begin{pmatrix} 1 & t_1 \\ 1 & t_3 \end{pmatrix} = \chi_i(t_1 + t_3)

Non-injectivity: results from "modified nil-moves" $\chi_i(u) \chi_i(v) \Rightarrow \chi_i(u + v)$ directly.

& after "long braid moves" in Hecke algebra.
1st Ingredient to Fomin–Shapiro Conj:

O-Hecke Algebra Captures which Simplex Faces have Same Image under $f_{(i_{1}, \cdots, i_{d})}$

(1) $\chi_{i_{1}}(t_{1})\chi_{i_{2}}(t_{2}) = \chi_{i_{1}}(t_{1} + t_{2})$

"nil-move"

\[\chi_{i_{1}}^{2} = \chi_{i_{1}} \] (O-Hecke alg. reln, up to sign)

(2) $\chi_{i_{1}}(t_{1})\chi_{i_{2}}(t_{2})\chi_{i_{3}}(t_{3}) = \chi_{i_{1}}(t_{1})\left(\frac{t_{2}t_{3}}{t_{1}t_{3}}\right)\chi_{i_{2}}(t_{1} + t_{3})\chi_{i_{3}}(t_{1}t_{3})$

(type A) assuming $t_{1} + t_{3} > 0$

$\chi_{i_{1}}\chi_{i_{2}}, \chi_{i_{2}} = \chi_{i_{1}}\chi_{i_{2}} \chi_{i_{1}}$

(similar relation holds outside type A)

"long braid move" with enrichment from parameters

Fibers as Curves:

(1): \[\begin{array}{c}
\text{triangle} \\
\end{array} \]

(2): then (1): \[\begin{array}{c}
\text{curved triangle} \\
\end{array} \]
Indexing Faces of Preimage by Words in O-Hecke Algebra

Key Observation About $f_{(i_1,...,i_d)}$:
\[
\text{im}(F_i) = \text{im}(F_j) \iff x(F_i) = x(F_j)
\]
equal as O-Hecke algebra elements

Thm (Lusztig): If $(i_1,...,i_d)$ is reduced, then $f_{(i_1,...,i_d)}$ is homeomorphism on \mathbb{R}_d^+

Upshot: $f_{(i_1,...,i_d)}$ restricts to homeomorphism on each face given by reduced subword.
Faces indexed by non-reduced subwords (or some reduced ones) are redundant.
Properties of Change-of-Coordinates Map Given by Braid Moves

e.g. \((t_1, t_2, t_3) \mapsto \left(\frac{t_2 t_3}{t_1 + t_3}, t_i + t_3, \frac{t_i t_2}{t_1 + t_3}\right)\)
in type A

- Tropicalizes to change-of-basis map for Lusztig's canonical bases:
 \((a, b, c) \mapsto (b + c - \min(a, c), \min(a, c), a + b - \min(a, c))\)

- A motivation for development of cluster algebras (and mutation)

Exercise: check this is an involution.
Proof Strategy (for FS-Conjecture & for images of "nice" maps from polytopes)

Set-up: Continuous, surjective fn $f: P \rightarrow Y$
from convex polytope P (eg. Δ_1) s.t. f maps $\text{int}(P)$ homeomorphically to $\text{int}(Y)$.

Step 1: Perform "collapses" on $2P$, each preserving regularity and homeomorphism type - via continuous, surjective collapsing functions $P \rightarrow P$ yielding P/\sim with fewer cells s.t. $x_1 \sim x_2 \Rightarrow f(x_1) = f(x_2)$

Step 2: Prove $f: P/\sim \rightarrow Y$ is homeomorphism by new regularity criterion
Collapsing cell σ onto cell $p \in \partial \sigma$ within $\partial \Sigma$

Thm: (M. Brown; Connell): Any topological manifold with boundary ∂M has a collar (i.e. a nbhd homeomorphic to $\partial M \times [0,1]$).

