Combinatorics Meets Topology: Möbius Functions, Euler Characteristic & Beyond

Patricia Hersh
North Carolina State University

Plan: discuss how counting problems can be solved using topology.
Counting by Inclusion-Exclusion

e.g. "counting" points in the \(\mathbb{R}^2 \) complement of \(\mathcal{M} \)
yields: counted \(1-1-1-1+2 = 0 \) times

\[
\begin{align*}
\mathbb{R}^2 & - \left/ \ell_1 \right. - \left/ \ell_2 \right. - \left/ \ell_3 \right. + 2\rho
\end{align*}
\]

° Coefficients 1, -1, -1, 1, 2 in such inclusion-exclusion counting formula
given by "Möbius function" \(M \) (upcoming)
Now let's define a function M to calculate these coefficients (to generalize this counting technique).

We need:

- $M(\mathbb{R}^2, \mathbb{R}^2) = 1 = \text{coef. of } \mathbb{R}^2$
- $M(\mathbb{R}^2, l_1) = -1 = \text{coef. of } l_1$

 (so $M(\mathbb{R}^2, \mathbb{R}^2) + M(\mathbb{R}^2, l_1) = 0$)
- $M(\mathbb{R}^2, l_2) = -1$
- $M(\mathbb{R}^2, l_3) = -1$
- $M(\mathbb{R}^2, p) = 2$

 (so $M(\mathbb{R}^2, \mathbb{R}^2) + \sum_{i=1}^{3} M(\mathbb{R}^2, l_i) + M(\mathbb{R}^2, p) = 0$)
Second Example:

Qn: How many students at Duke haven't studied any of the languages French, German or Spanish?

Ans: \(|D| - |F| - |G| - |Sp| + |F \cap G| + |F \cup Sp| + |G \cap Sp| - |F \cap G \cap Sp|\)

Size of #French #German #Spanish Duke students students students

Coefficients again calculated recursively.
Def'n: Möbius function $M_p(x, y)$ of a "partially ordered set" P is defined recursively:

$$M_p(x, x) = 1$$
and

$$M_p(x, y) = -\sum_{x \not\equiv z \not\equiv y} M_p(x, z)$$

Poset $P\uparrow$

$p = l_1, l_2, l_3$

\mathbb{R}^2

Its Möbius fn $M_p(\mathbb{R}^2, -)$

coefficients in $\mathbb{R}^2 - l_1 - l_2 - l_3 + 2p$

(we say $u \preceq v \iff$ draw upward path u to v for v subset of u)
Partially Ordered Sets
(Posets) More Generally

Unlike the integers where any \(u, v \) satisfy \(u \leq v \) or \(v \leq u \) (or both if \(u = v \)), some sets only allow comparison of some of the pairs of elements.

e.g. 1. Subsets of \(\mathbb{Z} \) with \(S \subseteq T \iff S \subseteq T \)

\(\iff \) if and only if

2. Positive integers \(\omega / d \leq n \)

\(\iff d \) is a divisor of \(n \) (e.g. \(2 \leq 6 \) but \(2 \not\mid 5 \))
Poset of Subsets of \(1, 2, \ldots, n^3 \)

its Möbius Function

\[(1-1)^n = 0^n = 0 \text{ for } n \geq 1\]

\[(x+y)(x+y) \ldots (x+y) \text{ for } x=1 \neq y=-1\]

\[\sum (\binom{n}{k}) y^k x^{n-k} \text{ for } x=1 \neq y=-1\]

\[\sum (-1)^k \binom{n}{k}\]

e.g., \(\binom{4}{2} - \binom{4}{1} + \binom{4}{2} - \binom{4}{3} + \binom{4}{4} = 0\)

Proof by Induction yields: \(M(\emptyset, n) = (1)^r k(n)\)
Simplicial Complexes

A *simplicial complex* (e.g. a triangulation) is made of vertices (called "0-simplices"), edges ("1-simplices"), solid triangles ("2-simplices"), solid tetrahedra ("3-simplices"), etc.
Realization: any simplicial complex with vertices v_0, v_1, \ldots, v_n can be drawn in \mathbb{R}^n by letting $v_0 = (0, 0, \ldots, 0)$ and for $1 \leq i \leq n$ letting $v_i = (0, 0, \ldots, 0, 1, 0, \ldots, 0)$ \(\uparrow\) adding edges, with spot \(\wedge\) etc. as needed.

