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1. The general process

1.1. Lévy’s characterization

Brownian motion is the unique R-valued stochastic process (ξt)t∈R+ such that:

(I) ξ has continuous sample paths,

(II) ξ is a martingale,

(III) (ξ2
t − t)t∈R+ is a martingale.

The fact that the process is a Feller-Dynkin Markov process comes free.

Note that even a compensated Poisson process Nt− t satisfies (II) and (III), whereas

Dubins and Schwartz proved that anything satisfying (I) and (II) is a time change of

Brownian motion.



1.2. Extension

Extend the state space: let T ⊂ R be closed, and unbounded in both directions. Let

(ξt)t∈R+ be a T-valued stochastic process (ξt)t∈R+ that satisfies:

(I’) if x < y < z are in T, and ξr = x and ξt = z, then ξs = y for some r < s < t,

(ξ does not “skip points”)

(II) ξ is a martingale,

(III) (ξ2
t − t)t∈R+ is a martingale.

Theorem 1 [BEPR] For any closed, unbounded T ⊂ R, there is a

unique T-valued martingale (ξt)t∈R+ that does not skip points and for

which (ξ2
t − t)t∈R+ is also a martingale. ξ is further a Feller-Dynkin

Markov process.

Corollary 1 Any T-valued martingale that does not skip points is a time change of

(ξt)t∈R+.



1.3. Construction

We know it exists because we can construct it.

-�

x σ(x) σ(y)ρ(x) ρ(y)=y

For a point x ∈ T set

ρ(x) := sup{y ∈ T : y < x} σ(x) := inf{y ∈ T : y > x}.

Let m be Lesbegue measure and define the measure µ on T by

µ := 1T ·m +
∑
x∈T

σ(x)− ρ(x)

2
δx.



Let `a
t be local time for Brownian motion Bt at a, and define the continuous additive

functional

Aµ
u :=

∫
R

`a
u µ(da)

and let θµ
t be the right continuous inverse of Aµ

θµ
t := inf{u : Aµ

u > t}.

By the time change of Bt with respect µ we mean the process

ξt := Bθµ
t
.

Note: ξ is also reversible with respect to µ.
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A sample path on the Cantor set.



Claim 1 (ξt)t∈R+ satisfies properties (I’), (II), and (III).

Proof: θµ
t is a stopping time, so ξ is a martingale that does not skip points. This

only leaves property (III).

(III) Check in the case that ρ(x) < x < σ(x), and T = inf{t : ξt 6= x}. Then

Exξ2
T =

(σ(x)− x)

(σ(x)− ρ(x))
ρ(x)2 +

(x− ρ(x))

(σ(x)− ρ(x))
σ(x)2

= x(σ(x) + ρ(x))− σ(x)ρ(x)

= (σ(x)− x)(x− ρ(x)) + x2.

We need to show that ExT = (σ(x)− x)(x− ρ(x)).

Since |Bt − x| − `x
t is an Ex-martingale,

Ex`x
T =

x− ρ(x)

σ(x)− ρ(x)
(σ(x)− x) +

σ(x)− x

σ(x)− ρ(x)
(x− ρ(x)) = 2

(σ(x)− x)(x− ρ(x))

(σ(x)− ρ(x))
,

and therefore,

ExT = µ(x) Ex`x
T = (σ(x)− x)(x− ρ(x)).

�



1.4. Uniqueness

Theorem 2 (thanks to Pat Fitzsimmons) Let x ∈ T, and suppose ζ is a càdlàg

T-valued martingale with ζ0 = x that does not skip points, and for which (ζ2
t − t) is a

martingale. Then ζ has the same distribution as ξ under Px.

proof sketch: Let A ⊂ T, and let τ = inf{t ≥ S : ξt ∈ A}, for some stopping time S

for the canonical filtration.

• (I’), (II) ⇒ ζτ
d
= ξτ .

• The Chacon-Jamison theorem (extended by Walsh) ⇒ ζ is a time-change of ξ.

• (III) ⇒ The time-change is trivial.

