Representation Stability in Configuration Spaces via Whitney Homology of the Partition Lattice

Patricia Hersh
North Carolina State University & ICERM

joint work with Vic Reiner

(based on paper to appear in IMRN)
A "Point" in a Configuration Space with S_n-rep's on Cohomology

- Manifold = 3-holed torus
- $\eta = 6 = \# \text{distinct labeled points}$
- S_n acts freely on configuration space by permuting pt. labels, inducing rep'n on each cohomology group
Representation Theoretic Stability

Defn (Church, Farb): A series of S_n-modules M_1, M_2, \ldots for $n=1, 2, \ldots$ stabilizes at $B > 0$ if for each $n > B$, we have

$M_n = \sum c_\lambda V(\lambda)$ where $V(\lambda) = S^{(n-m, \lambda)}$ with $m \leq B$

and where c_λ does not depend on n.

E.g.

$n-m \rightarrow \begin{array}{c} \vdots \\ \vdots \end{array} + \begin{array}{c} \vdots \\ \vdots \end{array} \rightarrow \begin{array}{c} \vdots \\ \vdots \end{array} + \begin{array}{c} \vdots \\ \vdots \end{array}$

$M_n \rightarrow M_{n+1}$

$M_{n+2} = \begin{array}{c} \vdots \\ \vdots \end{array}$

Our Focus: S_n-rep's from partition lattice
Our Starting Point:

Thm (Church-Farb): $H^i(M^n_\infty, \Omega)$ stabilizes for $n \geq 4i$ where M^n_∞ is configuration space of n distinct points in plane & i is held fixed.

Thm (Church-Farb): More generally, letting M^d_n be the configuration space of n distinct labeled points on connected orientable d-manifold, $H^i(M^d_n, \Omega)$ stabilizes for

$$\begin{cases}
 n \geq 4i & \text{if } d = 2 \\
 n \geq 2i & \text{if } d \geq 2
\end{cases}$$

Our First Objective: Sharpen these bounds for $M^d = \mathbb{R}^d$
How Representation Stability Typically Arises

- Finite number of irreducible reps S^λ, S^λ 1st appearing in $M_{1\lambda}$
- Each M_n with $n \geq 1\lambda_1$ likewise includes $S^\lambda \otimes \text{triv} \uparrow^\text{Sn}_{n-1\lambda_1} S_{n-1\lambda_1} \times S_{\lambda_1}$
- Church-Ellenberg-Farb prove stability bounds of $n = 2\max 1\lambda_1$
- H-Reiner prove sharp stability bds for $PConf(\mathbb{R}^d)$ at $n = \max (1\lambda_1 + 1,)$

Pieri Rule:

\[S^\lambda \otimes \text{triv} \uparrow^\text{Sn}_{\lambda_1} = \bigoplus \]

![Diagram of Pieri Rule]
Church-Farb Method for Orientable Manifolds

- Use Totaro's E_2-page of Leray spectral sequence (showing cohom. of config. space of n distinct pts on manifold M is determined by cohom. of $M + H^c(M; R^d))$ to deduce stability of each page from previous page:

$$E_2^{p,d-1} = \bigoplus H^d(c_{S}(R^d)) \otimes H^p(M^S)$$

S with $|S| = n - 3$

product of subspace arrangement complements for set partition S with 1 partition

e.g. for $S = \{1, 3\}, \{2, 4, 5\}$

- $C_S(R^d) := \{x \in (R^d)^5 | x_1 \neq x_3; x_2 \neq x_4\}$

 $= C_{\{1, 3\}}(R^d)^2 \times C_{\{2, 4, 5\}}(R^d)^3$

- $M^S := \{x \in M^5 | x_1 = x_3; x_2 = x_4 = x_5\}$

 $\Rightarrow E_2^{p,5} = 0$ for $d-1 \neq 3$
Partition Lattice \(\Pi_n \) & its \(S_n \)-representations

\[
\begin{array}{cccc}
1234 \\
123|4 & 12|34 & 1|234 & 1|324 & 124|3 & 23|14 & 2|134 \\
12|3|4 & 13|2|4 & 14|2|3 & 23|1|4 & 24|1|3 & 34|1|2 \\
\end{array}
\]

\(\Pi_4 = 1|2|3|4 \)

