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Functional neuroimaging has proven highly valuable in mapping
human sensory regions, particularly visual areas in occipital
cortex. Recent evidence suggests that human parietal cortex
may also consist of numerous specialized subregions similar to
those reported in neurophysiological studies of non-human
primates. However, parietal activation generalizes across a
wide variety of cognitive tasks and the extension of human
brain mapping into higher-order ‘association cortex’ may prove
to be a challenge.
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Abbreviations
AIP anterior intraparietal area
cIPS caudal intraparietal sulcus
fMRI functional magnetic resonance imaging
IPL inferior parietal lobule
IPS intraparietal sulcus
IPTO junction of intraparietal and transverse occipital sulci
LIP lateral intraparietal area
MIP medial intraparietal area
PET positron emission tomography
PRR parietal reach region
SPL superior parietal lobule
VIP ventral intraparietal area

Introduction
Positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI) have provided powerful
tools for mapping the human brain. Neuroimaging has
been particularly successful in mapping cortical visual
areas in the human occipital [1] and temporal [2] lobes.
The human parietal lobes (excluding somatosensory
regions, which are not discussed here), which traditionally
fall into the category of ‘association cortex’ because of their
complex, multimodal responses, provide one of the next
challenges for neuroimaging. 

Regions of parietal cortex form a major component of the
‘dorsal stream’, which is thought to be involved funda-
mentally in spatial localization [3] and the control of action
[4] (in contrast to the ventral stream, which is thought to be
more involved in perceptual recognition). In patients with
parietal damage, human neuropsychology has identified a
host of deficits, including attentional disorders (such as
hemispatial neglect and simultanagnosia), spatial localiza-
tion disorders and sensorimotor coordination problems
(optic ataxia and apraxia) [5]. Single-neuron recording in
macaques has demonstrated numerous regions in parietal

cortex that perform highly specialized spatial and sensori-
motor functions (Figure 1a) [6,7]. 

Although monkey physiology and human neuropsychology
have provided invaluable insights, these techniques have
important limitations in providing an understanding of
human parietal function. Comparisons of brain maps
between humans and other primates show striking differ-
ences even in early sensory areas [8,9], and one-to-one
homologies are even less likely in higher-tier areas.
Furthermore, the densely packed areas found in macaque
parietal cortex are generally too small to be distinguished
by the large lesions typical of most human neuropsycho-
logical studies. Neuroimaging thus holds promise for the
mapping of human parietal cortex in greater detail than
previously possible. What has it delivered so far? 

In keeping with findings from human neuropsychology and
monkey neurophysiology, numerous articles over the past
decade have shown that the parietal lobes are activated in
tasks involving visuomotor control, attention and eye
movements. Here, we review the main new results in these
areas, and also mention some of the other tasks that have
been reported to activate parietal cortex. To facilitate local-
ization and cross-species comparisons, Figure 1 illustrates
key functional and anatomical areas in macaque cortex
(Figure 1a) and the best estimates of homologous regions in
human cortex based on the current literature (Figure 1b).

Comparisons of human and monkey parietal
cortex
Monkey neurophysiology has identified a number of pari-
etal areas within the intraparietal sulcus (IPS) that respond
during specific visuomotor processes. Briefly, these include
areas specialized for saccades (lateral intraparietal area
[LIP]) [10], reaching (parietal reach region [PRR], which
includes both area V6A and the medial intraparietal area
[MIP]) [11,12], grasping (anterior intraparietal area [AIP])
[13], processing of shape and orientation (caudal IPS
[cIPS]) [14], and movements towards and contact with the
mouth and head (ventral intraparietal area [VIP]) [15].
These areas have been shown to code space in a variety of
coordinate frames [16], including eye-centred (LIP), head-
centred (e.g. VIP, V6) [15,17], body-centred (area 5, MIP)
[18] or even tool-centred coordinates [19], and many are
modulated by factors such as eye position [20]. These areas
are not always uniquely specialized or simple; for example,
LIP has visual, attentional, memory and saccade-related
activation [10], and its receptive fields are dynamic —
changing with the intention to make a saccade [21].

We now examine preliminary neuroimaging evidence for
potential human homologues of each of the five monkey
parietal areas described above. The homologies that we
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propose are highly tentative and are offered here merely as
a starting point for mapping parietal cortex. Certainly,
there are many regions that demonstrate similar properties
in both monkeys and humans; however, understanding
their precise functions and relationships will require many
further experiments.

