Question: Let Ay, By, As, By be uncorrelated RVs with mean zero and variance
1, let uy and ug be distinct nonnegative numbers, and let L be a RV with P(L =
1) =p and P(L = 2) = 1—p, independently of the As and Bs. For each integer
n, let

X, = p(A; cos(nuy) + By sin(nuy)) + (1 — p)(Az cos(nug) + Ba sin(nus)),

Y, = A cos(nuy) + By sin(nuy,).

Show that X andY are stationary, find their spectral distributions, and describe
their spectral representations, in the sense of Theorem 9.4(4).

Without loss of generality, we take 0 < uy < us.

Solution: (a)

E(X,) = p(E(A1) cos(nuy )+E(By) sin(nuy))+(1—p) (E(Asz) cos(nug)+E(Bsz) sin(nug)) = 0

By bilinearity of covariance and the fact that A;, By, Ao, By are uncorrelated
and hence have zero covariance,

Cov(Xp, Xnim) = p>Cov(Ay, A1) cos(nuy) cos((n+m)uy )+p*>Cov(By, By ) sin(nuy ) sin((n+m)u;)

+(1 7p)2COV(A2, As) cos(nug) cos((n+m)usg)+(1 7]))2COV(BQ , B2) sin(nug) sin((n+m)us)

Since Cov(Z,Z) = Var(Z) =1 for Z = Ay, By, As, By, we get

Cov(Xp, Xnam) = p?cos(nuy)cos((n+m)uy) + p® sin(nuy ) sin((n + m)uq)

+(1 = p)? cos(nuz) cos((n 4+ m)uy) + (1 — p)? sin(nug) sin((n + m)us)

= p?cos(muy) + (1 — p)? cos(musy)

where we have used the identities cos(a) cos(b) = % (cos(a — b) + cos(a + b)) and
sin(a) sin(b) = % (cos(a — b) — cos(a + b)). Thus X is weakly stationary since

Cov(X,, Xptm) depends only on m. Now we find the autocorrelation function.

COV(Xn, Xn+m)

plm) = \/Var(Xn)Var(Xner)
1
= m(ﬁ cos(muy) + (1 — p)2 cos(mus)) (1)

Recall that the spectral distribution is the cumulative distribution function F
such that

pm) = [ emar



We almost have this already, since we have p as a sum of cosine functions.
(Warning: There are different ways of writing the spectral distribution, corre-
sponding to equations 9.3.12 and 9.3.14 in G & S; even though the process is
real-valued, we need the first one, to match with Theorem 9.4.4.) Using the fact
that cos(a) = 3(e’® + e~%), equation (1) is

1

pm) = S P = T (P )

and we have written the autocorrelation function p as a sum of sinusoids with
different amplitudes and frequencies, which was our goal. Therefore, if we let
q = p*(p? + (1 —p)?), we want the distribution F' to assign mass ¢/2 to the two
points u; and —uq, and mass (1 — ¢)/2 to the two points us and —ug, so
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Now we describe the spectral representation. Recall that the spectral repre-
sentation of a discrete time process X is a complex valued stochastic process
S={S(\) : =7 < X <7} such that

X, = / e dS(\),
and that E[(S(u) — S(v))?] = F(u) — F(v). This last fact implies that dS can
only be nonzero where F' assigns mass, i.e. F' is nonconstant. Therefore, we

know that S can have jumps only at d+u;, *us. If we let the sizes of these
jumps equal Ji; and Jio respectively, then

Xn — Jﬁle—inul +J+1e+inu1 +J72e—inu2 _’_J+26+inu2.

Again using that cos(a) = (e’ + e7™*) and sin(a) = (e’ — ™), we can
rewrite the definition of X, to read

1 . 1 . 1 . 1 )
Xn = 5]7(141—iBl)e_Znul+§p(A1+Z'Bl)6lnu1+§(1—p)(AQ—Z.BQ)C_”LUQ+§(1—p)(A2+iBQ)elnu2
If we equate these two expressions, we get that
1 . 1 .
J,1 = ip(Al - ’LBl) Jl = ip(Al + ZBl)

and 1 1
J o= 5(1 —p)(As —iBsy) Jy = 5(1 —p)(A2 +iBy).