- \(S_n \) acts by permuting values
- e.g. \((13))[12|3|45] = 32|1|45\)
Reinterpreting via Subspace Arrangement Complements

- $M_n = \text{complement of type A (complex) braid arrt } \{x_i = x_j | 1 \leq i < j \leq n\}$

Warning: figure is IIR-picture, need C-picture

$(\text{Config space pt } p_i \leftrightarrow x_i \in \mathbb{C})$

- $\Pi_n = \text{intersection poset } \mathcal{A}(A_{n-1})$

- S_n-module structure for $H^i(M_n)$ will translate to "Whitney homology" in Π_n, $WH_i(\Pi_n)$
$\mathcal{L}(A_2) =$

"poset of intersections of subspaces"

$\Pi_3 =$

"lattice of set partitions"

$x_i = x_j \iff i, j$ in same block
Def'n: The order complex of a finite poset P is the simplicial complex $\Delta(P)$ whose i-dimensional faces are the $(i+1)$-chains in P.

e.g. $P = \{a_1, a_2, b_1, b_2\}$, $\Delta(P) = \{a_1, a_2, b_1, b_2\}$

Let $\overline{P} = P \setminus \{0, \hat{1}\}$ e.g. for Π_n

Convention: When we speak of topological properties (homology, etc.) of poset P, we mean $\Delta(P)$ or $\Delta(\overline{P})$.

Poset rank: = # steps from bottom
Goresky-MacPherson Formula

(for cohomology of subspace arr't)

\[\tilde{H}^i(M_A) \cong \bigoplus_{x \in \Lambda_R \cap \text{codim}(x) - 2 - i} \tilde{H}^{\text{codim}(x) - 2 - i}(\partial, x) \]

subspace arr't complement \(\Lambda_R \) intersection lattice

Plan: Apply to braid arrangement using upcoming \(S_n \)-equivariant version due to Sundaram-Welker, yielding Whitney homology. (See also Blagojević, Lück, Ziegler for more general versions)
\textit{\textbf{S}}_n-\textbf{Representations on Chains (i.e. on Faces)} \& on \textbf{Homology}

- \textit{\textbf{S}}_n \textbf{action on set partitions is order-preserving \& rank-preserving}

(Recall \(P \) is graded if for each \(u < v \), all saturated chains \(u \rightarrow v \) have same length)

- Hence, induces \(S_n \)-action on \(\{ \text{chains } u_1 < u_2 < \ldots < u_j \} \)

\(\{ \text{faces of } \Delta (\uparrow_n) \} \)
\[d(u_0 < ... < u_r) = \sum_{i=0}^{r} (u_0 < ... < \hat{u}_i < ... < u_r) \]

- Thus, S_n-action on i-faces (i-th chain gp) induces rep'n on i-th homology

- But homology of Π_n is concentrated in top degree due to EL-shellability of Π_n

(since shellable \Rightarrow homotopy equivalent to wedge of spheres)
G-Equivariant Enrichment of Goresky-MacPherson Formula

Thm (Sundaram-Welker): Let A be a G-arrangement of C-linear subspaces in C^n for G a finite subgroup of $GL_n(C)$. Then

$$\widetilde{H}^i(M_A) \cong \bigoplus_G \text{Ind}^G_{\text{Stab}(x) \cap \text{codim}(x) \cdot \mathbb{Z}} \widetilde{H}^i(\mathcal{O}, \mathcal{O}_x)$$

(in our case) = "WH_i(L_{A_n})"

Note: there are numerous variations, e.g. allowing us also to handle config. spaces in \mathbb{R}^{2d+1}.
Whitney Homology (for Graded Posets)

\[WH_i(P) := \text{"i-th Whitney homology of } P \]
\[= \bigoplus_{\text{rk}(u) = i} H_{i-2}^\infty(\mathcal{G}, u) \]
\[\text{has } n-i \text{ blocks} \]

\[WH_\lambda(P) := \bigoplus_{\tau \in \mathcal{P}} H_{\tau}^{\top}(\mathcal{G}, u) \]
\[\text{type}(u) = \lambda \]

\[\lambda = (3, 1, 1) = \text{1st of block sizes} \]

123 | 41 | 5 \[\rightarrow\] 423 | 115 \[\leftarrow i = 2\]

123 | 41 | 5 \[\rightarrow\] 132 | 41 | 5 \[\rightarrow\] 231 | 41 | 5 \[\rightarrow\] 123 | 41 | 5

Aside: \[WH_i(P) \cong s_n \beta_{i+1}^{\infty}(P) \oplus s_{i-1}^{\infty}(P) \]
Thm (H-Reiner): Let $M_n^d = \text{config. space of } n \text{ distinct pts in } \mathbb{R}^d$. Then $H^i(M_n^2)$ stabilizes sharply at $3i+1$.

