Question: Let X be a CTMC on $\{1,2,3, \ldots\}$ with generator matrix $G_{n, n+1}=$ $n b$ and $G_{n, n}=-n b$ ('everyone gives birth independently at rate b'). Show that

$$
p_{1, n}(t):=\mathbb{P}(X(t)=n \mid X(0)=1)=e-b t\left(1-e^{-b t}\right)^{n-1}
$$

by verifying that this solves the forwards equation. Then write down $p_{m, n}(t):=$ $\mathbb{P}(X(t)=n \mid X(0)=m)$ using the observation that this is a geometric distribution.

Solution: The forward equation is $P_{t}^{\prime}=P_{t} G$. Using this, we see that the equations that $p_{1, n}(t)$ must satisfy are

$$
p_{1,1}^{\prime}(t)=-b p_{1,1}(t) \quad \text { and } \quad p_{1, n}^{\prime}(t)=b(n-1) p_{1, n-1}(t)-b n p_{1, n}(t) \text { for } n \geq 2
$$

It is easy to check that $p_{1, n}(t)$ as given in the question satisfies these equations since
$\frac{d}{d t}\left(e^{-b t}\left(1-e^{-b t}\right)^{n-1}\right)=b e^{-b t}\left(1-e^{-b t}\right)^{n-2}\left(n e^{-b t}-1\right)=b e^{-b t}\left(1-e^{-b t}\right)^{n-2}\left((n-1)-n\left(1-e^{-b t}\right)\right)$

Thus the distribution of $X(t)$ given that $X(0)=1$ is geometric with parameter $e^{-b t}$. Thinking of the process as a birth process, we know that each individual alive a time zero generates an independent geometric number of people by time t. Thus given $X(0)=m$, we have that $X(t)$ is the sum of m independent geometric distributions, each with paramter $e^{-b t}$. This is just then the negative binomial distribution with parameters ($m, e^{-b t}$) (where we are including 'successes' in our negative binomial count, so that it is a distribution on $\{m, m+1, \ldots\}$ rather than $\{0,1, \ldots\}$).

The density is thus given by
$p_{m, n}(t)=\binom{(n-m)+m-1}{n-m}\left(e^{-b t}\right)^{m}\left(1-e^{-b t}\right)^{n-m}=\binom{n-1}{n-m} e^{-m b t}\left(1-e^{-b t}\right)^{n-m}$
for $n \geq m$ and $p_{m, n}(t)=0$ otherwise.

