Question: Let $A_{1}, B_{1}, A_{2}, B_{2}$ be uncorrelated $R V$ s with mean zero and variance 1, let u_{1} and u_{2} be distinct nonnegative numbers, and let L be a $R V$ with $P(L=$ $1)=p$ and $P(L=2)=1-p$, independently of the As and Bs. For each integer n, let

$$
\begin{gathered}
X_{n}=p\left(A_{1} \cos \left(n u_{1}\right)+B_{1} \sin \left(n u_{1}\right)\right)+(1-p)\left(A_{2} \cos \left(n u_{2}\right)+B_{2} \sin \left(n u_{2}\right)\right) \\
Y_{n}=A_{L} \cos \left(n u_{L}\right)+B_{L} \sin \left(n u_{L}\right)
\end{gathered}
$$

Show that X and Y are stationary, find their spectral distributions, and describe their spectral representations, in the sense of Theorem 9.4(4).

Without loss of generality, we take $0<u_{1}<u_{2}$.
Solution: (a)
$\mathbb{E}\left(X_{n}\right)=p\left(\mathbb{E}\left(A_{1}\right) \cos \left(n u_{1}\right)+\mathbb{E}\left(B_{1}\right) \sin \left(n u_{1}\right)\right)+(1-p)\left(\mathbb{E}\left(A_{2}\right) \cos \left(n u_{2}\right)+\mathbb{E}\left(B_{2}\right) \sin \left(n u_{2}\right)\right)=0$

By bilinearity of covariance and the fact that $A_{1}, B_{1}, A_{2}, B_{2}$ are uncorrelated and hence have zero covariance,
$\operatorname{Cov}\left(X_{n}, X_{n+m}\right)=p^{2} \operatorname{Cov}\left(A_{1}, A_{1}\right) \cos \left(n u_{1}\right) \cos \left((n+m) u_{1}\right)+p^{2} \operatorname{Cov}\left(B_{1}, B_{1}\right) \sin \left(n u_{1}\right) \sin \left((n+m) u_{1}\right)$
$+(1-p)^{2} \operatorname{Cov}\left(A_{2}, A_{2}\right) \cos \left(n u_{2}\right) \cos \left((n+m) u_{2}\right)+(1-p)^{2} \operatorname{Cov}\left(B_{2}, B_{2}\right) \sin \left(n u_{2}\right) \sin \left((n+m) u_{2}\right)$
Since $\operatorname{Cov}(Z, Z)=\operatorname{Var}(Z)=1$ for $Z=A_{1}, B_{1}, A_{2}, B_{2}$, we get

$$
\begin{aligned}
\operatorname{Cov}\left(X_{n}, X_{n+m}\right)= & p^{2} \cos \left(n u_{1}\right) \cos \left((n+m) u_{1}\right)+p^{2} \sin \left(n u_{1}\right) \sin \left((n+m) u_{1}\right) \\
& +(1-p)^{2} \cos \left(n u_{2}\right) \cos \left((n+m) u_{2}\right)+(1-p)^{2} \sin \left(n u_{2}\right) \sin \left((n+m) u_{2}\right) \\
= & p^{2} \cos \left(m u_{1}\right)+(1-p)^{2} \cos \left(m u_{2}\right)
\end{aligned}
$$

where we have used the identities $\cos (a) \cos (b)=\frac{1}{2}(\cos (a-b)+\cos (a+b))$ and $\sin (a) \sin (b)=\frac{1}{2}(\cos (a-b)-\cos (a+b))$. Thus X is weakly stationary since $\operatorname{Cov}\left(X_{n}, X_{n+m}\right)$ depends only on m. Now we find the autocorrelation function.

$$
\begin{align*}
\rho(m) & =\frac{\operatorname{Cov}\left(X_{n}, X_{n+m}\right)}{\sqrt{\operatorname{Var}\left(X_{n}\right) \operatorname{Var}\left(X_{n+m}\right)}} \\
& =\frac{1}{p^{2}+(1-p)^{2}}\left(p^{2} \cos \left(m u_{1}\right)+(1-p)^{2} \cos \left(m u_{2}\right)\right) \tag{1}
\end{align*}
$$

