Using Stein-Chen - an example: Consider a chessboard that measures 1 unit of length on each side, with N squares in total. You and I each pick m distinct squares, uniformly at random. For some subset A of the squares, with total area $|A|$ (and composed of $N|A|$ squares), let S_{A} be the number of squares in A that we both picked. If N is large and $m \approx \sqrt{\lambda N}$, then S_{A} is approximately Poisson with mean $\lambda|A|$.
Remark: Recall that a Poisson point process (PPP) with rate λ in a region U is a random collection of points with the property that if $N(A)$ is the number of points falling in the subset A of U, then for disjoint subsets $U_{1}, \ldots U_{n}$, $N\left(U_{1}\right), \ldots, N\left(U_{n}\right)$ are independent and Poisson distributed with means equal to $\lambda\left|U_{1}\right|, \ldots, \lambda\left|U_{n}\right|$. It turns out that for a random collection of points to be a PPP, it suffices that for any subset A of U composed of a union of rectangles, the probability that A contains no points is $\exp (-\lambda|A|)$. This therefore (mostly) proves that the random set of locations we have both picked converges as $N \rightarrow \infty$ to a PPP on the chessboard. (more on this in a few weeks)
Proof:
For each k, let X_{k} be the indicator that we both picked the $k^{\text {th }}$ square. First, we should check that

$$
\mathbb{E}\left[S_{A}\right]=\sum_{k \in A} \mathbb{E}\left[X_{k}\right]=N|A|\left(\frac{m}{N}\right)^{2}=\lambda|A|,
$$

as promised. In particular, $p_{k}=\mathbb{E}\left[X_{k}\right]=(m / N)^{2}=\lambda / N$.
We now define V_{k}, by defining a closely related set of picks: if we did not both pick square k, reassign randomly chosen picks to k as needed. To make this explicit, suppose that I pick squares $\mathbf{i}=\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$, and you pick $\mathbf{j}=\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$. We will define picks \mathbf{i}^{\prime} and \mathbf{j}^{\prime} by slightly adjusting \mathbf{i} and \mathbf{j}. Let L and L^{\prime} be iid numbers chosen uniformly from $\{1,2, \ldots, m\}$; then i_{L} and $j_{L^{\prime}}$ will be the picks we rearrange if necessary. If $k \in \mathbf{i}$, then let $\mathbf{i}=\mathbf{i}^{\prime}$. Otherwise, define $\mathbf{i}^{\prime}=\mathbf{i} \backslash\left\{i_{L}\right\} \cup\{k\}$. Define \mathbf{j}^{\prime} in terms of \mathbf{j} similarly, reallocating $j_{L^{\prime}}$ if necessary. Then V_{k} is the size (cardinality) of the set $\mathbf{i}^{\prime} \cap \mathbf{j}^{\prime} \cap(A \backslash\{k\})$, namely, the number of resulting shared picks in A, excluding square k.

We can be slightly more explicit about checking that \mathbf{i}^{\prime} and \mathbf{j}^{\prime} have the correct distributions, namely, the distribution of \mathbf{i} and \mathbf{j} given that $k \in \mathbf{i} \cap \mathbf{j}$ (given that we both picked k). It suffices to check for just \mathbf{i}, and for $k=1$. Since the distribution of \mathbf{i} is invariant under permutations of $\{1,2, \ldots, N\}$, the distribution of \mathbf{i} conditioned on the event $\{1 \in \mathbf{i}\}$ is invariant under permutations of $\{2, \ldots, N\}$. This property also holds for \mathbf{i}^{\prime}. Therefore, each have the same distribution, namely, that of $\{1\}$ along with a uniformly chosen collection of $m-1$ numbers from $\{2,3, \ldots, N\}$. We also know therefore that V_{k} has the distribution of $S_{A}-1$, conditioned on $X_{k}=1$.

We now want to bound $\mathbb{E}\left[\left|S_{A}-V_{k}\right|\right]$. Note that S_{A} can differ from V_{k} in three ways: if $X_{k}=1$; if my pick chosen to reallocate was matched to one of yours that lay in A; and if your pick chosen to reallocate was matched to one of mine that layin A. Then $\mathbb{E}\left[\left|S_{A}-V_{k}\right|\right]=\mathbb{E}\left[S_{A}-V_{k}\right]$ is no greater than the sum of the probabilities of these three events. More carefully, let $U V$, and W
be the respective indicators of these things,

$$
\begin{align*}
U & =X_{k} \tag{1}\\
V & = \begin{cases}1 & \text { if } i_{L} \in A \cap \mathbf{j}^{\prime} \\
0 & \text { otherwise }\end{cases} \tag{2}\\
W & = \begin{cases}1 & \text { if } j_{L^{\prime}} \in A \cap \mathbf{i}^{\prime} \\
0 & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

Then $\left|S_{A}-V_{k}\right|=S_{A}-V_{k} \leq U+V+W$, and so $\mathbb{E}\left[\left|S_{A}-V_{k}\right|\right] \leq \mathbb{E}[U]+\mathbb{E}[V]+\mathbb{E}[W]$. We know $\mathbb{E}[U]=(m / N)^{2}$, and since V depends on choosing one of S_{A} things out of a total of $m, \mathbb{E}\left[V \mid S_{A}\right]=\mathbb{E}\left[W \mid S_{A}\right]=S_{A} / m$, so

$$
\mathbb{E}[V]=\sum_{n} \mathbb{P}\left\{S_{A}=n\right\} \mathbb{E}\left[V \mid S_{A}=n\right]=\sum_{n} \mathbb{P}\left\{S_{A}=n\right\} \frac{S_{A}}{m}=\frac{\mathbb{E}\left[S_{A}\right]}{m}
$$

and so

$$
\mathbb{E}\left[\left|S_{A}-V_{k}\right|\right] \leq\left(\frac{m}{N}\right)^{2}+2 \frac{\mathbb{E}\left[S_{A}\right]}{m}=\frac{\lambda}{N}+2 \frac{\lambda|A|}{\sqrt{\lambda N}}
$$

Therefore,

$$
\begin{aligned}
d_{\mathrm{TV}}\left(S_{A}, P\right) & \leq\left(1 \wedge(\lambda|A|)^{-1}\right) \sum_{k \in A} p_{k} \mathbb{E}\left[\left|S_{A}-V_{k}\right|\right] \\
& \leq\left(1 \wedge(\lambda|A|)^{-1}\right) N \frac{\lambda|A|}{N}\left(\frac{\lambda}{N}+2 \frac{\lambda|A|}{\sqrt{\lambda N}}\right) \\
& \leq 2(1 \wedge(\lambda|A|))|A| \sqrt{\frac{\lambda}{N}}
\end{aligned}
$$