Lateral intraparietal area 
Numerous areas within the IPS (e.g. the junction of the
IPS and transverse occipital sulci [IPTO], which may
include visual areas V7 and/or V3A; posterior IPS; and
anterior IPS) are activated by both saccades and attention
[22]. One of these areas may be the homologue of monkey
LIP [23••], which is also strongly driven by saccades and
attention [10]. The most likely candidate region lies in the
mid-posterior IPS, responds strongly even during pre-
dictable saccades (which have reduced attentional
demands compared with unpredictable ones), and has
been proposed as the human homologue of LIP [24].
Putative LIP may contain a retinotopic map of saccade
direction [25].

Parietal reach region
Neuroimaging studies have reported activation in the IPS
during reaching movements [26]. It is not yet clear
whether this region is distinct from other parietal areas.
Reach activity was reported anterior to saccade activity in
one study [27]. A more recent study using pointing (direct-
ing the finger towards a target without reaching to it)
found, however, that although pointing and saccade
regions overlapped, pointing-related activation was more
medial [28]. Interestingly, a reach-related region in the
anterior IPS was modulated by eye position [29•,30] and
may be the human homologue of the monkey PRR [31].

Anterior intraparietal area
The human anterior IPS is activated during visually guid-
ed grasping [32,33], although grasping activity appears to
overlap completely with reach-related activity [34]. This
area is a probable homologue of monkey AIP, which con-
tains neurons that respond to the visual and motor
components of the grasp and that are tuned to specific
shapes to be grasped [35]. The human area is also activat-
ed by the tactile manipulation of objects [36,37], by the
observation of others’ hand movements [38], and even by
passive viewing of graspable objects, namely tools [39•]. 

Caudal intraparietal sulcus 
Human neuroimaging has identified a region in the caudal
end of the IPS that is activated during object matching and
grasping [32], as well as during discriminations of object
size and orientation [40]. This area may be a homologue of
monkey cIPS, an area that contains neurons selective to
binocular disparity, shape and three-dimensional orienta-
tion, and that may send projections to AIP to provide
information for the visual guidance of hand action [14,41].
The relationship of cIPS to other areas in the vicinity
(V3A, V7 and IPTO) has yet to be determined.
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Figure 1

Comparison of monkey and human parietal lobes. Lateral view of
(a) macaque monkey brain (modified with permission from [14]) 
and (b) human brain (adapted with permission from [102]), showing
parietal lobes in white. Bold text indicates major sulci, italicized text
indicates lobules, and plain text indicates functional or anatomical
areas. Parietal boundaries are based on anatomical criteria rather
than on functional attributes [103]. The central sulcus (CS), 
Sylvian fissure (SF) and parieto-occipital sulcus (POS) provide
unambiguous boundaries, with the remaining boundaries
extrapolated from other landmarks. The most salient parietal
landmark is the intraparietal sulcus (IPS) that divides the parietal
lobe into the superior parietal (SPL) and inferior parietal lobules
(IPL) in both species [94]. In humans, the IPS is a long (~7 cm),
deep (~2 cm) sulcus [102] between the transverse occipital 
sulcus ([TrOS] near the POS) and the postcentral sulcus (PCS). 
In the monkey, parietal cortex contains many specialized regions
including primary somatosensory cortex (S1); Brodmann’s areas 5,
7A and 7B; visual areas V3A (occipitoparietal boundary), V6A and
the anterior (AIP), ventral (VIP), medial (MIP) and lateral (LIP) and
caudal (cIPS) sections of the IPS [6,7]. The IPS and adjacent 
lunate sulcus (LS) in the monkey brain have been opened up to
reveal the fundus and banks of each sulcus. Human neuroanatomy
differs substantially from that of monkey. It is generally believed 
that the human SPL is homologous to the monkey IPL [104].
Several human areas have been proposed to be putative human
homologues of monkey areas (appended with question marks to
indicate speculative relationships). Other areas without clear
homologies have also been reported, including: V7; the
supramarginal (SMG) and angular (AG) gyri; functional areas at 
the IPS/TrOS junction (IPTO); the temporoparietal junction (TPJ)
and parieto-occipital (PO) region. Medial parietal areas have not
been well-characterized in either species. STS, superior 
temporal sulcus.
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Ventral intraparietal area
Preliminary data suggest an area in human IPS that may
correspond to monkey VIP. Like the monkey area, putative
VIP in humans responds to visual motion towards the face
as well as tactile stimulation of the face (SP Dukelow et al.,
unpublished data) and has multimodal responses [42••]. 