. . . (plus the proof that ζ holds for exponential times at isolated points — Chacon-

Jamison only holds if there are no holding points)



2. Hitting times and continued fractions:

2.1. The q-timescale

Fix q > 1, and suppose the state space is

Tq = {. . . ,−q2,−q,−1,−q−1,−q−2, . . . , 0, . . . , q−2, q−1, 1, q, q2, . . .} = (−qZ)∪{0}∪(qZ).

� -

The process ξ on Tq has jump rates

qn −→ qn+1 at rate
q−2n

(q − 1)(q − 1/q)

qn −→ qn−1 at rate
q−2n+1

(q − 1)(q − 1/q)
.

note: To avoid factors of cq := (q − 1)(q − 1/q), we immediately define Xt := ξcqt,

and do most computations for X.

What can we compute explicitly? How about hitting times? ξt started on R+ and

stopped upon hitting zero is a birth-death chain, for which there exists a large body

of theory.



2.2. The hitting time recurrence

Suppose Z is a bilateral birth-and-death process (on Z). For n ∈ Z, write βn for the

birth rate at n, and δn for the death rate at n.

� -
-�

n

βnδn

n− 1 n + 1

Let τn = inf{t ≥ 0 : Zt = n} be the hitting time of n, and for m > n

H↓
n(λ) := En[e−λτn−1 ] H↑

n(λ) := En[e−λτn+1 ]

Hn,m(λ) := En[e−λτm ] = H↑
n(λ)H↑

n+1(λ) · · ·H↑
m−1(λ),

By conditioning on the direction of the first jump,

H↓
n(λ) = En

[
e−λτn−11τn−1<τn+1 + e−λτn+11τn+1<τn−1En+1

[
e−λτn−1

]]
=

δn

δn + βn + λ
+

βn

δn + βn + λ
H↓

n+1(λ)H↓
n(λ),



or if ρn := δn

βn
,

H↓
n(λ) = 1 + ρn +

λ

βn

− ρn

H↓
n+1(λ)

= 1 + ρn +
λ

βn

−
ρn

1 + ρn+1 + λ
βn+1

− ρn+1

H↓
n+2(λ)

= 1 + ρn +
λ

βn

−
ρn

1 + ρn+1 + λ
βn+1

−
ρn+1

1 + ρn+2 + λ
βn+2

− . . . − ρn+m

H↓
n+m

?
= 1 + ρn +

λ

βn

−
ρn

1 + ρn+1 + λ
βn+1

−
ρn+1

1 + ρn+2 + λ
βn+2

−
ρn+2

1 + ρn+3 + .. .



2.3. Continued fractions and three-term recurrences

We are led to a continued fraction. But consider: both φ = 1+
√

5
2

and φ = 1−
√

5
2

solve

φ2 − φ− 1 = 0 ⇒ φ = 1 +
1

φ
= 1 +

1

1 +
1

φ

= · · ·

so what value are we to assign the infinite continued fraction

1 +
1

1 +
1

1 +
1

1 + . . .

=?



The building block of a continued fraction is a Möebius map, say with fixed points a and b

sa,b(z) :=
ab

a + b− z
: a 7→ a, b 7→ b,

and s′(a) =
1

s′(b)
=

a

b

so if a, b ∈ R and |a| < |b|, then |s′(a)| < 1 and |s′(b)| > 1, so for any x 6= b,

sn
a,b(x) =

ab

a + b−
ab

a + b−
ab

a + b−
ab

a + b− x

−→ a as n →∞.

Our hitting time recurrences are of the form

wn+1 = san,bn ◦ san−1,bn−1 ◦ · · · ◦ san−m,bn−m(wn−m).



Claim 2 For each n ≥ 0, let

Sn(z) =
u1

v1 +
u2

v2 + . . . un

vn+z

.