More generally, $H^i(M_n^{2d})$ stabilizes sharply for $n \geq 3 \left(\frac{i}{2d-1} + 1 \right)$ and $H^i(M_n^{2d+1})$ stabilizes sharply for $n \geq 3 \left(\frac{i}{2d} \right)$.

Idea: Determine stability of $\hat{\mathcal{H}}_i \oplus \hat{\text{Lie}}_i$

Thm (H-Reiner): $\langle H^i(M_n^d), S^{(n-1\lambda \lambda, \nu)} \rangle$ vanishes for $1 \nu \leq 2i$ and becomes constant for $n \geq n_0 = \frac{3\nu + 1}{d}$ if d odd and $\nu + 1$ if d even.
Proof Techniques & Results We'll Use

Thm (Hanlon-Stanley): \(\Pi_n \cong \text{sgn} \otimes (\xi_n^* \circ \xi_n) \)

Thm (Joyal): \(\text{lie}_n \cong \xi_n^* \circ \xi_n \)

Cor: \(\Pi_n \cong \text{lie}_n \otimes \text{sgn} \)

Thm (Krasikiewicz & Weyman):

\[
\text{lie}_n \cong \bigoplus \mathbb{S}^2(T)
\]

\[
T \text{ symw} \quad \text{with } \text{maj}(T) \equiv 1 \pmod{n}
\]

Thm (Sundaram):

\[
\text{ch}(WH_2) = \prod h_{m_j} \left[\pi_j \right] \prod e_{m_j} \left[\pi_j \right]
\]

\[
= (h_{m_1}) \left(\prod h_{m_j} \left[\pi_j \right] \right) \left(\prod e_{m_j} \left[\pi_j \right] \right)
\]

\[
j \text{ odd, } m_j \geq 1, \quad j > 1
\]

\[
j \text{ even}
\]
Thm (Sundaram): \(\text{S}_j \)-rep’n on top homology of \(\Pi_j \)

\[
\text{ch}(W_{H_2}) = \prod_{j \text{ odd}} h_{m_j}^{\Pi_j} \prod_{j \text{ even}} e_{m_j}^{\Pi_j}
\]

\[
= (h_{m_1})(\prod_{j > 1} h_{m_j}^{\Pi_j})(\prod_{j > 1} e_{m_j}^{\Pi_j})
\]

where \(\text{ch} = \text{"Frobenius characteristic" iso m.} \)

\[\text{ch}(f) = \sum_{\pi} f(\pi) \frac{\mathbb{P}_n}{\mathbb{S}_n} \text{ from } S_n \]

class functions to ring of symmetric fn’s

\[h_n := \sum x_{i_1} x_{i_2} \cdots x_{i_n} = \text{ch (trivial rep’n)} \]

\[e_n := \sum x_{i_1} x_{i_2} x_{i_3} \cdots x_{i_n} = \text{ch (sgn rep’n)} \]

Obs: \(\Pi_n \) has 1st row upper bd \(n-1 \) for \(n > 2 \)

\[e_m[\Pi_2] = e_m[\pi_2] \text{ has 1st row upper bd m+1} \]
Key Fact for Stability: \(u \in T_n \) of rank \(i \) has at most \(2i \) letters in nontrivial blocks

