
Question: Let A1, B1, A2, B2 be uncorrelated RVs with mean zero and variance
1, let u1 and u2 be distinct nonnegative numbers, and let L be a RV with P (L =
1) = p and P (L = 2) = 1− p, independently of the As and Bs. For each integer
n, let

Xn = p(A1 cos(nu1) +B1 sin(nu1)) + (1− p)(A2 cos(nu2) +B2 sin(nu2)),

Yn = AL cos(nuL) +BL sin(nuL).

Show that X and Y are stationary, find their spectral distributions, and describe
their spectral representations, in the sense of Theorem 9.4(4).

Without loss of generality, we take 0 < u1 < u2.

Solution: (a)

E(Xn) = p(E(A1) cos(nu1)+E(B1) sin(nu1))+(1−p)(E(A2) cos(nu2)+E(B2) sin(nu2)) = 0

By bilinearity of covariance and the fact that A1, B1, A2, B2 are uncorrelated
and hence have zero covariance,

Cov(Xn, Xn+m) = p2Cov(A1, A1) cos(nu1) cos((n+m)u1)+p2Cov(B1, B1) sin(nu1) sin((n+m)u1)

+(1−p)2Cov(A2, A2) cos(nu2) cos((n+m)u2)+(1−p)2Cov(B2, B2) sin(nu2) sin((n+m)u2)

Since Cov(Z,Z) = Var(Z) = 1 for Z = A1, B1, A2, B2, we get

Cov(Xn, Xn+m) = p2 cos(nu1) cos((n+m)u1) + p2 sin(nu1) sin((n+m)u1)
+(1− p)2 cos(nu2) cos((n+m)u2) + (1− p)2 sin(nu2) sin((n+m)u2)

= p2 cos(mu1) + (1− p)2 cos(mu2)

where we have used the identities cos(a) cos(b) = 1
2 (cos(a− b) + cos(a+ b)) and

sin(a) sin(b) = 1
2 (cos(a − b) − cos(a + b)). Thus X is weakly stationary since

Cov(Xn, Xn+m) depends only on m. Now we find the autocorrelation function.

ρ(m) =
Cov(Xn, Xn+m)√

Var(Xn)Var(Xn+m)

=
1

p2 + (1− p)2
(p2 cos(mu1) + (1− p)2 cos(mu2)) (1)

Recall that the spectral distribution is the cumulative distribution function F
such that

ρ(m) =
∫ π

−π
eimλdF (λ)
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We almost have this already, since we have ρ as a sum of cosine functions.
(Warning: There are different ways of writing the spectral distribution, corre-
sponding to equations 9.3.12 and 9.3.14 in G & S; even though the process is
real-valued, we need the first one, to match with Theorem 9.4.4.) Using the fact
that cos(a) = 1

2 (eia + e−ia), equation (1) is

ρ(m) =
1

2(p2 + (1− p)2)
(p2(eimu1 − e−imu1) + (1− p)2(eimu2 − e−imu2)),(2)

and we have written the autocorrelation function ρ as a sum of sinusoids with
different amplitudes and frequencies, which was our goal. Therefore, if we let
q = p2(p2 + (1− p)2), we want the distribution F to assign mass q/2 to the two
points u1 and −u1, and mass (1− q)/2 to the two points u2 and −u2, so

F (λ) =



0 if λ < −u2,
(1−p)2

2(p2+(1−p)2) if − u2 ≤ λ ≤ −u1,

1/2 if − u1 ≤ λ ≤ u1,

1− p2

2(p2+(1−p)2) if u1 ≤ λ ≤ u2,

1 if λ ≥ u2.

Now we describe the spectral representation. Recall that the spectral repre-
sentation of a discrete time process X is a complex valued stochastic process
S = {S(λ) : −π ≤ λ ≤ π} such that

Xn =
∫ π

−π
einλdS(λ),

and that E[(S(u) − S(v))2] = F (u) − F (v). This last fact implies that dS can
only be nonzero where F assigns mass, i.e. F is nonconstant. Therefore, we
know that S can have jumps only at ±u1, ±u2. If we let the sizes of these
jumps equal J±1 and J±2 respectively, then

Xn = J−1e
−inu1 + J+1e

+inu1 + J−2e
−inu2 + J+2e

+inu2 .