Recall that the spectral distribution is the cumulative distribution function F such that

$$
\rho(m)=\int_{-\pi}^{\pi} e^{i m \lambda} d F(\lambda)
$$

We almost have this already, since we have ρ as a sum of cosine functions. (Warning: There are different ways of writing the spectral distribution, corresponding to equations 9.3 .12 and 9.3 .14 in $G \& S$; even though the process is real-valued, we need the first one, to match with Theorem 9.4.4.) Using the fact that $\cos (a)=\frac{1}{2}\left(e^{i a}+e^{-i a}\right)$, equation (1) is

$$
\rho(m)=\frac{1}{2\left(p^{2}+(1-p)^{2}\right)}\left(p^{2}\left(e^{i m u_{1}}-e^{-i m u_{1}}\right)+(1-p)^{2}\left(e^{i m u_{2}}-e^{-i m u_{2}}\right)\langle 2)\right.
$$

and we have written the autocorrelation function ρ as a sum of sinusoids with different amplitudes and frequencies, which was our goal. Therefore, if we let $q=p^{2}\left(p^{2}+(1-p)^{2}\right)$, we want the distribution F to assign mass $q / 2$ to the two points u_{1} and $-u_{1}$, and mass $(1-q) / 2$ to the two points u_{2} and $-u_{2}$, so

$$
F(\lambda)= \begin{cases}0 & \text { if } \lambda<-u_{2} \\ \frac{(1-p)^{2}}{2\left(p^{2}+(1-p)^{2}\right)} & \text { if }-u_{2} \leq \lambda \leq-u_{1} \\ 1 / 2 & \text { if }-u_{1} \leq \lambda \leq u_{1} \\ 1-\frac{p^{2}}{2\left(p^{2}+(1-p)^{2}\right)} & \text { if } u_{1} \leq \lambda \leq u_{2} \\ 1 & \text { if } \lambda \geq u_{2}\end{cases}
$$

Now we describe the spectral representation. Recall that the spectral representation of a discrete time process X is a complex valued stochastic process $S=\{S(\lambda):-\pi \leq \lambda \leq \pi\}$ such that

$$
X_{n}=\int_{-\pi}^{\pi} e^{i n \lambda} d S(\lambda)
$$

and that $\mathbb{E}\left[(S(u)-S(v))^{2}\right]=F(u)-F(v)$. This last fact implies that $d S$ can only be nonzero where F assigns mass, i.e. F is nonconstant. Therefore, we know that S can have jumps only at $\pm u_{1}, \pm u_{2}$. If we let the sizes of these jumps equal $J_{ \pm 1}$ and $J_{ \pm 2}$ respectively, then

$$
X_{n}=J_{-1} e^{-i n u_{1}}+J_{+1} e^{+i n u_{1}}+J_{-2} e^{-i n u_{2}}+J_{+2} e^{+i n u_{2}}
$$

Again using that $\cos (a)=\frac{1}{2}\left(e^{i a}+e^{-i a}\right)$ and $\sin (a)=\frac{-i}{2}\left(e^{i a}-e^{-i a}\right)$, we can rewrite the definition of X_{n} to read
$X_{n}=\frac{1}{2} p\left(A_{1}-i B_{1}\right) e^{-i n u_{1}}+\frac{1}{2} p\left(A_{1}+i B_{1}\right) e^{i n u_{1}}+\frac{1}{2}(1-p)\left(A_{2}-i B_{2}\right) e^{-i n u_{2}}+\frac{1}{2}(1-p)\left(A_{2}+i B_{2}\right) e^{i n u_{2}}$
If we equate these two expressions, we get that

$$
J_{-1}=\frac{1}{2} p\left(A_{1}-i B_{1}\right) \quad J_{1}=\frac{1}{2} p\left(A_{1}+i B_{1}\right)
$$

and

$$
J_{-2}=\frac{1}{2}(1-p)\left(A_{2}-i B_{2}\right) \quad J_{2}=\frac{1}{2}(1-p)\left(A_{2}+i B_{2}\right)
$$

In summary, $S(\lambda)$ has jumps of random size $J_{-1}, J_{1}, J_{-2}, J_{2}$ at $\lambda=-u_{1}, u_{1},-u_{2}, u_{2}$ respectively, and is flat elsewhere.
(b) Now X is a random choice of (random) sine wave, rather than a sum of (random) sine waves. By conditioning on L we have

$$
\mathbb{E}\left(Y_{n}\right)=p\left(\mathbb{E}\left(A_{1}\right) \cos \left(n u_{1}\right)+\mathbb{E}\left(B_{1}\right) \sin \left(n u_{1}\right)\right)+(1-p)\left(\mathbb{E}\left(A_{2}\right) \cos \left(n u_{2}\right)+\mathbb{E}\left(B_{2}\right) \sin \left(n u_{2}\right)\right)=0
$$

