Question: Find the mean of a branching process with immigration (described in Question 5.4.5), in terms of the mean and variance of the offspring and immigrant distributions;

Solution: Note first that the general solution to the recursion $a_{n+1}=r a_{n}+c$ is given by $a_{n}=\left(a_{0}-a^{*}\right) r^{n}+a^{*}$, where a^{*}, the steady state solution, is defined by $a^{*}=r a^{*}+c$, so that $a^{*}=\frac{c}{1-r}$ (see e.g. Wikipedia). A simple way to see this is to divide through by $r^{-(n+1)}$, and solve the resulting recursion for $b_{n}=r^{-n} a_{n}$.

Let the mean of the offspring distribution be $\mu_{o} \neq 1$ and let the mean of the immigration distribution be μ_{i}. Then

$$
\mathbb{E}\left[Z_{n+1}\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{n+1} \mid Z_{n}\right]\right]=\mathbb{E}\left[\mu_{o} Z_{n}+\mu_{i}\right]=\mu_{o} \mathbb{E}\left[Z_{n}\right]+\mu_{i}
$$

You may also arrive at the recursion by differentiating the recursion for the generating function of Z_{n}. Solving the recursion,

$$
\mathbb{E}\left[Z_{n}\right]=\mathbb{E}\left[Z_{0}\right] \mu_{0}^{n}+\mu_{i} \frac{\mu_{o}^{n}-1}{\mu_{o}-1}
$$

If $\mu_{o}=1$, on the other hand, then we have that $\mathbb{E}\left[Z_{n}\right]=Z_{0}+n \mu_{i}$.

Question:

(a) Show, for any two linear fractional transformations

$$
f(s)=\frac{a s+b}{c s+d} \quad \text { and } \quad g(s)=\frac{e s+f}{g s+h}
$$

that

$$
f(g(s))=\frac{A s+B}{C s+D}
$$

where A, B, C and D are defined by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

(b) Show that if $\mathbb{P}(Y=0)=d$ and $\mathbb{P}(Y=k)=(1-d) p(1-p)^{k-1}$ for $k>0$, then the generating function of Y has this form.
(c) Explain how to find the generating function of the branching process whose offspring distribution is Y.

Solution: (a)

$$
f(g(s))=f\left(\frac{e s+f}{g s+h}\right)=\frac{a \frac{e s+f}{g s+h}+b}{c \frac{e s+f}{g s+h}+d}=\frac{(a e+b g) s+(a f+b h)}{(c e+d g) s+(c f+d h)}
$$

(b)

$$
\begin{aligned}
\mathbb{E}\left[s^{Y}\right] & =1 \cdot \mathbb{P}(Y=0)+\sum_{k=1}^{\infty} s^{k} \mathbb{P}(Y=k) \\
& =d+p s(1-d) \sum_{k=1}^{\infty} s^{k-1}(1-p)^{k-1} \\
& =d+\frac{p s(1-d)}{1-s(1-p)}=\frac{s(p-d)+d}{s(p-1)+1}
\end{aligned}
$$

(c) $G_{Z_{n}}(s)=\frac{A_{n} s+B_{n}}{C_{n} s+D_{n}}$ where

$$
\left(\begin{array}{ll}
A_{n} & B_{n} \\
C_{n} & D_{n}
\end{array}\right)=\left(\begin{array}{ll}
p-d & d \\
p-1 & 1
\end{array}\right)^{n}
$$

From this expression it is possible (although not necessary for the homework) to calculate A_{n}, B_{n}, C_{n} and D_{n} fairly easily. Although the matrix is not symmetric, it is (like all two-by-two matrices) similar to a diagonal matrix. Let $\mu=i \sqrt{d /(1-p)}$ (we may suppose that $p<1$). Then, diagonalizing the matrix, if

$$
V=\left(\begin{array}{cc}
\mu & 1 \\
-1 / \mu & 1
\end{array}\right)
$$

and

$$
\Lambda=\left(\begin{array}{cc}
1-d & 0 \\
0 & p
\end{array}\right)
$$

we can check that

$$
\left(\begin{array}{ll}
p-d & d \\
p-1 & 1
\end{array}\right)^{n}=V \Lambda^{n} V^{-1}
$$

Since Λ is diagonal, this is easy to compute.