Then

Sn(z) =
Pn + zPn−1

Qn + zQn−1

where {Pn}n≥−1 and {Qn}n≥−1 solve the three-term recurrence

Pn = unPn−1 + vnPn−2 P−1 = 1 P0 = 0

Qn = unQn−1 + vnQn−2 Q−1 = 0 Q0 = 1



Proof: By induction, S0 = z, and

Sn+1(z) = Sn(
un

vn + z
)

=
Pn + ( un

vn+z
)Pn−1

Qn + ( un

vn+z
)Qn−1

=
(vnPn + unPn−1) + zPn

(vnQn + unQn−1) + zQn

.

�



Definition 1 {X̃n} is a minimal solution to the three-term recurrence

Xn = unXn−1 + vnXn−2 (1)

if for all linearly independent solutions {Xn},

lim
n→∞

X̃n

Xn

= 0.

{X̃n}, if it exists, is unique up to constant multiples.

Theorem 3 (Pincherle) Sn(0) converges to a finite value if and only if there is a

minimal solution {X̃n} to (1), in which case as n →∞,

Sn(0) =
u1

v1 +
u2

v2 + . . . un

vn

−→ − X̃0

X̃−1

.

In fact, Sn(z) → − X̃0

X̃−1
for any z that “stays away from the bad point(s).



2.4. q-background

We’ll need to solve recurrence relations with lots of q’s in them, or rather, q-difference

equations. Analogous to how hypergeometric functions solve second-order differen-

tial equations, q-hypergeometric functions (or basic hypergeometric functions) solve

second-order q-difference equations.

Fix q > 1, and define the q-shifted factorial:

(z; q)n :=
n−1∏
k=0

(1− zqk) for n ∈ N, z ∈ C,

(z; q)∞ :=
∞∏

k=0

(1− zqk) for |z| < 1.

For convenience, let (a1, a2, . . . , an; q)n =
∏

k(ak; q)n. Define the q-hypergeometric

series

rφs(a1, . . . , ar; b1, . . . , bs; q; z) :=
∞∑

k=0

(a1, . . . , ar; q)k((−1)kq
k(k−1)

2 )1+s−rzk

(b1, . . . , bs, q; q)k

.



We’ll be using, for instance

1φ1(a; b; q; z) :=
∞∑

k=0

(∏k−1
l=0 (1− aql)

)
(−1)kq

k(k−1)
2(∏k−1

l=0 (1− bql)(1− ql+1)
) zk

1φ0(a;−; q; z) :=
∞∑

k=0

(∏k−1
l=0 (1− aql)

)
(∏k−1

l=0 (1− ql+1)
)zk.

Some of these have nice product formulæ, like

Theorem 4 (The q–binomial theorem)

1φ0(a;−; q; z) =
(az; q)∞
(z; q)∞

if |z| < 1, |q| < 1, a ∈ C.

One commonly used q–analogue of the exponential that appears in our work is

eq(z) := 1φ0(0;−; q; z) =
1

(z; q)∞
=

∞∑
k=0

zk

(q; q)k

, for |z| < 1,



3. Return to the q-timescale

� -

Let τx be the hitting time of x, and denote the Laplace transform of the “time to go

down from qn” by

H↓
n(λ) := Eqn

exp(−λτqn−1).

From the discussion above,

H↓
0 (λ) =

q

1 + q + λ−H↓
1 (λ)

=
q

1 + q + λ−
q

1 + q + q2λ−H↓
2 (λ)

=
q

1 + q + λ−
q

1 + q + q2λ−
q

1 + q + q4λ− . . . −H↓
n(λ)

.



Closed-form expressions for continued fractions of this form are listed in Ramanujan’s

“lost” notebook, and evaluations for various ranges of the parameters can be found

(e.g. Hirschhorn; Gupta, Ismail, & Masson), giving

Theorem 5 [BEPR] The Laplace transform of an the adjacent hitting time is

E1e−λτ1/q =
q

λ

0φ1(−; 0; q−1; 1
λq

)

0φ1(−; 0; q−1; 1
λq−1 )

,

or by another evalutation of the continued fraction,

E1e−λτ1/q =
1

(λq−1 + 1)

1φ1(0;− 1
λq

; q−2;− 1
λq2 )

1φ1(0;− 1
λq−1 ; q−2;− 1

λq
)
.