Fact: Our collapses will preserve this (hence existence of collar) for: $\partial \Sigma \setminus \sigma = \emptyset$

Plan: Collapse σ onto $p \in \partial \sigma$, stretching collar for $\partial \Sigma \setminus \sigma$ to cover $\partial \sigma \cdot p$.
2nd Ingredient: New Regularity Criterion

Preparatory Lemma (H.): Let \(K \) be a finite CW complex w/ characteristic maps \(\{ f_\alpha \} \). Suppose:

1. \(\forall \alpha, f_\alpha(2B^{\text{dim } \alpha}) \) is a union of open cells (surjectivity)

Non-Example:

2. \(\forall f_\alpha \), the preimages of the open cells of codim. one in \(\overline{f}_\alpha \) are dense in \(2(B^{\text{dim } \alpha}) \)

Non-Example:

Then \(F(K) \) is graded by cell dimension.

Insightful feedback: Next theorem “spreads around” injectivity requirement.
Thm (H.) Let K be finite CW complex w.r.t. characteristic maps $\exists f_\alpha \exists$. Then K is regular w.r.t. $\exists f_\alpha \exists$ \iff

1. K meets requirements of prop 1 for $F(K)$ to be graded by cell \dim.
2. $F(K)$ is thin and each open interval (u,v) for $\dim(v) - \dim(u) \geq 2$ is connected (as graph)

(Combinatorial condition)

Non-Example

$\Delta = \{p_1, \ldots, p_n\}$

$\Delta - \{p_i\}$

$\Delta - \{p_i, p_j\}$

$\Delta - \{p_i, p_j, p_k\}$

$(p, \tau) = \ldots$
(3) For each α, the restriction of f_α to preimages of codim. one cells in \bar{e}_α is injective. (topological condition)

Non-Example:

(4) $\forall e_c \subseteq \bar{e}_\alpha$, f_α factors as continuous inclusion $i: B^{\dim \sigma} \to B^{\dim \alpha}$ followed by f_α.

Non-Example:

Notably Absent: Injectivity requirement for $\{f_\alpha\}$ beyond codim. one.

Proof: Induction on difference in dim.
3rd Ingredient: Injectivity of Attaching Maps in Codimension One via Coxeter group exchange axiom

\[S_1S_2S_1S_3 \]

\[S_1S_2S_1S_3, \quad S_1S_2S_3, \quad -S_2S_1S_3, \quad S_1S_3S_3 \]

\[3214 \neq 2341 \neq 3142 \]

reduced subexpressions of reduced expression obtained by deleting one letter give distinct Coxeter group elements.

In contrast: fails in higher codimension.

\[S_1S_2S_1S_3 \]

\[S_1... \quad --S_1-- \]
4th Ingredient: (Mainly Combinatorial) Requirements Enabling Collapses Across Curves

There is a series of earlier face collapses

\[\Delta \xrightarrow{\text{as } g_i \text{ is surjection onto } \Delta} \]

\[K_0 \xrightarrow{g_1} K_1 \xrightarrow{g_2} K_2 \rightarrow \cdots \rightarrow K_i \]

(\(\Delta/\mathcal{R}_i\), (new cell structure))

polytope!

with closed cell of \(K_i\) covered by images of parallel line segments in \(K_0\) with family \(G_i\) of "parallel-like" curves satisfying:

- Distinct endpoints condition (DE):

 ![Distinct endpoints condition](image)

- Distinct initial points condition (DIP):

 ![Distinct initial points condition](image)

- "Least upper bound condition" (LU\(\bar{B}\))...
LUB: Condition to ensure Regularity is Preserved
(suggested by David Speyer)

If $A \neq B$ are 1Ded via face collapse of F, then all least upper bounds for $A \neq B$ just prior to collapse of F must also be collapsed in this step.

E.g. Want to prevent:

![Diagram](image)

Note: conditions on which cells 1Ded yet; checkable with combinatorics of reduced/non-reduced words in O-Hecke algebra.
Collapsing "non-reduced" Face Across Curves

\[f(1, 2, 3, 1, 2) \] face with \(t_3 = 0 \)

\[x_1 x_2 - x_1 \quad (t_5 = 0) \] face

\[-x_2 - x_1 x_2 \quad (t_1 = 0) \] face

- Collapse across curves
 - Identifying \(t_1 t_2 t_4 \) \& \(t_2 t_4 t_5 \) terms

\[(t_1, t_2, 0, t_4, t_5) \xrightarrow{\text{only for } t_1 + t_4 > 0} x_1(t_1)x_2(t_2)x_1(t_4)x_2(t_5) \]

\[x_2(t_1')x_1(t_2')x_2(t_4')x_2(t_5) \]

\[x_2(t_1')x_1(t_2') x_2(t_4' + t_5) \]

\[\text{for } t_1' = \frac{t_2 t_4}{t_1 + t_4}, \quad t_2' = t_1 + t_4, \quad t_4' = \frac{t_1 t_2}{t_1 + t_4} \]

