
Using Stein–Chen — an example: Consider a chessboard that measures 1
unit of length on each side, with N squares in total. You and I each pick m
distinct squares, uniformly at random. For some subset A of the squares, with
total area |A| (and composed of N |A| squares), let SA be the number of squares
in A that we both picked. If N is large and m ≈

√
λN , then SA is approximately

Poisson with mean λ|A|.
Remark: Recall that a Poisson point process (PPP) with rate λ in a region
U is a random collection of points with the property that if N(A) is the num-
ber of points falling in the subset A of U , then for disjoint subsets U1, . . . Un,
N(U1), . . . , N(Un) are independent and Poisson distributed with means equal
to λ|U1|, . . . , λ|Un|. It turns out that for a random collection of points to be
a PPP, it suffices that for any subset A of U composed of a union of rectan-
gles, the probability that A contains no points is exp(−λ|A|). This therefore
(mostly) proves that the random set of locations we have both picked converges
as N →∞ to a PPP on the chessboard. (more on this in a few weeks)
Proof:

For each k, let Xk be the indicator that we both picked the kth square. First,
we should check that

E[SA] =
∑
k∈A

E[Xk] = N |A|
(m
N

)2

= λ|A|,

as promised. In particular, pk = E[Xk] = (m/N)2 = λ/N .
We now define Vk, by defining a closely related set of picks: if we did not

both pick square k, reassign randomly chosen picks to k as needed. To make
this explicit, suppose that I pick squares i = {i1, i2, . . . , im}, and you pick
j = {j1, j2, . . . , jm}. We will define picks i′ and j′ by slightly adjusting i and j.
Let L and L′ be iid numbers chosen uniformly from {1, 2, . . . ,m}; then iL and
jL′ will be the picks we rearrange if necessary. If k ∈ i, then let i = i′. Otherwise,
define i′ = i \ {iL} ∪ {k}. Define j′ in terms of j similarly, reallocating jL′ if
necessary. Then Vk is the size (cardinality) of the set i′ ∩ j′ ∩ (A \ {k}), namely,
the number of resulting shared picks in A, excluding square k.

We can be slightly more explicit about checking that i′ and j′ have the
correct distributions, namely, the distribution of i and j given that k ∈ i ∩ j
(given that we both picked k). It suffices to check for just i, and for k = 1.
Since the distribution of i is invariant under permutations of {1, 2, . . . , N}, the
distribution of i conditioned on the event {1 ∈ i} is invariant under permutations
of {2, . . . , N}. This property also holds for i′. Therefore, each have the same
distribution, namely, that of {1} along with a uniformly chosen collection of
m − 1 numbers from {2, 3, . . . , N}. We also know therefore that Vk has the
distribution of SA − 1, conditioned on Xk = 1.

We now want to bound E[|SA − Vk|]. Note that SA can differ from Vk in
three ways: if Xk = 1; if my pick chosen to reallocate was matched to one of
yours that lay in A; and if your pick chosen to reallocate was matched to one
of mine that layin A. Then E[|SA − Vk|] = E[SA − Vk] is no greater than the
sum of the probabilities of these three events. More carefully, let U V , and W
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be the respective indicators of these things,

U = Xk (1)

V =

{
1 if iL ∈ A ∩ j′

0 otherwise
(2)

W =

{
1 if jL′ ∈ A ∩ i′

0 otherwise
. (3)

Then |SA−Vk| = SA−Vk ≤ U+V +W , and so E[|SA−Vk|] ≤ E[U ]+E[V ]+E[W ].
We know E[U ] = (m/N)2, and since V depends on choosing one of SA things
out of a total of m, E[V |SA] = E[W |SA] = SA/m, so

E[V ] =
∑

n

P{SA = n}E[V |SA = n] =
∑

n

P{SA = n}SA

m
=

E[SA]
m

,

and so

E[|SA − Vk|] ≤
(m
N

)2

+ 2
E[SA]
m

=
λ

N
+ 2

λ|A|√
λN

Therefore,

dTV(SA, P ) ≤ (1 ∧ (λ|A|)−1)
∑
k∈A

pkE[|SA − Vk|]

≤ (1 ∧ (λ|A|)−1)N
λ|A|
N

(
λ

N
+ 2

λ|A|√
λN

)
≤ 2(1 ∧ (λ|A|))|A|

√
λ

N
.

2