Attention and eye movements
Few would challenge the claim that the parietal lobes play
an important role in visual attention [6,43], the mechanism
that enables us to direct our processing resources to a sub-
set of the available information. Most physiological
research on attention has focused on area 7 in the monkey
inferior parietal lobule (IPL), which is believed to be
homologous with area 7 in the human superior parietal lob-
ule (SPL; Figure 1) [44]. In the human, attention-related
activation has been reported throughout the parietal lobe,
specifically in the IPS (ranging between IPTO and the
postcentral sulcus), the postcentral sulcus, the SPL and
IPL (including the supramarginal gyrus), and the temporo-
parietal junction [22,45,46,47••,48••,49,50••]. As yet, the
precise role of these parietal regions in attention is a mat-
ter of substantial debate. We consider here three recent
developments in the neuroimaging literature on attention.

First, research during the past year has strengthened the
evidence that regions in parietal cortex produce the top-
down signals that modulate activity elsewhere in the visual
system. In particular, several studies have demonstrated
‘baseline shift’ attention signals [10] in which neural activ-
ity in visual and association areas, including SPL, IPS and
in some cases IPL, increases as a function of attentional
preparation even before the target stimulus appears
[23••,48••,49,51,52•]. Importantly, these baseline signals
can be larger in SPL [23••] or IPS [48••,52•] than in other
visual areas, suggesting that the parietal lobes may be a
source of attentional control signals. 

Second, several studies have implicated parietal regions
not only in visual attention, but also in auditory [53] and
haptic attention [54]. One study [55••] found overlapping
activations in parietal (and frontal) regions for a change
detection (‘oddball’) task (see also [56••]) with visual, audi-
tory and tactile stimuli, as well as unimodal activations in
visual, auditory and somatosensory association cortex (see
also [57•]). These findings suggest that at least some pari-
etal regions may be involved in attentional selection
independent of modality. 

Third, new findings indicate that not all attentional activa-
tions of the parietal lobe reflect a spatial component, and
not all such activations can be accounted for in terms
engaging the eye movement system. Visual attention and
saccades [22,58], as well as smooth pursuit eye movements
[59,60], activate largely overlapping networks, including
areas within the IPS. Two recent studies suggest that
attention yields greater activity than saccades in several
regions, including the SPL, IPS and frontal eye fields

(FEF) [61,50••]; however, another report suggests that a
network of areas responds more to overt saccades than
covert attentional shifts [62]. Nevertheless, eye movement
factors cannot account for all attentional activations in the
parietal lobes. Foveal attention tasks that have little or no
spatial component and do not involve the making, plan-
ning or suppression of eye movements can nonetheless
produce substantial activation throughout the IPS and in
other parietal regions [47••,63–65]. These findings indicate
that attention per se can strongly activate parietal regions,
independently of any involvement of spatial or eye 
movement processes.

Other functions
In addition to the functions reviewed above, parietal acti-
vation has also been reported for a stunningly diverse
range of stimuli and tasks. These include motion process-
ing [52•,66•,67,68], stereo vision [69], spatial [70,71] and
non-spatial working memory (which shows considerable
overlap with visual attention activation [72••]), mental
imagery [73], mental rotation [74], response inhibition
[75,76], task switching [77], alertness [78], calculation
[79,80], and even functions not typically attributed to pari-
etal cortex such as pain processing [81], swallowing [82] or
meditation [83]. Clearly, it would be absurd to claim that
parietal areas are specialized for any one of these processes
and some means of integrating the diversity of findings 
is required.

Conclusions
Why is parietal activation so general?
The most striking finding in a review such as this is the
heterogeneity of stimuli and tasks that produce parietal
activation. Why is parietal activation so general? We 
propose several possible explanations. 

First, the parietal lobes may really be purely ‘association cor-
tex’, a zone in which many related functions such as
attention, spatial representation, working memory, eye
movements and the guidance of actions come together.
Although these topics have been treated traditionally as 
separate domains in cognitive science, they may be highly
integrated in their underlying neuroanatomy. Second, the
processing performed in parietal cortex may be of such a
general nature (e.g. attention, coordinate transformation)
that parietal cortex is recruited by a wide range of tasks.
Third, some have suggested that the factors that enhance
the baseline firing rate of a large number of neurons, such as
attention [10], may lead to large increases in the population
responses measured by neuroimaging [84••]. Thus, parietal
functions such as attention may be particularly effective at
producing activation. Fourth, functional specialization in
the parietal lobes may be at a finer grain than is typically
resolved with current imaging techniques [85], or neurons
within areas may be specialized but interdigitated such that
they cannot be resolved by fMRI. Last, current hypotheses
concerning parietal function may not be the actual dimen-
sions along which the parietal lobes are functionally
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organized; on this view, what we are lacking is a conceptual
advance that leads us to test better hypotheses. 