Curves within fibers of trivial:

\[t_1' = k, \quad t_2' = k_2 \quad t_4' + t_5 = k_3 \]
5th Ingredient: Deletion Pairs: How to Transfer Coxeter Group Properties to Q-Hecke Algebra

In a non-reduced expression $S_{i_1} \ldots S_{i_d}$, let $\{S_{i_r}, S_{i_t}\}$ be a deletion pair if $S_{i_r} \cdot S_{i_t}$ and $S_{i_r} \cdot S_{i_t}$ are reduced expressions while $S_{i_r} \cdot S_{i_t}$ is nonreduced.

Key Coxeter Group Property: Any two reduced expressions for same Weyl connected by series of braid moves ensures nonreduced expressions admit modified n!-moves.

E.g.

\[x_1 x_2 x_1 \quad \Rightarrow \quad x_2 x_3 x_2 \]
\[\underline{x_2 x_1} \quad \underline{x_2 x_3 x_2} \]
\[x_2 x_1 \quad x_2 x_3 x_2 \]
\[\underline{x_2 x_1} \quad \underline{x_2 x_3 x_2} \]
6th Ingredient: Cell Collapsing
Order (*Embedding) Enabling Proof
by Induction on Word Length

\[(i_1, i_2, i_3, \ldots, i_p, i_{p+1}, \ldots, i_d) \]
\[\text{im}(f(i_{r-1} - i_{r-2})) \]
all possible collapses done
not in any collapses yet

"The Fine Print":

Collapsing Order: greedily choose:
1. leftmost deletion pair, then
2. minimize \(t-r\), then
3. maximize cell dimension.

Repeat until all "non-reduced" cells collapsed.
Long Braid Move as Change of Coord’s Homeomorphism on Closed Cell

E.g., \(t_2 = 0 \) \(\Rightarrow \) \(\Delta \frac{1}{n} \) collapse

\(t_2 = 0 \) \(\Rightarrow t_i + t_j = 0 \) \(\Rightarrow \text{ch} \rightarrow \text{ch}(t_2 = 0) \)

Idea: Subwords of \((i,j,...) \) and \((j,i,...) \) do not admit any long braid moves. Thus:

\(\Delta \frac{m(i,j)}{s:j} \) \(\Rightarrow \) \(\frac{f(i,j,...)}{\text{homeom.}} \)

\(\frac{f_{(j,i,...)}^{-1}}{s:i} \) \(\Rightarrow \) \(\frac{f(i,j,...)}{\text{homeom.}} \)

\(\Delta \frac{m(i,j)}{s:j} \) \(\Rightarrow \) \(\frac{f(i,j,...)}{\text{homeom.}} \)
Summary: 1. Eliminate all cells indexed by non-reduced subwords of \((i_1, ..., i_d)\) via explicit collapses.

2. Thereby also identify pairs of cells indexed by subwords that are reduced words for some \(u \in \mathbb{W}\).

3. Justify collapses preserve homeomorphism type, regularity via combinatorics of reduced words.

4. Deduce from regularity criterion that resulting quotient space is homeomorphic to \(\text{im}(f_{i_1, ..., i_d})\) once all non-reduced cells eliminated.

Thus, Fomin-Shapiro Conjecture holds.
"Flow" on a Fiber From Collapsing Process to Base Point of Fiber

Example:

\[x_1 \rightarrow x_1 \rightarrow x_2 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_3 \]

\[x_1(t_1) \rightarrow x_1(t_3) \rightarrow x_2(t_4) \rightarrow x_1(t_5) \rightarrow x_2(t_7) \rightarrow x_3(t_8) \rightarrow x_3(t_{10}) \]

\[x_1(t_1 + t_3) \rightarrow x_3(t_5 + t_{10}) \]

\[x_2(t'_1) \rightarrow x_1(t'_2) \rightarrow x_2(t'_3 + t_7) \]
A Follow-up Project:
(with Jim Davis & Ezra Miller)

Conjecture (Davis - H. - Miller): $f_{(i_1, \ldots, i_d)}'(p)$
for each $p \in Y^o$ is a regular CW complex
homeomorphic to a ball with closure
poset dual to face poset for interior of
"subword complex" $\Delta((i_1, \ldots, i_d), \omega)$.

Remark: Subword complexes previously
arose as Stanley-Reisner complexes of
initial ideals of coordinate rings
associated to matrix Schubert varieties.
A Poset Map (on Face Posets) induced by $f_{c;12...id}$ (implicit Deth'of Subword Complexes)

Boolean Algebra B_n Bruhat Order

- Apply braid moves $\overset{i}{x_i} \rightarrow x_i$ to get reduced expression; replace x_i's by s_i's
- Fibers $f_2^{-1}(u) = \exists x \in B_n | \text{length}(x) = u_3$ are dual to face posets of subword complexes (fibers as in Quillen's Lemma A)
Davis-H-Miller Conjecture implies
Fomin-Shapiro Conjecture
(with Jim Davis & Ezra Miller)

Combining Top'l Results: Let \(g : B \rightarrow Z \) be a continuous surjection from ball \(B \) to Hausdorff space \(Z \) whose restriction to \(\text{int} (B) \) is an embedding. Suppose also:

1. \(g(\partial B) \subseteq \partial B = S^n \)
2. \(g(\partial B) \cap g(\text{int}(B)) = \emptyset \)
3. \(g^{-1}(p) \) is contractible \(\forall p \in g(\partial B) \).

Then \(Z \cong B \).

(Based on Kirby-Siebenmann + local contractibility of \(\text{Homeo}(S^n, S^n) \).)
Existing Proof of Fomin-Shapiro viewed from this Perspective

* factors $f_{(i_1, \ldots, i_d)}$ as composition of simple collapsing maps g_i
 (where requisite paths of homeomorphisms are easy to construct explicitly).

* regularity criterion shows
 $$
 f_{(i_1, \ldots, i_d)}(\Delta^n) \Rightarrow f_{(i_1, \ldots, i_d)}(\Delta^n)
 $$
 is indeed a homeomorphism.
Further Questions:

1. Analogous story for totally nonnegative part of: Grassmannian? loop group? flag variety?
 (partial results of Postnikov, Rietsch, Williams, Speyer, Marsh, ...)

Thank you!
Connection to Schubert Varieties & Bruhat Decompositions

- $Y^\circ = \text{image of } f_{(\iota, \iota, \iota)} : \mathbb{R}^d_{>0} \rightarrow M_{n \times n}$

- $Y_\omega = \overline{V}_\omega = \text{image from } \mathbb{R}^d_{>0}$

 = totally nonnegative part of $\overline{B^{-\omega} B^{-\omega}} \cap \text{ (unipotent)}$

- $Y_{\omega_0} = \text{totally nonnegative part of space of upper triangular matrices } \omega \text{ with } 1\text{'s}$

 (old result of Whitney-type A) on diagonal
A Motivation: Understanding Relations Among (Exponentiated) Chevalley Generators

Lie algebra

$\exp(t e_i) = \begin{pmatrix} 1 & t e_i & \frac{t^2 e_i^2}{2} & \frac{t^3 e_i^3}{6} & \cdots \end{pmatrix}$

We Prove: Only the “obvious” relations occur
Collapsing a Cell σ onto a Cell $\bar{\rho}$

Act as ID outside \triangle, so also need ID at $\partial(\triangle)$.

Collar to be stretched across σ (stretched to cover $s_1 \cup s_2$).

- Map segments s_2 in σ onto endpoint in $\bar{\rho}$, stretch extension $s_1 \subseteq \text{collar}$ to cover $s_1 \cup s_2$, act as ID on $\bar{\rho} \times [0,1] \subseteq \text{collar}$.