Significance: Gives upper bound of \(2i \) on \(|\lambda| \), where sharp stability bound is \(\max 3|\lambda| + 2, 3 \)

\[
\begin{align*}
12|34|56|78 & \quad \text{max \# letters in nontriv. blocks} \\
 12|34|56|718 & \quad 2\text{-rank} = 2i \\
 12|34|5|6|718 & \\
 12|3|4|5|6|7|8 & \quad \lambda = (3, 1, 1, 1, 1, 1) \\
 1|2|3|4|5|6|7|8
\end{align*}
\]
\textbf{Thm (Sundaram)}: \quad S_j\text{-rep'n on top homology of } \Pi_j

\[\text{ch}(WH_2) = \prod_{j \text{ odd}} h^{m_j}_{\Pi_j} \prod_{j \text{ even}} e^{m_j}_{\Pi_j} \]

\[= \left(h^{m_1}_{\Pi_1} \right) \left(\prod_{j \text{ odd}} h^{m_j}_{\Pi_j} \right) \left(\prod_{j \text{ even}} e^{m_j}_{\Pi_j} \right) \]

\[\text{ch(triv}_{\Pi_1}) \]

\[\text{"Wh}_2\text{" has degree } \leq 2i \text{ by } \star \]

where \(\text{ch} = \text{"Frobenius characteristic" isom.} \)

\[\text{ch}(f) = \sum_{\pi} f(\pi) \frac{\pi}{\pi} \]

from \(S_n \)

class functions to ring of symmetric fn's

\[h_n := \sum_{1 \leq i_1 < i_2 < \ldots} x_{i_1} x_{i_2} \ldots x_{i_n} = \text{ch (trivial rep'n)} \]

\[e_n := \sum_{1 \leq i_1 < i_2 < \ldots} x_{i_1} x_{i_2} x_{i_3} \ldots x_{i_n} = \text{ch (sgn rep'n)} \]

\textbf{Obs:} \(\Pi_n \) has 1st row upper bd \(n-1 \) for \(n > 2 \) \& \(e_m [\Pi_2] = e_m [h_2] \) has 1st row upper bd \(m+1 \)
Key Properties of Symmetric Functions

- $s^\lambda \overset{ch}{\leftrightarrow}$ Schur fn $s^\lambda = \sum x^T$

 "Frobenius charact." TSSYT shape λ

- χ^λ isom. $\chi^\lambda \lambda' \rightarrow \chi^\lambda \chi^\lambda' \rightarrow \chi^\lambda + \chi^\lambda' \rightarrow \chi(1,1,2,2,3,4) \rightarrow x_1^2 x_2^2 x_3 x_4$

\Rightarrow s^λ includes monomial divisible by x_1^3 but not x_1^4.

- Wreath $\langle \ldots \rangle$ plethysm of product symmetric functions of rep's

\Rightarrow f includes x_1^a & g includes x_1^b then $f \cdot g$ includes x_1^{a+b} while $f[\langle g \rangle]$ cannot include $x_1^{(\deg f) b+1}$
Wiltshire-Gordon Conjectures & Related Results

Defn (Wiltshire-Gordon):

\[V_n^k = \bigoplus_{\lambda \vdash n} WH_{\lambda} (\Pi_n) \]

- \(\lambda \vdash n \)
- \(\ell(\lambda) = n-k \)
- \(\lambda \) has no parts of size 1

Theorem (H-Reiner):

\[\text{Ind} \left(\text{Res} \left(V_n^k \bigoplus V_{n-1}^k \right) \right) \cong \text{Res} \left(V_{n+1}^{k+1} \right) \]

(conjectured by Wiltshire-Gordon)

Example:

- \(n+1 = 5 \) \(k+1 = 3 \)
- Dimension formula:
 \[4 \cdot \left(\binom{4}{2} + (3-1)! \right) = \binom{5}{3} \cdot (3-1)! \cdot (2-1)! = 20 \]
Key Question: Decompose V_n^k into irreducible reps, since this would exactly give the S^3 irrep's yielding S^3 trivial rep's comprising k-th cohomology for config. space of n distinct, labeled pts in \mathbb{R}^2.

Progress (Next Theorem): Answer instead for $\bigoplus_{k} V_n^k$.