In summary, S(\) has jumps of random size J_1, Jy, J_o, Jo at A = —uy, uy, —ug, ug
respectively, and is flat elsewhere.

(b) Now X is a random choice of (random) sine wave, rather than a sum of
(random) sine waves. By conditioning on L we have

E(Y,) = p(E(A1) cos(nuy)+E(By) sin(nuq))+(1—p)(E(Az) cos(nusg)+E(Bs) sin(nusz)) = 0

Now,
Cov(Ya, Yatm) = E(Vo Yo —E(Va)E(Vrt ) = E(YaYotm) = E[E(Y, Yt | L)
which after a little computation reveals that

Cov(Ya, Yoim) = pcos(muy) + (1 — p) cos(mug).

The variance is now p+ (1 — p) = 1, so this is also the autocorrelation function.
We can now proceed as in part (a), getting that the distribution F' puts mass
at +uy and fug, except that the masses are of size p/2 and (1 — p)/2.

The spectral represenation is slightly different, but we can find it in the same
way. As before, let J_1, J1, J_a, Jo be the jumps of S(\) at A = —uy, uy, —ug, us
respectively. Then we know that if L = 1, that J_5 and J; are zero, and that if
L =2, that J_; and J; are zero. So, again working as in (a), we find that

1 1
Jfl = i(Al_ZBl) J1 :g(Al +ZBl) 1fL:]—»

and that . 1
J,2:§(A2_132) J2:§(A2+ZBQ) 1fL:2



Question: Let X(t) be a Gaussian process on [0,00) (not stationary!) with
mean zero, and covariance function

Cov(X (s), X (t)) = min(s,t))
for allt,s > 0. For p between 0 and 1, find the distribution of
Z = X(t+ps)—(1=p)X(t) —pX(t+5).
Show that Z is independent of X (t) and X (t + s), for all p.
Solution: Recall that if X ~ N (ux,0%) and Y ~ N (uy, 0% ) then
W= aX +bY ~ N(apx + buy,a’c%x + b*0y + 2abCov(X,Y))
Since X (t) ~ N(0,¢), X(t+ s) ~N(0,t + s) and X (¢t + ps) ~ N(0,t + ps),

Z = X({t+ps)—(1—-pX(t)—pX(t+s)
~ NO=(1=p)-0=p-0,(t+ps)+ (1 —p)°t+p*(t+s)
—2(1 — p)Cov(X (t + ps), X(t)) — 2pCov(X (t + ps), X (t + s)) + 2p(1 — p)Cov(X(t), X (t + 5)))
= N(O,(t+ps)+ (1 —p)%t + p*(t +s) — 2(1 — p)t — 2p(t + ps) + 2p(1 — p)t)
= N(0,p(1-p))

Since Z, X(t) and X (¢t + s) are all normally distributed, to show that Z is
independent of X (t) and X (¢ + s) it is enough to show that

Cov(Z,X(t)) =Cov(Z,X(t+s5)) =0

Now,

Cov(Z,X(t)) = Cov(X(t+ps)—(1—p)X({t)—pX(t+s),X(t))
= Cov(X(t+ps),X(t)) — (1 —p)Cov(X(t), X (t)) — pCov(X (t+ s), X (1))
= t—(1—p)t—opt
-0

and

Cov(Z,X(t+s)) = Cov(X(t+ps)—(1—p)X(t)—pX({t+s),X(t+s))

Cov(X(t+ps), X(t+s)) — (1 —p)Cov(X(t), X(t+ s)) — pCov(X(t + 5), X (t + 5))
(t+ps) — (1 —p)t —p(t +s)
0

By the way, X is also known as “Brownian motion,” which we will encounter
again.