Now,
$\operatorname{Cov}\left(Y_{n}, Y_{n+m}\right)=\mathbb{E}\left(Y_{n} Y_{n+m}\right)-\mathbb{E}\left(Y_{n}\right) \mathbb{E}\left(Y_{n+m}\right)=\mathbb{E}\left(Y_{n} Y_{n+m}\right)=\mathbb{E}\left[\mathbb{E}\left(Y_{n} Y_{n+m} \mid L\right]\right)$
which after a little computation reveals that

$$
\operatorname{Cov}\left(Y_{n}, Y_{n+m}\right)=p \cos \left(m u_{1}\right)+(1-p) \cos \left(m u_{2}\right)
$$

The variance is now $p+(1-p)=1$, so this is also the autocorrelation function. We can now proceed as in part (a), getting that the distribution F puts mass at $\pm u_{1}$ and $\pm u_{2}$, except that the masses are of size $p / 2$ and $(1-p) / 2$.

The spectral represenation is slightly different, but we can find it in the same way. As before, let $J_{-1}, J_{1}, J_{-2}, J_{2}$ be the jumps of $S(\lambda)$ at $\lambda=-u_{1}, u_{1},-u_{2}, u_{2}$ respectively. Then we know that if $L=1$, that J_{-2} and J_{2} are zero, and that if $L=2$, that J_{-1} and J_{1} are zero. So, again working as in (a), we find that

$$
J_{-1}=\frac{1}{2}\left(A_{1}-i B_{1}\right) \quad J_{1}=\frac{1}{2}\left(A_{1}+i B_{1}\right) \quad \text { if } L=1,
$$

and that

$$
J_{-2}=\frac{1}{2}\left(A_{2}-i B_{2}\right) \quad J_{2}=\frac{1}{2}\left(A_{2}+i B_{2}\right) \quad \text { if } L=2 .
$$

Question: Let $X(t)$ be a Gaussian process on $[0, \infty)$ (not stationary!) with mean zero, and covariance function

$$
\operatorname{Cov}(X(s), X(t))=\min (s, t))
$$

for all $t, s \geq 0$. For p between 0 and 1 , find the distribution of

$$
Z=X(t+p s)-(1-p) X(t)-p X(t+s)
$$

Show that Z is independent of $X(t)$ and $X(t+s)$, for all p.
Solution: Recall that if $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ then

$$
W:=a X+b Y \sim \mathcal{N}\left(a \mu_{X}+b \mu_{Y}, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \operatorname{Cov}(X, Y)\right)
$$

Since $X(t) \sim \mathcal{N}(0, t), X(t+s) \sim \mathcal{N}(0, t+s)$ and $X(t+p s) \sim \mathcal{N}(0, t+p s)$,

$$
\begin{aligned}
Z= & X(t+p s)-(1-p) X(t)-p X(t+s) \\
\sim & \mathcal{N}\left(0-(1-p) \cdot 0-p \cdot 0,(t+p s)+(1-p)^{2} t+p^{2}(t+s)\right. \\
& \quad-2(1-p) \operatorname{Cov}(X(t+p s), X(t))-2 p \operatorname{Cov}(X(t+p s), X(t+s))+2 p(1-p) \operatorname{Cov}(X(t), X(t+s))) \\
= & \mathcal{N}\left(0,(t+p s)+(1-p)^{2} t+p^{2}(t+s)-2(1-p) t-2 p(t+p s)+2 p(1-p) t\right) \\
= & \mathcal{N}(0, p(1-p))
\end{aligned}
$$

Since $Z, X(t)$ and $X(t+s)$ are all normally distributed, to show that Z is independent of $X(t)$ and $X(t+s)$ it is enough to show that

$$
\operatorname{Cov}(Z, X(t))=\operatorname{Cov}(Z, X(t+s))=0
$$

Now,

$$
\begin{aligned}
\operatorname{Cov}(Z, X(t)) & =\operatorname{Cov}(X(t+p s)-(1-p) X(t)-p X(t+s), X(t)) \\
& =\operatorname{Cov}(X(t+p s), X(t))-(1-p) \operatorname{Cov}(X(t), X(t))-p \operatorname{Cov}(X(t+s), X(t)) \\
& =t-(1-p) t-p t \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Cov}(Z, X(t+s)) & =\operatorname{Cov}(X(t+p s)-(1-p) X(t)-p X(t+s), X(t+s)) \\
& =\operatorname{Cov}(X(t+p s), X(t+s))-(1-p) \operatorname{Cov}(X(t), X(t+s))-p \operatorname{Cov}(X(t+s), X(t+s)) \\
& =(t+p s)-(1-p) t-p(t+s) \\
& =0
\end{aligned}
$$

By the way, X is also known as "Brownian motion," which we will encounter again.

