Flip through a calculus textbook, or online references, to do the following problems:
(1) Let p be a real number strictly between 0 and 1 , and let $a_{n}=c p^{n}$ for all integes $n \geq 0$. If $\sum_{n=0}^{\infty} a_{n}=1$, what is the value of c ?
(2) Using the fact that

$$
f(x)=(1+x)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^{k},
$$

(the Binomial Theorem) find the value of

$$
\sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} x^{k-1}
$$

Hint: differentiate f.
(3) Sketch the curve $y=\log (1-x)$ and its tangent at $x=0$, where \log denotes the natural logarithm (sometimes written ln). Explain intuitively or quote a theorem that explains why there exists a number $C>0$ such that

$$
|\log (1-x)-x| \leq C x^{2}
$$

for all $|x| \leq \frac{1}{2}$.

