
Question: Describe explicitly the limiting procedure to obtain the diffusion process of Example 13.3.12
(”Diffusion approximation to the branching process.”). Find hitting probabilities for the resulting diffusion,
namely, the probability that the diffusion process hits a before hitting b if begun at x, for each a, b, and x.

Solution: Let (Z(t))t≥0 be the continuous time version of the branching process. That is, a branching
process in which each individual gives birth with rate 1. Let µ be the mean number of offspring per birth
event and let σ2 be the variance of the number of offspring per birth event.

To find the appropriate scaling for the diffusion limit, set X(t) = 1
NβZ(Nγt). Since we will be sending N to

infinity, all that matters is the ratio of β to γ, so without loss of generality we may set γ = 1, so that

X(t) =
1
Nβ

Z(Nt).

We first find the infinitesimal mean,

µX(x, t) = lim
h↓0

1
h

E(X(t+ h))−X(t)|X(t) = x)

Recall that if there are m individuals alive in a branching process then the next birth event happens with
rate m, so given X(t) = x, i.e. given Z(Nt) = xNβ , the birth rate before time has been scaled would be xNβ ,
but the scaling of time by N means that births happen at rate xN1+β . Using the fact that the expected
change in the original population given one birth event has occured is µ− 1, so that the change in the scaled
population is µ−1

Nβ , we have:

µX(x, t)

= limh↓0
1
hE(X(t+ h))−X(t)|X(t) = x)

= limh↓0
1
hE(N−βZ(Nt+Nh)−N−βZ(Nt)|N−βZ(Nt) = x)

= xN1+β
(
µ−1
Nβ

)
= xN(µ− 1)

To get a non-trivial limit for large N (i.e. not zero or infinity), we must have µ − 1 = O(N−1). Set
µ = 1 + αN−1, so that µX(x, t) = αx.

We now find the infinitesimal variance:

σ2
X(x, t)

= limh↓0
1
hE((X(t+ h))−X(t))2|X(t) = x)

= limh↓0
1
hE((N−βZ(Nt+Nh)−N−βZ(Nt))2|N−βZ(Nt) = x)

= xN1+β
(
σ2+(µ−1)2

N2β

)
= xN1−β(σ2 + (µ− 1)2)

= xN1−β(σ2 + α2N−2)

≈ xN1−βσ2

To get a non-trivial limit for large N (i.e. not zero or infinity), whilst keeping σ2 greater than zero and
finite, we must have 1− β = 0, i.e. β = 1. Then σ2

X(x, t) = xσ2.
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The calculations above can be expanded so that it is clear what is happening in the limit as h→ 0:

µX(x, t)

= limh↓0
1
hE(X(t+ h))−X(t)|X(t) = x)

= limh↓0
1
hE(N−βZ(Nt+Nh)−N−βZ(Nt)|N−βZ(Nt) = x)

= limh↓0
1
hP(S jumps once during (Nt,Nt+Nh)|Z(Nt) = xNβ)

× E(N−βZ(Nt+Nh)−N−βZ(Nt)|N−βZ(Nt) = x, Z jumps once during (Nt,Nt+Nh))

+ limh↓0
1
hP(Z jumps > once during (Nt,Nt+Nh)|Z(Nt) = xNβ)

× E(N−βZ(Nt+Nh)−N−βZ(Nt)|N−βZ(Nt) = x, Z jumps > once during (Nt,Nt+Nh))

= limh↓0
1
h (xNβNhe−xN

βNh)

× E(N−βZ(Nt+Nh)−N−βZ(Nt)|N−βZ(Nt) = x, Z jumps once during (Nt,Nt+Nh))

+ limh↓0
1
hO(h2)

× E(N−βZ(Nt+Nh)−N−βZ(Nt)|N−βZ(Nt) = x, Z jumps > once during (Nt,Nt+Nh))

= limh↓0 xN
β+1E(N−βZ(Nt+Nh)−N−βZ(Nt)|N−βZ(Nt) = x, Z jumps once during (Nt,Nt+Nh))

+0

= xNE(Z(Nt+Nh)− Z(Nt)|N−βZ(Nt) = x, Z jumps once during (Nt,Nt+Nh))

= xN(µ− 1)
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And the expanded calculations for the infinitesimal variance are:

σ2
X(x, t)

= limh↓0
1
hE((X(t+ h))−X(t))2|X(t) = x)

= limh↓0
1
hE((N−βZ(Nt+Nh)−N−βZ(Nt))2|N−βZ(Nt) = x)

= limh↓0
1
hP(S jumps once during (Nt,Nt+Nh)|Z(Nt) = xNβ)

× E((N−βZ(Nt+Nh)−N−βZ(Nt))2|N−βZ(Nt) = x, Z jumps once during (Nt,Nt+Nh))

+ limh↓0
1
hP(Z jumps > once during (Nt,Nt+Nh)|Z(Nt) = xNβ)

× E((N−βZ(Nt+Nh)−N−βZ(Nt))2|N−βZ(Nt) = x, Z jumps > once during (Nt,Nt+Nh))

= limh↓0
1
h (xNβNhe−xN

βNh)

× E((N−βZ(Nt+Nh)−N−βZ(Nt))2|N−βZ(Nt) = x, Z jumps once during (Nt,Nt+Nh))

+ limh↓0
1
hO(h2)

× E((N−βZ(Nt+Nh)−N−βZ(Nt))2|N−βZ(Nt) = x, Z jumps > once during (Nt,Nt+Nh))

= limh↓0 xN
β+1E((N−βZ(Nt+Nh)−N−βZ(Nt))2|N−βZ(Nt) = x, Z jumps once during (Nt,Nt+Nh))

+0

= xN1−βE((Z(Nt+Nh)− Z(Nt))2|N−βZ(Nt) = x, Z jumps once during (Nt,Nt+Nh))

= xN1−β(σ2 + (µ− 1)2)

= xN1−β(σ2 + α2N−2)

≈ xN1−βσ2
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To find hitting probabilities, we look for martingales associated with our diffusion X. X has generator

Gf(x) = αxf ′(x) +
1
2
σ2xf ′′(x)

If we find h such that Gh(x) = 0 for all x, then h(X(t)) is a martingale. Solutions to

αxh′(x) +
1
2
σ2xh′′(x) = 0

are found by cancelling the x, then integrating to get

αh(x) +
1
2
σ2h′(x) = c

for some constant c. i.e. h′(x) = 2α
σ2 h(x) + 2c

σ2 , which has solution

h(x) = Ae
2α
σ2 x +B

for some constants A and B. We choose to set A = 1 and B = 0 to see that

M(t) := e
2α
σ2X(t)

is a martingale. Suppose X0 = x with 0 < a < x < b and let T = inf{t > 0 : X(t) ∈ {a, b} }. Let

pa = P(XT = a) = 1− pb = 1− P(XT = b)

Then by applying the optional stopping theorem, which applies since P(T < ∞) = 1 and because M(t) is
uniformly bounded for t < T , we have

e
2α
σ2 x = E(M(0)) = E(M(T )) = pae

2α
σ2 a + pbe

2α
σ2 b

Using pa = 1− pb we can solve this to get

pa =
e

2α
σ2 x − e

2α
σ2 b

e
2α
σ2 a − e

2α
σ2 b

and

pa =
e

2α
σ2 a − e

2α
σ2 x

e
2α
σ2 a − e

2α
σ2 b
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