The Laplace transform of a downwards hitting time is

E1 exp(−λτq−m) =
qm2−2m

λm

0φ1(−; 0; q−1; 1
λq

)

0φ1(−; 0; q−1; 1
λq−2m−1 )

=
1

(−λq−1; q−2)m

1φ1(0;− 1
λq

; q−2;− 1
λq2 )

1φ1(0;− 1
λq−1 q2m; q−2;− 1

λ
q2m)

.

The Laplace transform of the hitting time of zero is

E1e−λτ0 = 1φ1(0;−
1

λq1
; q−2;− 1

λq2
)
eq−2(−λq−1)

eq−2(1
q
)

.



Proof: To use the continued fraction, we need check that the Laplace transforms

H↓
n(λ) asymptotically stay away from the unstable fixed points in the transformation.

This is important — we could have just as easily expanded the fraction in the other

direction, which continued fraction is not equal to the Laplace transform.

Once we know it applies, the continued fraction leads us to the three-term recurrence

Un+1(λ) = (1 + q + q2nλ)Un(λ)− qUn−1(λ),

which has an explicit minimal solution Ũ . The Laplace transforms of adjacent hitting

times are given by the ratio of adjacent terms of {Ũn},

Eqn

exp−(λτqn−1) =
Ũn

Ũn−1

,

and non-adjacent hitting times telescope

Eqn

exp−(λτqn−m) =
m+1∏
k=0

Ũn−k

Ũn−k−1

=
Ũn

Ũn−m

.

Taking limits and using q-transformation formulae gives the expression for m = ∞.

�



3.1. The distribution of the hitting time to zero

Theorem 6 [BEPR] For the process ξ begun at qn, the hitting time to zero is dis-

tributed as

q2n+2N−1

∞∑
i=0

q−2iTi,

where the Ti are iid rate 1 exponentials, and N is distributed according to a q-analogue

of the Poisson distribution,

P{N = k} =
1

eq−2(1
q
)

q−k

(q−2; q−2)k

, k ≥ 0.

Corollary 2 As q ↓ 1, (q − 1)q2N+1 converges to the stable(1
2
) distribution with

density
1√
2πt3

exp

(
− 1

2t

)
, t > 0.



Proof(of Theorem): We showed that

E1e−λτ0 = 1φ1(0;−
1

λq1
; q−2;− 1

λq2
)
eq−2(−λq−1)

eq−2(1
q
)

=
1

eq−2(1
q
)

(
∞∏
i=0

q2i+1

q2i+1 + λ

)(
∞∑

k=0

k−1∏
l=0

[
q−2l−1

(q−2l−1 + λ)

]
q−k

(q−2; q−2)k

)
.

This is the Laplace transform of the random variable(
0∑

i=−∞

q2i−1Ti +
N∑

i=1

q2i−1Ti

)
=

N∑
i=−∞

q2i−1Ti
d
= q2N−1

∞∑
i=0

q−2iTi.

�

Note: If Nt is a standard Poisson process, then [Bertoin, Biane, & Yor]

∞∑
i=0

q−2iTi
d
=

∫ ∞

0

qNtdt.



Lemma 1 If xq ∈ Tq, xq → x as q ↓ 1, then ξ started at xq converges to Brownian

motion begun at x (in the usual Skorhod topology) as q ↓ 1.

Proof(of Corollary): For Brownian motion started at 1, the hitting time of 0

has the stable(1
2
) with this density. By the lemma, cqq

2N
∑∞

i=0 q−2iTi converges to

this same stable distribution as q ↓ 1. (recall cq = (q − 1)(q − 1/q), a time-scaling)

From Lai’s strong law of large numbers for Abelian summation we have that

lim
q↓1

∞∑
i=0

(1− q−2)q−2iTi = E[T0] = 1, a.s.

and so cq(1−q−2)−1q2N = (q−1)q2N+1 also converges to the same stable distribution.

�



3.2. The rest of the process?

We can compute the moments Exξm
t of the process explicitly, but these grow like

exp(m2/2), so the moment problem is not well–posed.