Open Qu: Analogous results for \mathbb{R}^d for $d>2$?
Thm (H-Reiner):

\[\nu_n = \text{ch} \left(\bigoplus_{k} V_k \right) = \bigoplus_{T} S^{\lambda(T)} \]

where \(T \) is Whitney generating if either

1. \(T = \emptyset \) or \(12 \) or \(\begin{array}{c} 12 \\ 13 \end{array} \)

or

2. \(T \in \{4,2,3,43\} \) is one of the four shapes:

\[T_1 = \begin{array}{c} 12 \\ 13 \\ 41 \end{array} \quad T_2 = \begin{array}{c} 124 \\ 3 \end{array} \]
\[T_3 = \begin{array}{cccc}
1 & 2 \\
3 & 4
\end{array} \quad T_4 = \begin{array}{cccc}
1 & 2 & 3 \\
4
\end{array} \]

with the following further restrictions:

(a) If \(T_3 \), then the first ascent \(R \) with \(R \geq 4 \) is odd

(b) If \(T_4 \), then the first ascent \(R \) with \(R \geq 4 \) is even

ascent := i such that \(i+1 \) in weakly higher row

Idea: Both sides satisfy same recurrence: categorified
\[d_n = nd_{n-1} + (1)^n \]
\[\hat{\omega} H_n = \hat{\omega} H_{n-1} + \uparrow^{S_n} + (-1)^n \hat{\omega} \]

for
\[\hat{\omega} \hat{\omega} = \chi(3,1^{n-3}) - \chi(2,2,1^{n-4}) \text{ for } n \geq 4 \]
Motivations from Number Theory for Repin Stability for PConf(\mathbb{R}^d)

- Church-Ellenberg-Farb
- Matchett-Wood-Vakil
- Others:

$$\langle H^i(\text{PConf}_n(C)), V \rangle_{S_n} = \lim_{q \to \infty} H^i_{\text{et}}(\text{Conf}_{ni}, \mathbb{Q}_p, \text{coeffs twisted by } V)$$

yielding various counting formulas over finite field via "Grothendieck-Lefschetz formula" counting fixed pts of Frobenius map.

E.g., $\lim_{n \to \infty} (\# D\text{-free degree } n \text{ polys}) = 8^n - 8^{n-1}$

Remarks: Applications to number theory focus on $M = \mathbb{R}^2$ case

- We improve error bound in these limits
Translating "Polynomial Characters" into Symmetric Fns (to get Improved Power Saving Bounds)

- Any polynomial $P(x_1, x_2, x_3, \ldots)$ gives a class fn for S_n by letting $x_i = \# i$-cycles in conjugacy class.

- The elements $(\lambda) = (x_1^{m_1}) (x_2^{m_2}) \ldots$ where λ has m_i parts of size i form a basis for $\mathbb{C}[x_1, x_2, x_3, \ldots]$.

Prop in (H-Reiner): $\text{ch}(x_P) = \sum \frac{P_\lambda}{z_\lambda} h_{n-1\lambda}$ for $n \geq |\lambda|$

for $P = (\lambda) = (x_1^{m_1}) (x_2^{m_2}) \ldots$
Combining with Earlier Results...

- guarantees for all $P \in \mathbf{Q}[x_1, x_2, \ldots]$,
 $x_P = M \left(\sum_{\lambda} c_{\lambda} x^\lambda \right)$ s.t. $1M1 \leq \deg(P) \forall \lambda$.

- analyze $\langle x_P, H^i(M^n_{2d}) \rangle$ via:

\[
\text{Thm (H-Reiner): } \langle H^i(M^n_{2d}), S^{(n-1\nu_1, \nu)} \rangle \text{ vanishes for } 1\nu_1 \leq 2i \text{ and becomes constant for } n \geq n_0 = \begin{cases} 1\nu_1 + i & \text{for } d \text{ odd} \\ 1\nu_1 + i + 1 & \text{for } d \text{ even} \end{cases}
\]

\[\text{Upshot: } \langle x_P, H^i(D_{\text{Conf}(C)}) \rangle_{S_n} \text{ is constant for } n \geq \max \{ 2 \deg(P), \deg(P) + i + 1 \}.\]
\textbf{Thm}: \(\langle \beta_s(TT_n), \text{triv} \rangle \) is constant for \(n \geq 2\max(s) - \left(\frac{15s - 1}{2} \right) \).

\textbf{Note}: This follows from partitioning of \(\Delta(TT_n)/S_n \) giving combinatorial interpretation for \(\langle \beta_s(TT_n), \text{triv} \rangle \) (i.e. from 2003 result of H.), our point of entry to this topic.

\textbf{Conjecture (H-Reiner)}: For fixed \(S \subseteq \{1, 2, \ldots, n-2\} \) with \(i = \max(S) \), the rank-selected homology \(\beta_s(TT_n) \) stabilizes sharply at \(n = 4i - 15 + 1 \).