\[\text{e.g.} \]

- We can also think of simplicial complexes abstractly, letting a face be a collection of the vertices in it, requiring for S a face \(\uparrow\) $T \subseteq S$ then T must also be a face.
Higher Dimensional Simplicial Complexes (\textit{\#} Cell Complexes)

4-simplex
(needs 4-dim'l space to fit in)

4-dim'l cube: (not a simplicial complex)

\[(0,0,0,0) \]
\[(0,0,1,0) \]
\[(0,1,0,0) \]
\[(1,0,0,0) \]
(Reduced) Euler Characteristic

- The reduced Euler characteristic of K, denoted $\tilde{\chi}(K) = -1 + \#\text{vertices} - \#\text{edges} + \#\text{triangles} = \ldots$

 e.g., $\tilde{\chi}(\bigtriangleup) = -1 + 4 - 6 + 4 = 1$
 $\tilde{\chi}(\text{tetrahedron}) = -1 + 5 - 9 + 6 = 1$

Adding faces without changing "Topology" won't change $\tilde{\chi}$!

\[\tilde{\chi} = -1 + 3 - 3 + 1 = -1 + 4 - 5 + 2 = -1 + 5 - 8 + 4 \]
Defn: The order complex of a poset P is the abstract simplicial complex, denoted $\Delta(P)$, whose i-dimensional faces are the $(i+1)$-"chains" $v_0 < \ldots < v_i$ in P

e.g.

$P = \{a_1, b_1, o\}$ \hspace{1cm} $\Delta(P) = \{a_2, b_2, a_0, b_0, o\}$

Key Property (due to Hall; popularized by Rota):

$M_P(x, y) = \chi(\Delta_P(x, y)) = -1 + \#\text{vertices} - \#\text{edges} + \#2\text{-faces} - \ldots$\n
$= -1 + \beta_0 - \beta_1 + \beta_2 - \ldots$

- $\beta_i = \#i\text{-dim}\text{'}\text{ hole boundaries}$
- $(u, v) = \sum_{z \in P | u < z < v} z$
- $\Delta_P(u, v) = \Delta(\exists z \in P | u < z < v)$
Techniques Yielding Möbius Functions (\& Poset Topology)

- (lexicographic) shellability
- EL-labelings (Anders Björner)
- CL-labelings (Anders Björner & Michelle Wachs)

\[\Delta(P) \cong \]

(telling us \(\tilde{x} \) hence \(\mu \))

- Lexicographic discrete Morse functions (Babson-H.)
 (for other topoL. types)
Intersection Posets

E.g.,

$A = \mathbb{R}^2$

(l intersection poset)

$H = \mathbb{R}^3$
Intersection Poset L_A for $A = \{x_i = x_j \mid 1 \leq i < j \leq n\}$ the "Partition Lattice"

\[\hat{\theta} = 1234 \]

\[\hat{\theta} = 1234 \]

\[M_{\Pi_4}(\hat{\theta}, \hat{\theta}) = -6 \]
Some Applications of Möbius Functions & "Shellability"

1. Shellability of intersection posets of hyperplane arrangements due to shellability of "geometric lattices"

(Anders Björner) & "geometric semilattices"

(Michelle James Wachs Walker), yielding Möbius fns of "intersection posets" of hyperplane arrangements

\[\\text{\textasciitilde useful e.g. for...} \]
2. Zaslavsky: region counting formulas for the complement of IR-hyperplane aren't A

$\# \text{regions} = \sum_{u \in L_A} |M(0,u)|$

$\# \text{bdd regions} = | \sum_{u \in L_A} M(0,u) |$

$M(1^{R^2}, 1^{R^2}) = 1$

$M(1^{R^2}, H_i) = -1$ for $i = 1, 2, 3$

$M(1^{R^2}, H_1 \cap H_2 \cap H_3) = 2$

$L_A = "\text{intersection poset}"$

E.g. $\# \text{regions} = 1 + 3 + 2$

$\# \text{bdd regions} = 1 - 3 + 2$
3. Björner-Lovász-Yao: lower bound via Möbius funs for deciding if there are \(k \) equal coordinates in \(\vec{z} = (z_1, z_2, \ldots, z_n) \in \mathbb{R}^n \) by pairwise coord. comparisons, i.e. deciding whether \(\vec{z} \) lies on "\(k \)-equal arr't" of subspaces \(x_1 = \ldots = x_k \).
• lower bd on \# leaves (and hence on \(\log_3(\text{depth})\)) was given in terms of betti \#’s (i.e., \# holes in each dimension) in topological space \(\mathbb{R}^n\) — k-equal subspace arrangement

\[\sim\]