Again using that cos(a) = 1
2 (eia + e−ia) and sin(a) = −i

2 (eia − e−ia), we can
rewrite the definition of Xn to read

Xn =
1
2
p(A1−iB1)e−inu1+

1
2
p(A1+iB1)einu1+

1
2

(1−p)(A2−iB2)e−inu2+
1
2

(1−p)(A2+iB2)einu2

If we equate these two expressions, we get that

J−1 =
1
2
p(A1 − iB1) J1 =

1
2
p(A1 + iB1)

and
J−2 =

1
2

(1− p)(A2 − iB2) J2 =
1
2

(1− p)(A2 + iB2).
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In summary, S(λ) has jumps of random size J−1, J1, J−2, J2 at λ = −u1, u1,−u2, u2

respectively, and is flat elsewhere.

(b) Now X is a random choice of (random) sine wave, rather than a sum of
(random) sine waves. By conditioning on L we have

E(Yn) = p(E(A1) cos(nu1)+E(B1) sin(nu1))+(1−p)(E(A2) cos(nu2)+E(B2) sin(nu2)) = 0

Now,

Cov(Yn, Yn+m) = E(YnYn+m)−E(Yn)E(Yn+m) = E(YnYn+m) = E[E(YnYn+m|L])

which after a little computation reveals that

Cov(Yn, Yn+m) = p cos(mu1) + (1− p) cos(mu2).

The variance is now p+ (1− p) = 1, so this is also the autocorrelation function.
We can now proceed as in part (a), getting that the distribution F puts mass
at ±u1 and ±u2, except that the masses are of size p/2 and (1− p)/2.

The spectral represenation is slightly different, but we can find it in the same
way. As before, let J−1, J1, J−2, J2 be the jumps of S(λ) at λ = −u1, u1,−u2, u2

respectively. Then we know that if L = 1, that J−2 and J2 are zero, and that if
L = 2, that J−1 and J1 are zero. So, again working as in (a), we find that

J−1 =
1
2

(A1 − iB1) J1 =
1
2

(A1 + iB1) if L = 1,

and that
J−2 =

1
2

(A2 − iB2) J2 =
1
2

(A2 + iB2) if L = 2.
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Question: Let X(t) be a Gaussian process on [0,∞) (not stationary!) with
mean zero, and covariance function

Cov(X(s), X(t)) = min(s, t))

for all t, s ≥ 0. For p between 0 and 1, find the distribution of

Z = X(t+ ps)− (1− p)X(t)− pX(t+ s).

Show that Z is independent of X(t) and X(t+ s), for all p.

Solution: Recall that if X ∼ N (µX , σ2
X) and Y ∼ N (µY , σ2

Y ) then

W := aX + bY ∼ N (aµX + bµY , a
2σ2
X + b2σ2

Y + 2abCov(X,Y ))

Since X(t) ∼ N (0, t), X(t+ s) ∼ N (0, t+ s) and X(t+ ps) ∼ N (0, t+ ps),

Z = X(t+ ps)− (1− p)X(t)− pX(t+ s)
∼ N (0− (1− p) · 0− p · 0, (t+ ps) + (1− p)2t+ p2(t+ s)

−2(1− p)Cov(X(t+ ps), X(t))− 2pCov(X(t+ ps), X(t+ s)) + 2p(1− p)Cov(X(t), X(t+ s)))
= N (0, (t+ ps) + (1− p)2t+ p2(t+ s)− 2(1− p)t− 2p(t+ ps) + 2p(1− p)t)
= N (0, p(1− p))

Since Z, X(t) and X(t + s) are all normally distributed, to show that Z is
independent of X(t) and X(t+ s) it is enough to show that

Cov(Z,X(t)) = Cov(Z,X(t+ s)) = 0

Now,

Cov(Z,X(t)) = Cov(X(t+ ps)− (1− p)X(t)− pX(t+ s), X(t))
= Cov(X(t+ ps), X(t))− (1− p)Cov(X(t), X(t))− pCov(X(t+ s), X(t))
= t− (1− p)t− pt
= 0

and

Cov(Z,X(t+ s)) = Cov(X(t+ ps)− (1− p)X(t)− pX(t+ s), X(t+ s))
= Cov(X(t+ ps), X(t+ s))− (1− p)Cov(X(t), X(t+ s))− pCov(X(t+ s), X(t+ s))
= (t+ ps)− (1− p)t− p(t+ s)
= 0

By the way, X is also known as “Brownian motion,” which we will encounter
again.
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