How can future research better investigate parietal
function?
Even a cursory review of the parietal neuroimaging litera-
ture to date suggests that perhaps the appropriate question
to ask is not ‘what activates parietal cortex?’, but rather
‘what does not activate parietal cortex?’. For example, in
the case of visual attention, it is enlightening to find not
only that multiple forms of attention activate equivalent
regions but also that a challenging language task does not,
indicating that the area is not simply driven by general 
difficulty or arousal [47••]. 

Comparisons between tasks are most fruitful when per-
formed within subjects. Although meta-analyses of the
imaging literature may suggest similarities or differences in
activation across tasks [86,87•], these typically only report
the centroids of group activation without considering the
extent (often large for parietal regions), individual variabil-
ity, or specifics of the subtractions used. Experiments that
analyze overlapping activation across many tasks in indi-
vidual subjects appear particularly valuable in elucidating
parietal processing [22,47••,72••], as they have been in
mapping earlier visual areas [1]. 

Perhaps the greatest challenge in mapping parietal cortex
is that many of the functions that it probably subserves are
a vital component in many cognitive tasks. Specifically,
most tasks involve one or more of the following compo-
nents: shifting and maintaining attention; directing eye
movements and generating motor plans, either explicitly
or implicitly; using working memory; and coding and trans-
forming space [88] in input (e.g. retinotopic) or output (e.g.
arm-centred) coordinates. Thus, in any comparisons
between two states, it is important to control for these gen-
eral factors (e.g. attention) before drawing conclusions
about parietal function. Even in cases when indirect 
factors may play a role, attempts to control them may fail.

For instance, it is common practice to require subjects to
maintain fixation throughout an experiment in an attempt
to minimize eye-movement-related activation. However,
the requirement to fixate may lead to greater peripheral
attention and suppression of eye movements that are
planned but not executed, potentially producing greater
activation confounds than free viewing [50••]. Alternative
approaches include the use of parametric designs where fix-
ation requirements are comparable across task loads [89] or
free viewing of stimuli with post hoc analyses to determine
whether eye movements differed between conditions [90].

With the advent of more sophisticated techniques in neu-
roimaging, more rigorous tools are available to decode
parietal function. Whereas PET and many traditional
fMRI experiments have used blocked designs, event-related
designs have recently used analyses based on individual

trials [91]. One particularly promising technique available
with event-related designs is the use of adaptation. Just as
psychophysics has used adaptation to determine whether
two stimuli are processed by the same mechanism, neu-
roimaging has used adaptation to determine whether two
stimuli are processed by the same brain region.
Specifically, fMRI adaptation has been used to study
invariance in ventral stream areas [92••]. If dorsal stream
areas also demonstrate adaptation, the technique might
provide a powerful means to determine whether two func-
tions, such as attention and eye movements, really do
activate the same neural subpopulations. 

Neuroimaging of human brain functions is also likely to
benefit from crosstalk with related disciplines.
Neurophysiology has been reasonably successful at map-
ping monkey parietal cortex by combining functional data
from single units with precise anatomical localization [93],
architectonic parcellation [94] and information about region-
al connectivity [95]. Its limitations come from the fact that
experimenters must have a priori hypotheses about which
regions perform which functions. Neuroimaging enables
researchers to determine which regions carry out a given
function in the absence of prior anatomical hypotheses. The
future may lie not only in more systematic functional map-
ping, but also in combining activation data with human
architectonics [94] and functional connectivity [57•,96,97].
Neuroimaging in primates also holds much promise for
identifying homologies by using comparable techniques in
the two species [98–100].

Can association cortex be mapped?
Functional imaging is pushing the boundaries of human
brain mapping from the relatively well-established 
primary cortical areas to secondary and tertiary ‘association
cortex’. It remains to be seen how far such functional 
mapping will go, particularly for areas where monkey
homologies are unknown or nonexistent. Research in
occipital and temporal cortex suggests that functional
imaging can make a valuable contribution in identifying
human homologues of cortical areas identified previously
in the macaque, and in discovering novel functionally
defined regions. 

As discussed here, however, parietal cortex may be partic-
ularly challenging for a number of reasons. The parietal
lobes are not the only region of the brain where researchers
are struggling to understand overlapping activations across
apparently very different tasks; a similar pattern of results
is found in the frontal lobes [101]. Our hope is that more
sophisticated experimental designs and converging tech-
niques will aid in dissociating association cortex.
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