Subspaces like \(x_1 = x_2 = x_3\)
for \(k = 3\)

• Mark Goresky & Robert MacPherson showed how to compute these betti \#’s from poset order complexes

• Björner & Wachs found shellings for these poset order complexes, namely intersection posets for “k-equal arrangement”
Appendix: Some Additional Slides Giving Further Details & Touching Upon Some Further Topics...
Technique: Shellability

- Simplicial complex is pure of dim. \(d \) if all maximal faces ("facets") are \(d \)-dimensional
- Simplicial complex is shellable if there is total order \(F_1, F_2, \ldots, F_k \), a shelling, on facets satisfying conditions guaranteeing we can build up the complex by attaching facets in this order so each step either leaves topology (homology) unchanged or closes off a sphere \(S^i \), increasing \(\beta_i \) by 1.
Technique 1: **Lexicographic Shellability**

(Anders Björner & Michelle Wachs)

A poset P is **EL-shellable** if it admits labeling λ of its cover relations $x < y$ w/in integers (called an **EL-labeling**) s.t. $u < v$ implies:

1. there is unique saturated chain $u < u_1 < \ldots < u_k < v$ s.t.
 $\lambda(u, u_1) \leq \lambda(u_1, u_2) \leq \ldots \leq \lambda(u_k, v)$ and

2. $(\lambda(u, u_1), \lambda(u_1, u_2), \ldots, \lambda(u_k, v))$
 is lexicographically smaller than the label sequences on all other saturated chains from u to v.
Thm (Björner): EL-labeling \Rightarrow Shelling

Idea: Lexicographic order on maximal chains (breaking ties arbitrarily) induces shelling order on corresponding facets of $\Delta(P)$.

"descents in labeling" \leftrightarrow overlap of facets

"descending" \leftrightarrow facets attaching along entire boundary \leftrightarrow spheres

$M_P(u,v) = \pm \# \text{descending chains } u \to v$ (for P graded)
Example: Intersection Posets of Hyperplane Arrangements

- Choose any total order H_1, H_2, \ldots, H_k on hyperplanes (resp. "atoms")

- Label $u <_L v$ with $\min \{ i \mid H_i \neq u \text{ and } H_i \leq v \}$

e.g.

$A =$

$A_1 H_2 H_3$

$L_A =$

$H_1 \wedge H_2 \wedge H_3$

$1 2 3$

$1 \mathbb{R}^2$
Intersection Poset L_A for $A = \{x_i \leq x_j \mid 1 \leq i < j \leq n\}$ the "Partition Lattice"

$\hat{\mathbf{e}} = 1234$

$\Pi_4 = 1234$

$M_{\Pi_4}(\hat{\mathbf{e}}, \hat{\mathbf{e}}) = -6$
Cell Complexes \& their Face Posets

e.g.

\[K = \text{ball} \]

\[K' = \mathbb{RP}^2 \]

\[F(K) = e_1, e_2 \]

\[F(K') \quad \text{“closure poset” or “face poset”} \]

\[(u \preceq v \iff u \subseteq \overline{v}) \]

\[\mathbb{RP}^2 \text{ has different 1st homology group than ball} \]

\text{A Goal of Mine: Use combinatorics of } F(K) + \text{limited topological info to understand } K \]
"Topological Proof" of Möbius Function for Poset of Subsets

\[K \]

\[F(K) \]

\[\text{poset of subsets} \]

\[-1 + \beta_0 - \beta_1 + \beta_2 - \ldots \]

with \(\beta_0 = 1 = \beta_1 \) (\(\forall \) for \(B_n \) then \(\beta_0 = \beta_{n-2} = 1 \))

\[K \cong \sigma_\mathcal{L}(K) = \Delta(K) \]
Discrete Morse Theory
(due to Forman reformulated by Chari)

Given any regular CW complex Δ, construct an acyclic matching a.k.a. Morse matching on its face poset, i.e.,

an edge orientation s.t. "up edges" give a matching and directed graph has no cycles.

