Question: Given a random variable X define another random variable Y with distribution $\mathbb{P}(Y=y)=\frac{\mathbb{P}(X>y)}{\mathbb{E}[X]}$. Find the distribution corresponding to
(a) Uniform on $1,2, \ldots, n$,
(b) Poisson (λ); and
(c) give at least one example of a distribution invariant under this operation.

Solution: (a)

$$
\mathbb{P}(X>y)= \begin{cases}1 & \text { for } y<0 \\ \frac{n-y}{n} & \text { for } 0 \leq y \leq n \\ 0 & \text { for } y>n\end{cases}
$$

Recall the tail formula for the expectation of any non-negative random variable:

$$
\mathbb{E}[X]=\sum_{k=0}^{\infty} \mathbb{P}(X>k)
$$

This implies that in order to have $\sum_{y=-\infty}^{\infty} \mathbb{P}(Y=y)=1$ we must set the range of Y to be the set $\{0,1,2, \ldots\}$ (or even $\{0,1, \ldots, n-1\}$). Since $\mathbb{E}[X]=\frac{1}{2}(n+1)$ we have

$$
\mathbb{P}(Y=y)= \begin{cases}\frac{2(n-y)}{n(n+1)} & \text { for } 0 \leq y \leq n-1 \\ 0 & \text { otherwise }\end{cases}
$$

(b)

$$
\mathbb{P}(X>y)= \begin{cases}1 & \text { for } y \leq 0 \\ 1-\sum_{k=0}^{y} \frac{\lambda^{k} e^{\lambda}}{k!} & \text { for } y>0\end{cases}
$$

As before, we must set the range of Y to be the set $\{0,1,2, \ldots\}$. Since $\mathbb{E}[X]=\lambda$ we have

$$
\mathbb{P}(Y=y)= \begin{cases}1-\sum_{k=0}^{y} \frac{\lambda^{k} e^{\lambda}}{k!} & \text { for } y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(c) The answer is that X should be geometric, and here's why we should guess this. Recall that Y is the distribution of the amount remaining after time zero until the next renewal event in a stationary renewal process. So, we need to come up with a renewal process whose intial interval, at stationarity, has the same distribution as the intervals between events. This will be the case if the interval distributions are memoryless, i.e. if knowing that a certain amount of time has passed so far doesn't affect the distribution of the remaining amount. Concretely, imagine an infinite sequence of independent coin flips, and let T_{k} be
the (renewal) sequence of times that a head occurs. The process is stationary, as can be seen by adding on another infinite, independent sequence stretching back in time. Also, the time until the first head T_{1} has the same distribution as the time between subsequent heads $T_{k+1}-T_{k}$. By our description of stationary renewal processes, in the notation of the problem, if $T_{k+1}-T_{k}$ has distribution X then T_{1} has distribution Y.

Now we check this. Let X be a geometric random variable on $\{0,1,2, \ldots\}$ with parameter p, i.e. $\mathbb{P}(X=k)=p(1-p)^{k}$ for $k \geq 0$. Then
$\mathbb{P}(X>y)=\sum_{k=y+1}^{\infty} \mathbb{P}(X=k)=\sum_{k=y+1}^{\infty} p(1-p)^{k}=p(1-p)^{y+1} \sum_{k=0}^{\infty}(1-p)^{k}=(1-p)^{y+1}$
But $E[X]=\frac{1-p}{p}$ and hence for $k \geq 0$,

$$
\mathbb{P}(Y=y)=p(1-p)^{k}
$$