We do have formulæ for the Laplace transforms of hitting times. In principle, then,

we know everything about the process, since these are the building blocks for explicit

formulæ for

The Laplace transform of the local time at zero.

⇓
The entrance law for excursions from zero.

⇓
The resolvent of the process.

(Laplace transforms of the transition probabilities)

. . . so “all” that stands in the way of explicit transition probabilities is to invert some

Laplace transforms.



3.3. Aside on orthogonal polynomials

Recall our hitting time recurrence

H↓
n(λ) =

δn

δn + βn + λ
+

βn

δn + βn + λ
H↓

n+1(λ)H↓
n(λ),

which leads to a continued fraction, whose approximants are given by solutions to

Pn+1 = (δn + βn + λ)Pn − δnPn−1.

The initial conditions for P imply that they are polynomials in λ — and they are the

unique system of polynomials orthogonalized by the spectral measure of the birth-

death chain, killed upon reaching 1.

For the birth-death chain on Tq ∩ [1,∞), the spectral measure is known explicitly,

and orthogonalizes some associated continuous dual q-Hahn polynomials. Can this

tell us the spectral measure of our process?



4. Miscellania

4.1. Proof of reversibility

Claim 3 ξ is reversible with respect to µ.

It suffices to show for all bounded sets U, V ⊂ T, and t ≥ 0, that∫
U

Px(ξt ∈ V )µ(dx) =

∫
V

Py(ξt ∈ U)µ(dy),

or, taking the Laplace transform, for all λ > 0,∫ ∞

0

∫
U

e−λtPx(ξt ∈ V )µ(dx)dt =

∫ ∞

0

∫
V

e−λtPy(ξt ∈ U)µ(dy)dt.



Since ξt = Bθµ
t
, and θµ

t is the inverse of Aµ
t =

∫
R `x

t µ(dx), by a change of variables∫ ∞

0

∫
U

e−λtPx(ξt ∈ V )µ(dx)dt =

∫
U

Ex

[∫ ∞

0

e−λt1{ξt∈V }dt

]
µ(dx)

=

∫
U

Ex

[∫ ∞

0

e−λt1{B
θ
µ
t
∈V }dt

]
µ(dx)

=

∫
U

Ex

[∫ ∞

0

e−λAµ
t 1{Bt∈V }dAt

]
µ(dx)

=

∫
U

Ex

[∫ ∞

0

e−λAµ
t 1{Bt∈V }

(∫
R

d`y
t µ(dy)

)]
µ(dx),

and since d`y
t is nonzero if and only if Bt = y,∫ ∞

0

∫
U

e−λtPx(ξt ∈ V )µ(dx)dt =

∫
U

∫
R

Ex

[∫ ∞

0

e−λAµ
t 1{Bt∈V }d`y

t

]
µ(dy)µ(dx)

=

∫
U

∫
V

Ex

[∫ ∞

0

e−λAµ
t d`y

t

]
µ(dy)µ(dx),

which is symmetric in U and V , by reversibility of Bt.



4.2. Proof of Pincherle’s theorem

Theorem 7 (Pincherle) Sn(0) converges to a finite value if and only if there is a

minimal solution {X̃n} to (1), in which case as n →∞,

Sn(0) =
u1

v1 +
u2

v2 + . . . un

vn

−→ − X̃0

X̃−1

.

Proof: Let {Yn} be a solution to (1), linearly independent of {X̃n}. The three-term

recurrence is linear, so there are α, β, δ, γ ∈ R such that

P = αX̃ + βY

Q = δX̃ + γY.

Then

Sn(0) =
αX̃n + βYn

δX̃n + γYn

=
αX̃n/Yn + β

δX̃n/Yn + γ
→ β

γ
as n →∞.



The initial conditions are(
P−1 Q−1

P0 Q0

)
=

(
1 0

0 1

)
=

(
X̃−1 Y−1

X̃0 Y0

)(
α δ

β γ

)

which imply that
β

γ
=
−X̃0

X̃−1

. �
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