(A matching is a collection of graph edges s.t. no vertex is in more than one edge)
Theorem (Forman): $\Delta \sim \Delta^M$ a CW complex comprised of the unmatched cells, called critical cells.

e.g. $\bullet \sim \bigcirc$

- same topological structure
- (same homology groups + more!)

Idea: Find pairs of faces where one can be "pulled across" other eliminating both without changing topology, via moves called "collapses".

$v_2 \circ \circ v_3 \rightarrow \bigcirc \rightarrow v_2 = v_1 \circ = v_3$
First Examples

1. Boolean algebra of subsets of $\Sigma^{1,2,\ldots,n}_3$, face poset of simplex, matching $\Sigma^3 \times \Sigma^3$ with $SU(3) \times SU(3)$ AS

Diagram:

- Base pt
- Critical O-cell
- Matching edge in "reduced homology" version of discrete Morse theory
2. Any union of acyclic matchings on \(F(\Delta_2 \setminus \Delta_1), F(\Delta_3 \setminus \Delta_2), \ldots \), for \(\Delta_1 \leq \Delta_2 \leq \ldots \leq \Delta_k = \Delta \) a filtration of subcomplexes is an acyclic matching for \(\Delta \)

c.g. \(\overline{F_1} \leq \overline{F_1} \cup \overline{F_2} \leq \overline{F_1} \cup \overline{F_2} \cup \overline{F_3} \)

3. Shelling \(\Rightarrow \) Discrete Morse fn

whose critical cells are the maximal faces attaching along their entire boundary
Explanation for $\Delta \simeq \Delta^m$: Matching edges specify (internal) elementary collapses preserving homotopy type

Some Consequences of $\Delta \simeq \Delta^m$:
1. If $F(\Delta)$ has complete acyclic matching (w/ $\emptyset \in F(\Delta)$) then Δ is collapsible.

Recall: Some contractible complexes are not collapsible. e.g. dunce cap

\[\text{Diagram:}\]

[Diagram notation]
2. \(\tilde{\chi}(\Delta) = \tilde{\chi}(\Delta^m) \)

\[= -1 + \#0\text{-cells} - \#1\text{-cells} + \#2\text{-cells} \cdots \]

\[= -1 + \beta_0 - \beta_1 + \beta_2 \cdots \]

For Posets: \(M_p(x,y) = \tilde{\chi}(\Delta(x,y)) = \tilde{\chi}(\Delta^m(x,y)) \)

3. **Morse Inequalities:**

1. \(\beta_i(\Delta) \leq \tilde{m}_i(\Delta) = \# \text{i-dim critical cells} \)

2. \(\sum_{i \leq j} \beta_i(\Delta) \leq \sum_{i \leq j} \tilde{m}_i(\Delta) \)

 (for each \(j \leq \dim(\Delta) \))

Rk: "Greedy" matchings tend to satisfy acyclicity requirement.
Question (H.): Is there a good way to "complete the square":

- lexicographic
- shelling

\[\Rightarrow \ ?? \]

\[\downarrow \]

- shelling

\[\Rightarrow \] discrete Morse function

To understand posets that fail to be shellable (e.g. not wedge of spheres)?

Proposed Answer (Eric Babson & P.H.):

"lexicographic discrete Morse fn's"
Research on "f-vectors"

If \(f_i(\Delta) = \# \text{i-dimensional faces in } \Delta \)

then which vectors arise as

\((f_0(\Delta), f_1(\Delta), f_2(\Delta), \ldots, f_{\dim(\Delta)}(\Delta))\)

for some \(\Delta \)?

e.g. \(f_0(\Delta) = 4 \Rightarrow f_1(\Delta) \leq \binom{4}{2} = 6 \)

• "Kruskal-Katona Thm" for simplicial complexes
• Richard Stanley used "commutative algebra" for spheres
• Isabella Novik for "homology spheres"
Topological "Pathologies"

eg. Alexander horned ball: