
Question: Spiders live on a long telephone wire at the points of a Poisson point
process with constant intensity 1; the spider at x has made a section of the wire
sticky for the same distance R(x) in both directions from its home at x; these
distances R(x) are iid and uniformly chosen on [0, 1].

(a) Fix a length of wire L units long. Find the Laplace transform of the total
amount of stickiness laid down by the spiders that live on that section. (i.e.
the total area claimed by those spiders, counting overlapping areas once for
each claiming spider)

(b) What is the probability that a given point on the wire is not sticky?

(c) A large number of flies land as a Poisson point process with constant in-
tensity z on the wire. Denote by Fk the flies landing in sections claimed by
exactly k spiders. What is the mean number of flies in Fk per unit length?

Solution: (a) We will need the Laplace transform of the uniform distribution
on (0, 1) later in the question. Let U ∼ Unif(0, 1). Then

E(e−sU ) =
∫ 1

0

e−sudu = s−1(1− e−s)

We could do this problem by directly applying Campbell’s formula (check this
gives the same answer!); we will take the somewhat more instructive route of
conditioning on the number of spiders. Now, suppose there were k spiders in the
interval of length L, at positions x1, . . . , xk. Then the total amount of stickiness
laid down by the spiders that live on that interval would be

∑k
i=1 2R(xi), where

R(x1), . . . , R(xk) are iid uniforms on (0, 1). Note that this distribution does not
depend on the exact positions x1, . . . , xk.

Thus if X is the number of spiders in the interval of length L, and A is the total
amount of stickiness laid down by those spiders, then

E(e−sA|X = k) = E(e−2s
Pk

i=1 R(xi))

First by the independence of the R(xi)’s, and then since they are identically
distributed, we have

E(e−sA|X = k) =
k∏

i=1

E(e−2sR(xi)) = E(e−2sR(x1))k

By evaluating the Laplace transform of the uniform distribution at 2s we get

E(e−sA|X = k) =
(
(2s)−1(1− e−2s)

)k
=

1
2ksk

(1− e2s)k
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Now we need to find the Laplace transform of A but unconditionally on X:

E(e−sA) =
∞∑

k=0

E(e−sA|X = k)P(X = k)

=
∞∑

k=0

1
2ksk

(1− e−2s)k · L
ke−L

k!

= exp
{

L

(
1
2s

(1− e−2s)− 1
)}

(b) If Ri is the radius occupied by the spider living at point xi, then by the
marking theorem, the points {(xi, Ri)} form a Poisson point process on R×[0, 1]
with constant intensity 1.

The spiders who have claimed the origin are those represented by points in
{(xi, Ri) : |xi| ≤ Ri}; i.e. the shaded triangle in the figure. This triangle has
area 1; since the intensity of the (two-dimensional) Poisson process is 1, the
number of points inside it is Poisson with mean 1. Therefore, the probability
that no spiders get the origin sticky is e−1.

This could also be done with the marking theorem, as in the previous homework.

(c) By the arguments given in part (b), the number of spiders that get any
particular point sticky has the Poisson distribution with mean 1. Thus the
probability that a particular point is made sticky by exactly k spiders is e−1

k! .
(In the figure, there are two such spiders.) Fix a length of wire L units long;
N flies land on it, where N is Poisson distributed with mean zL. Each fly has
probability e−1

k! of landing on a spot claimed by k spiders; let Yj = 1 if the jth
fly does so, and Yj = 0 otherwise. Then Fk = {1 ≤ j ≤ N : Yj = 1}. The Y
are not independent, but by linearity, and since they are each independent of
N , E[|Fk|] = E[

∑
Yj |N ] = e−1

k! E[N ] = e−1

k! zL. Therefore, the mean number of
such flies per unit length is

E[|Fk|]
L

=
e−1

k!
z.
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