- For $c \in \partial\sigma$, collapsing map on $c \times [0,1]$ will stretch s_1 to cover $s_1 \cup s_2$ and shorten $s_2 \cup s_3$ to cover s_3, as depicted next.
"Close-up" of bottom part of collapsing map

Key Observations:

(1) This type of collapse makes sense more generally, relying on existence of continuous fn $ln: \overline{\sigma} \to \mathbb{R}$ sending point to "length" of segment in $\overline{\sigma}$ containing it.

(2) These collapses are explicitly approximable by homeomorphisms:

Approximate segment to be stretched by
Verifying DE (Distinct Endpoints Condition) with Combinatorics (Gives Flavor of Many Lemmas)

Suppose collapse of F uses curves starting in G_1 and ending in G_2

\[\cdots X_{t_r} \cdots X_{t_k} \cdots X_{t_3} \cdots \]

$G_1 \leadsto G' \leadsto G_2$

If G_1 were already identified earlier with G_2 then there exists G' with earlier steps identifying G_1 with G' and G' with G_2. But the former would have also identified $G_1 \cup \exists x_{s_3} F = F$ with the cell $G' \cup \exists x_{s_3} F = F'$ which was already collapsed in step identifying G' with $G_2 \Rightarrow \ldots$
Ingredients in Relationship Between Fibers & Image of "Nice" Map:

- **CE-approx. theorem**: $g: \mathcal{E} \rightarrow \mathcal{E}$ as above may be approximated by homeomorphisms
 - Armentrout: $\dim 3$
 - Quinn: $\dim 4$
 - Kirby-Siebenmann: $\dim \geq 5$ (more generally)

- **Local Contractibility of Homeos (S^m, S^m)**: two homeomorphisms "close enough" to each other may be connected by path of homeomorphisms

Idea: $B \cong \text{metric ball} = \overline{S^3} \cup (0, 1] \times \partial B$.

Use path of homeomorphisms converging to $g|_{\partial B}$ to construct $f: B \rightarrow B$ with $f^*(p) = g^*(p)$ $\forall p \in B$ and $f|_{\partial B} = g|_{\partial B}$, so $g(B) = B/\sim = f(13) \cong B$.
Checking Sphericity for $f_{(i_{1}, \ldots, i_{d})}(\partial \Delta^{d})$

1. Stratification has Bruhat intervals as closure posets, thus CW posets.
2. Induction on dimension \Rightarrow cell closures in $f_{(i_{1}, \ldots, i_{d})}(\partial \mathcal{B})$ are balls, so $f_{(i_{1}, \ldots, i_{d})}(\partial \mathcal{B})$ is regular CW complex "K".
3. Hence, $K \cong \Delta(F(K) \setminus \partial) \cong$ sphere.
Subword Complexes (introduced by Knutson & Miller)

\(Q := \text{(not necessarily reduced) expression} \)

\(w := \text{Coxeter group element} \)

Facets of \(\Delta(Q, w) \) are the subwords of \(Q \) whose complements are reduced words for \(w \).

\(\Delta(Q, w) = \begin{cases}
-1 \quad 12 \\
-2 \\
1 \\
\end{cases} \)

\(Q = (1, 2, 1, 2) \quad w = s_1 s_2 \)

Thm (Knutson - Miller): \(\Delta(Q, w) \) is vertex decomposable (hence shellable) ball or sphere.

More Generally? "Fibers" of Parametrization Maps for Nonneg Flag variety, loop groups, etc.?
Homotopy Type of Bruhat Intervals: New Proof by Quillen Fibre Lemma

Thus (Armstrong- H.): The poset map $f_{(i_1...i_d)}$ yields short proof of: $rk_v-rku-2$

$\Delta_{Bruihut}(u,v) \cong S$ for all $u \leq v$

Idea: fibers $f^1_2(u) = \{x \in B_n | f(x) \geq u^2\}$ are dual to face posets of subword complexes - proven to be balls by Allen Knutson & Ezra Miller.

Subword complexes previously arose as:

Stanley-Reisner complex for Gröbner degeneration of matrix Schubert variety ideal (Knutson and Miller)